Mathematics 5710

Review for Test 3

1. What is the joint cumulative distribution function for two random variables X and Y ?
2. What is the joint probability frequency function for two discrete random variables X and Y ?
3. What is the joint probability density function for two continuous random variables X and Y ? How is it related to the joint cdf ?
4. How do you compute the probability of an event that is described in terms of two random variables X and Y ? How do you generalize the theory of random variables to higher dimensions?
5. Given the joint frequency function for X and Y, how do you obtain the marginal frequency functions?
6. Given the joint density function for X and Y, how do you obtain the marginal density functions?
7. Given discrete random variables X and Y, how do you find the frequency function of Y given X ?
8. What is the expected value and variance of a discrete random variable?
9. What is the expected value and variance of a continuous random variable?
10. How do you find the variance of a random variable?
11. Suppose you know the joint density function for the continuous random variables X and Y. How do you find the density function for the random variable $\mathrm{g}(X, Y)$?
12. How do you find the expected value of $\mathrm{g}(X, Y)$? How do you find the variance of $\mathrm{g}(X, Y)$?
13. Define what is meant by the covariance of the random variables X and Y ? How do you compute the covariance? What is the correlation $\rho(X, Y)$ and what does it measure?
14. What is the moment generating function of a random variable? Why is it important?

Review Problems: Test 3

1. In the gambling game Chuck-a-Luck, for a $\$ 1$ bet it is possible to win $\$ 1, \$ 2$, or $\$ 3$ with respective probabilities $75 / 216,15 / 216,1 / 216$. One dollar is lost with probability $125 / 216$. If X equals the payoff for this game, find $\mathrm{E}(X)$ and $\operatorname{Var}(X)$. Note that when a bet is won, the $\$ 1$ that was bet is returned to the bettor in addition to the money won.
2. A biased coin with probability of heads equal to $2 / 3$ is tossed until a head appears or 3 tosses have been made. Let X denote the number of tosses. Find the mean and variance of X.
3. The joint probability density function of X and Y is given by

$$
f(x, y)=\frac{1}{8}\left(y^{2}-x^{2}\right) e^{-y} \text { for }-y \leq x \leq y, \quad 0<y<\infty
$$

Write the density of X in terms of an integral with the appropriate limits of integration. Write the density of Y in terms of an integral with the appropriate limits of integration. Do not evaluate the integrals.
4. A random variable X has the density function

$$
f(x)=\left\{\begin{array}{lc}
3 e^{-3 x} & \text { if } 0 \leq x<\infty \\
0 & \text { otherwise }
\end{array} \quad \text { Find } E\left(e^{x}\right)\right.
$$

5. Let X be a continuous random variable with probability density function

$$
f(x)=\left\{\begin{array}{lr}
\frac{2}{x^{2}} & \text { if } 1<x<2 \\
0 & \text { otherwise }
\end{array}\right.
$$

Find $E(X)$ and $\operatorname{var}