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146 Chapter 3 Polynomial and Rational Functions

Section 3.1 begins with basic definitions and graphical concepts and gives an
overview of key properties of polynomial functions. In Sections 3.2 and 3.3 we
consider zeros in exact form, including some of the classical theorems, while
learning something about approximations to zeros as well. The final section of the
chapter builds on this material to define and discuss rational functions, or quotients
of polynomials.

3.1 P O L Y N O M I A L F U N C T I O N S

I knew formulas for the quadratic and the cubic, and they said there was a
subject called Galois theory, which was a general theory giving conditions
under which any equation could be solved. That there could be such a thing
was beyond my wildest comprehension!

Paul Cohen

In earlier courses you learned that expressions such as

x 2 1 2x 2 1, x 3 1 3x, 2x 5 1 3x 2 8.

are called polynomials. The following are not polynomials:

1 2 x
x

, 2x22 1 3x, _ x _ 2 4, 4x 1 5.

We stated above that polynomials are functions built up as products of linear
and quadratic functions. Unfortunately, polynomials seldom appear in real-world
applications in factored form. Much of our work, in fact, will be devoted to finding
the factors from which a given polynomial is constructed. Accordingly, we begin
with the more standard definition.

Definition: polynomial function

A polynomial function of degree n is a function that can be written in the
form

p~x! 5 anx n 1 an21x n21 1 · · · 1 a1x 1 a0 (1)

where n is a nonnegative integer, an 5/ 0, and an, an21, . . . , a1, a0 are
numbers called coefficients. This course assumes that all coefficients are real
numbers. The leading term is anx n, the leading coefficient is an, and a0 is
the constant term. Equation 1 is the standard form for a polynomial
function.

It should be obvious from the definition that the domain of every polynomial
function is the set of all real numbers. We already know about polynomial func-
tions of degree 2 or less.

Degree 0: f ~x! 5 k, k 5/ 0 (constant function; the graph is a
horizontal line).

Degree 1: f ~x! 5 ax 1 b (linear function; the graph is a line).

Degree 2: f ~x! 5 ax 2 1 bx 1 c (quadratic function; the graph is
a parabola).

For technical reasons, the zero polynomial function, f ~x! 5 0, is not assigned a
degree.

When I was
thirteen, . . . I needed an
emergency operation for
appendicitis. I read two
books in hospital. One was
Jerome’s Three Men in a
Boat, and the other was
Lancelot Hogben’s
Mathematics for the
Million. Some of it I
couldn’t understand, but
much of it I did. I
remember coming across
the idea of dividing one
polynomial by another. I
knew how to multiply
them together, but I had
never divided them before.
So every time my father
came to visit me in hospital
he brought some more
polynomials that he’d
multiplied out.

Robin Wilson



(2, 0)

(0, 4)

y

x

f (x) = (x – 2)2
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Combining Polynomial Functions

It is appropriate to ask how the usual operations on functions apply to polynomial
functions. What about sums, differences, products, quotients, or composition? All
of these except quotients are also polynomials. The quotient of two polynomial
functions is never a polynomial function unless the denominator is a constant
function.

Products, Zeros, Roots, and Graphs

One consistent concern with polynomials, as in the work we did with many func-
tions in Chapter 2, is locating their zeros, finding the x-intercept points of graphs,
or finding roots of a polynomial equation. Every zero of a polynomial function is
associated with a factor of the polynomial. The equivalence of these concepts for
polynomials is summed up in the following box.

Roots, zeros, factors, and intercepts

Let p be a polynomial function and suppose that a is any real number for
which p~a! 5 0. Then the following are equivalent statements:

a is a root of the equation a is a zero of the polynomial
p~x! 5 0 function p

~x 2 a! is a factor of the ~a, 0! is an x-intercept point
polynomial p~x! of the graph of p

We now want to compare the graphs of some simple functions with what we get if
we take their products. We know that the graph of f ~x! 5 ~x 2 2!2 is a core para-
bola shifted 2 units right. The graph of f touches the x-axis at only one point, (2, 0).
See Figure 1. Since the equation ~x 2 2!~x 2 2! 5 0 has two solutions (by the
zero product principle), we say that f has a repeated zero or a zero of multiplicity
two at x 5 2.

Just as a polynomial function can be built up as a product of linear and quad-
ratic factors, its graph can be built up in a similar fashion. To take a simple example,
consider F~x! 5 ~x 1 1!~x 2 2!2. The zeros of F are clearly 2 (repeated) and 21.
When we take values of x near 2, the factor x 1 1 is near 3, and so we might expect
the graph of F to approximate the graph of y 5 3~x 2 2!2. The same kind of
reasoning suggests that the graph of F near 21 should be something like the graph
of y 5 ~x 1 1!~23!2 5 9~x 1 1!. That this reasoning is valid is borne out in
Example 1. To look more closely at a particular point, we may wish to zoom in.

TECHNOLOGY TIP r Zooming in on a point

On many calculators, when we press the ZOOM IN option, we get a cursor that
we move to the desired location and ENTER . On HP calculators, to zoom in on
some point other than the screen center, we must first redraw the graph with
the point at the center of the display window by moving the cursor to the
desired point and pressing CNTR from the ZOOM menu. Then, still in the ZOOM

menu, press ZIN.

FIGURE 1



[– 2, 4] by [– 2, 5]

y = g(x)
y = f (x)

(– 1, 0) (2, 0)

(a)

f (x) = 3(x – 2)2

g(x) = 9(x + 1)

[– 2, 4] by [– 2, 5]

y = F(x)

(– 1, 0) (2, 0)

(b)
F(x) = (x + 1)(x – 2)2

[– 2, 4] by [– 2, 4]

y = 2x3

y = F(x)

y = – 8(x – 2)

F(x) = x3(2 – x)
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cEXAMPLE 1 Products and zeros

(a) Graph f ~x! 5 3~x 2 2!2 and g~x! 5 9~x 1 1! in the same window.
(b) Add the graph of the product, F~x! 5 ~x 1 1!~x 2 2!2. Zoom in on the point

(2, 0) and on (21, 0). Describe in words the behavior of the product function
near its zeros.

Solution

(a) The graphs look like the diagram in Figure 2a.
(b) When we add the graph of F, we get the diagram in Figure 2b. When we zoom

in on the point (2, 0), we see two curves that are barely distinguishable. Both
graphs are tangent to the x-axis at the point (2, 0). We can see the tangent
behavior more clearly if we zoom in again (or several times), but the graphs are
so nearly identical near (2, 0) that we see only one.

Returning to the decimal window and zooming in on the point (21, 0), we
see a graph ( just one) that looks like a fairly steep line. Tracing, we can tell that
the graphs of g and F are not identical, but they are remarkably close.

The graph of the product function near each of its zeros appears to be very
closely approximated by the graph of a constant times one of the factors of F,
in particular, the factor of F which shares that zero. b

The kind of functional behavior we observed in Example 1 is typical of prod-
ucts, an observation we sum up in the following.

Graphs of products near zeros

Let F~x! 5 f ~x!g~x! and suppose that a is a zero of F, where f ~a! 5 0 and
g~a! 5/ 0. Then near ~a, 0!,

the graph of the product function F looks very much like the graph of
y 5 Af ~x!, where A is the constant given by A 5 g~a!.

cEXAMPLE 2 Products, zeros, and graphs

(a) Express the function F~x! 5 2x 3 2 x 4 in factored form and identify all zeros
of F with their multiplicities.

(b) For each zero a of F, find a constant A such that the graph of F near ~a, 0! is
approximated by the graph of the form y 5 Af ~x!. Check by graphing.

Solution

(a) If we factor out x 3, we can write F~x! 5 x 3~2 2 x!. By the zero product
principle, the zeros of F are 0 (of multiplicity 3) and 2.

(b) Near x 5 0, the other factor, ~2 2 x!, is near 2, so we would expect F~x! to be
approximated by y 5 2x 3 near ~0, 0!.

For the other zero, when x is close to 2, x 3 is close to 8. F should be very nearly
equal to y 5 8~2 2 x! 5 28~x 2 2!.

The graphs of y 5 2x 3, y 5 28~x 2 2!, and y 5 F~x! are all shown in
Figure 3. b

From the polynomial functions in the first two examples, it appears that we
should be able to graph such functions by piecing together combinations of shifted
multiples of the functions x, x 2, x 3, and so on. We have not considered the

FIGURE 2

FIGURE 3



[– 3, 3] by [– 5, 5]

y = f (x)

y = F(x)

(– 2, 0)

(0, 2)

(0, 4)

(1, 0)(– 1, 0)
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possibility of a quadratic factor with no real zeros. It turns out that there is also a
close connection between the graph of a function having such a factor and the graph
of a constant multiple of that factor, but we will not pursue the connection in this
text. We invite the curious reader, however, to explore the graph of a function such
as f ~x! 5 ~x 1 3!~x 2 1 1!. The graph of y 5 x 2 1 1 is a parabola with vertex
where x 5 0. Compare the graph of f with the pieces y 5 3~x 2 1 1! and y 5
10~x 1 3!.

For each nonrepeated zero, there is a single factor, and an x-intercept point
where the graph crosses the x-axis in essentially linear fashion. We associate a
double zero, a zero with multiplicity two, with a point where the graph is tangent
to the x-axis. Zeros of greater multiplicity correspond locally to translations of the
graphs of y 5 x 3, y 5 x 4, and so on. We can use this observation to build product
functions with any desired set of zeros. An equation for a product function can be
written in factored form, or the factors can be multiplied out to obtain what is called
the expanded form.

cEXAMPLE 3 Polynomials with specified zeros

(a) Write an equation for a polynomial function f having zeros 21, 22, and 1 as
a zero of multiplicity two.

(b) Write an equation for a polynomial function F, with the same zeros as f , whose
graph contains (0, 4).

Solution

(a) Without specifying some additional point, there is not a unique polynomial func-
tion with the given zeros, so we build the simplest. For the repeated zero 1, 1, we
need a factor ~x 2 1!2, and we also need linear factors x 1 1 and x 1 2. We can
write an equation for f as

f ~x! 5 ~x 2 1!2~x 1 1!~x 1 2! 5 x 4 1 x 3 2 3x 2 2 x 1 2.

The graph is the solid curve in Figure 4.
(b) Tracing along the graph of f , we see that the y-intercept point is (0, 2), a fact

that is also obvious from the expanded form, since f ~0! 5 2. For a function F
with the same zeros as f such that F~0! 5 4, we want to dilate the graph of f
vertically by a factor of 2. Thus F~x! 5 2 f ~x! 5 2~x 2 1!2~x 1 1!~x 1 2!,
or in expanded form, F~x! 5 2x 4 1 2x 3 2 6x 2 2 2x 1 4. Its graph is the
dotted curve in Figure 4. b

TECHNOLOGY TIP r Checking algebra

For most purposes, expanded form is not necessary, but a graphing calculator
can be used to check our algebra even if it does not handle symbolic forms.
To see if our expanded form of F in Example 3 is correct, we can graph both
2~x 2 1!2~x 1 1!~x 1 2! and the expanded form, 2x 4 1 2x 3 2 6x 2 2
2x 1 4, in the same screen. If the graphs show any differences, then we
obviously need to check our multiplication again.

In calculus courses, techniques are developed to find maximum and minimum
values of a function. Important as these techniques are, a graphing calculator can
be used to get excellent approximations for such values. It is handy to have some
terminology and definitions. We assume that the graph of f contains no isolated
points.

FIGURE 4
f ~x! 5 ~x 2 1!2~x 1 1! ~x 1 2!

F~x! 5 2~x 2 1!2 ~x 1 1! ~x 1 2!



(a)
[– 5, 5] by [– 3.5, 3.5] [– 10, 10] by [– 10, 10]

(b)
[– 3, 4] by [– 15, 5]

1

2

(c)

[– .2, 2.2] by [– 10.6, – 9.5]


(.42, – 9.62)

(1.57, – 10.38)

(d)
[3, 3.5] by [– .2, .2]



(e)
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Definition: local extrema and turning points

Suppose c is in the domain D of a function f.

If f ~x! $ f ~c! for all x in D in some open interval containing c,
then f ~c! is called a local minimum of f.

If f ~x! # f ~c! for all x in D in some open interval containing c,
then f ~c! is called a local maximum of f.

Local maxima and minima are called local (or relative) extrema. If the
above inequalities hold for every x in D, then f ~c! is called an absolute
minimum (or maximum).

If f ~c! is a local extremum, then the point ~c, f ~c!! is called a turning
point of the graph.

When we want to find zeros and local extrema of polynomials, the choice of
viewing windows is critical, as illustrated in the next example.

cEXAMPLE 4 Windows and graphs Draw graphs of y 5 x 3 2 3x 2 1
2x 2 10 to locate all zeros and local extrema.

FIGURE 5
y 5 x 3 2 3x 2 1 2x 2 10



[– 10, 10] by [– 20, 20]



(a)

[–10, 10] by [– 130, 25]



(b)
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Solution
If we begin with a decimal window (Figure 5a), we can see an x-intercept near 3,
but very little else of interest. We clearly need a larger window.

Setting a window of @210, 10# 3 @210, 10#, it appears that something is
happening near the y-intercept point (0, 210), but the graph does not yet show
enough detail to allow us even to know what we should be interested in. See
Figure 5b.

To see better what is happening near (0, 210), we set a window of
@23, 4# 3 @215, 5# and get the graph in Figure 5c. We can see two “humps,” as
well as the x-intercept point, but there is too much compression in the y-direction
to get much detail. Accordingly, we zoom in to look at the points of interest more
closely.

When we zoom into a box like the one labeled 571 in Figure 5c, we exaggerate
the vertical dimensions and we can trace to get a pretty good estimate of the local
maximum near (0.42, 29.62) and the local minimum near (1.57, 210.38). See
Figure 5d.

Returning to Figure 5c, if we zoom into a box like the one labeled 572 , we can
trace to find that y 5 0 when x is about 3.31. See Figure 5e. b

There are some obvious questions about what we have done in Example 4.
How do we know we have located all the zeros and local extrema? At this point we
have no real justification for claiming to have completed the example. Part of our
task in this section is to look at enough graphs of polynomial functions to make
some reasonable guesses about “typical” polynomial graphs. In the next section we
get a number of theorems to justify our observations. In particular, we will learn
that the graph of a cubic polynomial such as the one in Example 1 can have at most
two “humps” or turning points, so that there can be no more local extrema, and the
graph can never turn back to the x-axis.

cEXAMPLE 5 Graphs, factors, and zeros
Let p~x! 5 ~x 2 2 1!~x 2 1 x 2 20! 5 x 4 1 x 3 2 21x 2 2 x 1 20.

(a) Find a window in which you can see four zeros and three turning points on the
graph of y 5 p~x!.

(b) Use the factored form of p~x! to find all zeros.

Solution

(a) In a decimal window, we see nothing but essentially vertical lines. Increasing
our ranges to @210, 10# 3 @220, 20# is a little better. We can at least see four
x-intercepts, and what appears to be a turning point near @0, 20#. See Figure 6a.
Tracing in both directions, we can read y-coordinates below 2120, so we try
a y-range of @2130, 25#. The graph in Figure 6b shows four zeros and three
turning points. There are, of course, many windows that would work as well.

(b) From the factored form, we can use the zero-product principle to assert that
p~x! 5 0 only when x 2 2 1 5 0 or x 2 1 x 2 20 5 0. Each of these equations
is a quadratic that factors readily, so p~x! 5 ~x 2 1!~x 1 1!~x 1 5!~x 2 4!.
By the zero-product principle, we get one zero from each factor. The zeros are
25, 21, 1, and 4. b

FIGURE 6

p~x! 5 ~x 2 2 1!~x 2 1 x 2 20!



[– 3, 3] by [– 4, 4]



(– 1, 0)

(1, 0)

[– 4, 5] by [– 15, 30]



(3.6, – 4.5)
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Scaling and autoscalingTECHNOLOGY TIP r

In Example 5, the graph of p in the @210, 10# 3 @220, 20# window went
“off-scale,” dipping down out of our view.

Tracing displays function values as y-coordinates even for points that do
not appear in the window. This allows us to estimate the y-range needed to
see features that aren’t visible in a particular window, as we did in the
example.

Another feature available on many graphing calculators is called Autoscale or
Zscale. Having set the x-range, when we use Autoscale, the calculator computes
function values for the entire x-range and makes the y-range big enough to
show all computed y-values.

This can be handy at times, but with many functions, including
polynomials because of their steep end behavior, the resulting graph has so
much vertical compression that interesting behavior is “squashed” out of
sight. From the @210, 10# 3 @220, 20# window in Example 5, try
autoscaling to see what happens.

cEXAMPLE 6 Graphs, factors, and zeros Repeat Example 5 for the func-
tion p~x! 5 ~x 2 2 1!~x 2 2 x 2 3! 5 x 4 2 x 3 2 4x 2 1 x 1 3.

Solution

(a) Now a decimal window is almost good enough, but one turning point is off
screen. Figure 7 shows a graph in @23, 3# 3 @24, 4#.

(b) From the factored form, we again have zeros at 21 and 1, from x 2 2 1 5 0.
Solving x 2 2 x 2 3 5 0, however, requires the quadratic formula to find the

two remaining zeros: x 5 1 6 Ï13
2 . b

cEXAMPLE 7 Finding turning points Let
p~x! 5 x 4 2 6x 3 1 7x 2 2 2x 1 24.

(a) Find a window in which you can see three turning points and two real zeros.
(b) Find the coordinates of the lowest turning point to one decimal place.

Solution

(a) After some experimentation, we get the calculator graph of Figure 8 in the
@24, 5# 3 @215, 30# window. The two turning points near the y-intercept
point are not very pronounced, but there are clearly three turning points on the
graph. We could set a window in which the turning points near the y-intercept
are more visible, but then we would not see the lowest. The graph has only two
x-intercept points.

(b) Tracing along the curve and zooming in as needed, we find that the lowest
turning point is near (3.6, 24.5). b

Not all graphs of polynomial functions have turning points. The most obvious
case is the set of all polynomials of degree one or less, whose graphs are straight
lines. The graph of y 5 x 3, which we have met before, levels out to run tangent to
the x-axis at the origin; the function is always increasing, and so there are no turning
points. The graph of the cubic function f ~x! 5 x 3 1 2x does not even level out. See
Figure 9.

FIGURE 8
p~x! 5 x 4 2 6x 3 1 7x 2

2 2x 1 24

FIGURE 7
p~x! 5 ~x 2 2 1! ~x 2 2 x 2 3!



y = x3 + 2x

y = x3

y

x

[– 5, 5] by [– 1, 10]

(a)

y = g(x)

y = p(x)

(.2, 4.1)

[0.2, 0.3] by [3.9, 4.3]



(b)

(.245, 4.12)
y = p(x)

y = g(x)

p(x) = x3 – 2x2 + 5x + 3
g(x) = 2    x + 4
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cEXAMPLE 8 Finding intersections Let p~x! 5 x 3 2 2x 2 1 5x 1 3 and
g~x! 5 2Ïx 1 4. Graph both f and g in a window that shows the intersection of
the curves, and locate the coordinates of the intersection to one decimal place.

Solution
After some experimentation, it appears that the graph of p has no turning points
and that the intersection shown in @25, 5# 3 @21, 10# (see Figure 10a) is the only
intersection of the two curves. Zooming in as needed on the point of intersection,
we read the coordinates as approximately (0.2, 4.1). b

TECHNOLOGY TIP r Trapping an intersection

Rather than simply zooming in or drawing a box, some people prefer a pro-
cess that lets us keep track of the window size and thus the accuracy. We can
trace in Figure 10a and find the intersection is between x 5 .2 and x 5 .3,
and between y 5 3.9 and y 5 4.3. Setting these numbers as range values,
we get a picture something like Figure 10b, in which we can trace, knowing

that the pixel increment in the new window is about
.3 2 .2

a pixel cols.
~< .001).

FIGURE 9

FIGURE 10
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Smoothness and End Behavior

All the graphs of polynomial functions we have looked at so far are smooth, with
no jumps, breaks, or corners. You will learn in calculus that these properties follow
from the fact that polynomial functions are continuous and differentiable. For
now, we simply accept these properties about polynomial graphs. Furthermore,
graphs of polynomial functions (of degree greater than 1) continue to rise or fall
very steeply as we move along the graph to the right or left. We are asking what
happens as x becomes large and positive or large and negative (for which we use
the notation x A ` or x A 2`). This end behavior depends solely on the degree
of the polynomial and the sign of the leading coefficient. With a positive leading
coefficient, we always have f ~x! A ` as x A `. In most cases, we can look at the
equation defining the polynomial and see what the end behavior will be.

To get a better feeling for some of the variety of graphs of polynomial func-
tions, numbers of turning points and zeros, and so on, we have a table for several
polynomial functions. We do not show graphs here. Rather, we ask you to graph
each one and verify for yourself the observations we record in the table. You may
select whatever window will be most helpful. Most of the pertinent information can
be seen in a window such as @24, 5# 3 @210, 15#, but adjust the window as
needed. The arrows suggest the end behavior by indicating the direction in which
the graph is heading.

Polynomial Function End Degree Real Zeros Turning Points

y 5 x 5 2 3x 4 2 5x 3 1 15x 2 1 4x 2 12 G F 5 5 4

y 5 2x 3 1 2x 2 1 3x 2 1 E H 3 3 2

y 5 2x 4 1 5x 2 2 4 G H 4 4 3

y 5 x 6 2 2x 4 2 3x 2 2 5x 1 8 E F 6 2 3

y 5 2x 6 1 3x 5 1 5x 4 2 15x 3 2 3x 2 1 12x 2 5 G H 6 4 5

On the basis of our discussions thus far, we can make some observations that
we will substantiate in the next section.

Suppose f is a polynomial function of degree n, where n $ 1.

1. The number of real zeros (counting multiplicities) is either n or some
even number less than n (such as n 2 2, n 2 4, etc.).

2. The number of turning points or local extrema is n 2 1 or some even
number less than n 2 1 (such as n 2 3, etc.).

3. End behavior:

If n is even, and the leading coefficient is

positive, as x A 6`, then y A `; E. . .F
negative, as x A 6`, then y A 2`. G· · ·H

If n is odd and the leading coefficient is

positive, as x A 2`, y A 2` and as x A `, y A `; G· · ·F
negative, as x A 2`, y A ` and as x A `, y A 2`. E. . .H
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EXERCISES 3.1

Check Your Understanding

True or False. Give reasons. Draw a graph whenever you
think it might be helpful.

1. If k is any positive number, then the graph of y 5 1 2
kx 3 contains no points in Quadrant III.

2. The graph of f ~x! 5 x 3 1 x 2 2 2x 1 3 has two turn-
ing points.

3. If c is a zero of f , then (0, c) is a point on the graph
of f.

4. Every real zero of f ~x! 5 ~1 1 x 2!~x 2 2 x 2 2! is
also a zero of g~x! 5 x 2 2 x 2 2.

5. The graph of f ~x! 5 x 3 2 3x 2 2 7x 2 5 contains
points in all four quadrants.

6. The degree of f ~x! 5 x 3 1 x~1 2 x 2! is 3.

7. The function f ~x! 5 x 3 2 3x 2 2 7x 1 3 has one neg-
ative zero and two positive zeros.

8. There is no fourth degree polynomial function whose
graph has exactly two turning points.

9. Using the window @25, 5# 3 @240, 40# we can con-
clude that f ~x! 5 x 3 2 x 2 1 5x 1 4 has a positive
zero.

10. For f ~x! 5 x 3 2 18x 2 1 24x 1 125, using the win-
dow @28, 24# 3 @21300, 400# we can conclude that all
zeros of f are between 23 and 20.

Develop Mastery

Exercises 1–4 Determine whether or not f is a polynomial
function. If it is, give its degree.

1. f ~x! 5 4 2 3x 2 2x 2

2. f ~x! 5 x 2 1 Ïx 2 2 3

3. f ~x! 5 x~x 1 1!~x 1 2!

4. f ~x! 5 Ïx 2 1 9

Exercises 5–10 Combining Functions Use the polyno-
mial functions f , g, and h, where

f ~x! 5 3x 1 2 g~x! 5 5 2 x h~x! 5 2x 2 2 x.

(a) Determine an equation that describes the function ob-
tained by combining f , g, and h. (b) If it is a polynomial
function, give the degree, the leading coefficient, and the
constant term.

5. f 1 g 6. f 2 h 7. fg

8. h 8 f 9. f 8 h 10.
f
g

Exercises 11–12 Which Window? In order to determine
the zeros of f , which window would you use?

11. f ~x! 5 0.3x 3 1 3x 2 2 7x 2 6; three zeros.
(i) @210, 10# 3 @210, 10#
(ii) @28, 10# 3 @210, 50#
(iii) @215, 10# 3 @210, 80#

12. f ~x! 5 x 4 2 11x 3 2 16x 2 1 44x 1 400; two zeros.
(i) @210, 10# 3 @210, 10#
(ii) @210, 10# 3 @2400, 400#
(iii) @25, 15# 3 @22500, 2000#

Exercises 13–14 Which Window? The graph of f con-
tains a local maximum point and a local minimum point.
Which window would you use to see this feature?

13. f ~x! 5 x 3 2 16x 2 2 24x 1 400
(i) @210, 10# 3 @210, 10#
(ii) @25, 10# 3 @2200, 200#
(iii) @25, 15# 3 @2480, 450#

14. f ~x! 5 2x 3 2 20x 2 1 75x 1 800
(i) @210, 10# 3 @210, 10#
(ii) @220, 10# 3 @22000, 1200#
(iii) @220, 5# 3 @21000, 1000#

Exercises 15–18 Zero-product Principle A formula for
function p is given in factored form. (a) Express p~x! in
standard (expanded) form, give the leading coeffi-
cient, and constant term. (b) Use the zero-product
principle to find the zeros of p. (c) Use cut points to
find the solution set for p~x! , 0.
15. p~x! 5 x~x 2 1!~x 1 2!

16. p~x! 5 x 2~x 2 2!~x 2 1!

17. p~x! 5 ~x 2 1!~x 1 1!~2x 2 1!

18. p~x! 5 ~2x 2 1 x 2 1!~x 2 1 2x 2 3!

Exercises 19–22 (a) Factor and find all the zeros of f
(including complex zeros). (b) Determine the end behavior.
(c) Use a calculator graph to check your answers.

19. f ~x! 5 x~x 2 3! 1 2x~x 1 2!

20. f ~x! 5 ~x 1 2!~x 2 1! 2 ~x 1 2!~2x 1 3!

21. f ~x! 5 x 3 2 1

22. f ~x! 5 x 3 2 2x 2 2 3x 1 6

Exercises 23–26 Zeros and Turning Points
(a) Read the discussion at the end of this section and tell
how many real zeros f can possibly have. Do the same for
turning points. (b) Draw a calculator graph and then tell
how many zeros and how many turning points there actually
are. (c) In what quadrants do the turning points lie?

23. f ~x! 5 x 3 2 2x 2 2 3x 2 1

24. f ~x! 5 2x 4 1 5x 2 2 x 1 1

25. f ~x! 5 2x 5 2 4x 4 1 6x 3 1 24x 2 2 5x 2 20

26. f ~x! 5 x 4 2 3x 3 1 x 2 2 3x 2 8
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Exercises 27–30 Approximating a Zero Draw a graph
and use it to find an approximation (1 decimal place) for the
lar- gest zero of f.

27. f ~x! 5 x 3 2 2x 2 2 5x 1 3

28. f ~x! 5 2x 3 2 2x 2 1 5x 1 4

29. f ~x! 5 x 4 2 7x 2 1 x 1 5

30. f ~x! 5 x 4 2 7x 2 2 x 1 5

Exercises 31–34 Local Maximum
(a) For the functions in Exercises 27–30, determine the
coordinates of any local maximum points (1 decimal place).
(b) Describe the end behavior for f.

Exercises 35–38 Turning Points Determine the coordi-
nates of the turning point in the given quadrant (1 decimal
place).

35. f ~x! 5 x 3 2 2x 2 2 5x 1 3; QII

36. f ~x! 5 x 3 2 2x 2 2 5x 1 3; QIV

37. f ~x! 5 3 1 5x 2 2x 2 2 x 3; QIII

38. f ~x! 5 3 1 5x 2 2x 2 2 x 3; QI

Exercises 39–43 Graph to Formula A graph of a poly-
nomial function is given, where the vertical scale is not
necessarily the same as the horizontal scale. From the fol-
lowing list of polynomials, select the one that most nearly
corresponds to the given graph. As a check draw a calcula-
tor graph of your selection and see if it agrees with the given
graph.

(a) f ~x! 5 x 2~x 2 1!~x 2 3!

(b) f ~x! 5 x 2 1 3x
(c) f ~x! 5 x 2~x 2 2!2

(d) f ~x! 5 x~x 2 1!2~x 1 2!2

(e) f ~x! 5 4x 2 x 3

(f) f ~x! 5 x~x 2 1!~3 2 x!

(g) f ~x! 5 x~1 2 x!~3 2 x!

(h) f ~x! 5 x 4 2 5x 2 1 4

39.

Exercises 44–47 Related Graphs Draw graphs of f and
g. From the graphs, make a guess about how the graphs are
related. Prove algebraically.

44. f ~x! 5 x 3 1 x 2 2 6x, g~x! 5 x 3 1 7x 2 1 10x

45. f ~x! 5 x 3 1 3x 2 2 x 2 3,
g~x! 5 x 3 1 6x 2 1 8x

40.

41.

42.

43.



pg157 [R] G1 5-36058 / HCG / Cannon & Elich clb 11-22-95 MP1

3.1 Polynomial Functions 157

46. f ~x! 5 x 3 1 3x 2 2 x 2 3,
g~x! 5 x 3 2 3x 2 2 x 1 3

47. f ~x! 5 x 3 2 x 2 2 6x, g~x! 5 x 3 2 7x 2 1 10x

48. Determine all integer values of k for which f ~x! 5
x 3 2 x 2 2 5x 1 k will have three real zeros. (Hint:
Locate the local maximum and local minimum points
for the graph of g~x! 5 x 3 2 x 2 2 5x. Then consider
vertical translations.)

49. Solve Exercise 48 for f ~x! 5 x 3 2 2x 2 2 5x 1 k.

50. Solve Exercise 48 for f ~x! 5 2x 3 2 x 2 1 x 1 k.

51. For what integer value(s) of k will f have one negative
and two positive zeros where

f ~x! 5 ~x 2 k!3 1 5~x 2 k!2 1 3~x 2 k! 2 1?
(Hint: Draw a graph of y 5 x 3 1 5x 2 1 3x 2 1 and
then consider horizontal translations.)

52. Solve Exercise 51 for

f ~x! 5 2~x 2 k!3 2 5~x 2 k!2 1 5.
Exercises 53–54 Your Choice Draw a rough sketch of a
graph of a polynomial function satisfying the specified con-
ditions. The answer is not unique.
53. Function f has exactly 3 distinct zeros and f ~x! A ` as

x A 2`.
54. The degree of f is 3, f has one real zero, and f ~x! A 2`

as x A `.
55. The base of a rectangle is on the x-axis and its upper two

vertices are on the parabola y 5 16 2 x 2. Of all such
rectangles, what are the dimensions, (1 decimal place)
of the one with greatest area?

56. Solve the problem in Exercise 55 where y 5 16 2 x 4.

57. A rectangular box without a top is to be made from a
rectangular piece of cardboard 12 3 15 inches by cut-
ting a square from each corner and bending up the sides
of the remaining piece. Of all such boxes, find the di-
mensions (1 decimal place) of the one having the largest
volume. See illustration on p. 179.

58. Maximum Strength At a lumber mill a beam with
rectangular cross section is cut from a log having
cylindrical shape of diameter 12 inches. Assuming that
the strength S of the beam is the product of its width w
and the square of the depth d, what are the dimensions
(1 decimal place) of the cross section that will give a
beam of greatest strength.

59. If a polynomial function of degree 3 has no local ex-
trema, explain why it must be one-one and therefore
have an inverse.

60. (a) Draw a graph of f ~x! 5 x 3 2 3x 2 1 9x 1 2.
(b) Is it reasonable to conclude that f is one–one, and

so it has an inverse given by the equation x 5
y 3 2 3y 2 1 9y 1 2 giving y 5 f 21~x!? Give rea-
son.

(c) Find a decimal approximation (1 decimal place)
of f 21~3!. That is, solve the equation
y 3 2 3y 2 1 9y 1 2 5 3

61. Solve Exercise 60 for the function
f ~x! 5 x 3 2 3x 2 1 9x 2 2.

62. Explain why a fourth degree polynomial function can-
not be one-one. Consider end behavior.

Exercises 63–64 Point of Intersection On the same
screen, draw graphs of f and g. The two graphs intersect at
a single point. Find the coordinates of that point (1 decimal
place).

63. f ~x! 5 x 3 2 2x 2 1 5x 1 4, g~x! 5 x Ïx 1 4.

64. f ~x! 5 x 3 1 2x 2 1 3x 2 5,
g~x! 5 x 2 2 8x 1 15.

Exercises 65–66 Intersecting Graphs The graph of f
and the half circle intersect at a single point. Use calculator
graphs to help you find the coordinates of the point of inter-
section (1 decimal place).

65. f ~x! 5 x 3 2 3x 2 1 5x 2 8;
upper half of circle ~x 2 2!2 1 y 2 5 25.

66. f ~x! 5 x 3 2 3x 2 1 5x 1 8;
lower half of circle ~x 1 1!2 1 y 2 5 9.

Exercises 67–72 Determine the end behavior of the graph
of the function when x A ` and when x A 2`.

67. f ~x! 5 2x 2 3x 2 68. g~x! 5 x 4 2 3x 2 1 4

69. h~x! 5 1 1 3.4x 2 5.2x 3 2 2x 5

70. f ~x! 5 2
2
5

~2x 2 x 3!

71. g~x! 5 ~3 2 2x!~4 2 x 3!

72. h~x! 5 ~1 2 2x!~3 2 4x 2!

Exercises 73–76 Looking Ahead to Calculus In cal-
culus you will learn that for the given function f there is an
associated function g such that the real zeros of g are the
x-coordinates of the local extrema points of f. If g has no
real zeros then f has no local extrema points.
(a) Find the zeros of g.
(b) Find the coordinates of the local extrema points of f , if
there are any.
(c) Use a graph as a check.

73. f ~x! 5 2x 3 1 3x 2 2 12x 1 3,
g~x! 5 x 2 1 x 2 2

74. f ~x! 5 x 3 2 x 2 2 8x 1 1,
g~x! 5 3x 2 2 2x 2 8

75. f ~x! 5 x 3 2 3x 2 1 12x 1 1,
g~x! 5 x 2 2 2x 1 4

76. f ~x! 5 x 3 2 6x 2 1 9x 1 4,
g~x! 5 x 2 2 4x 1 3




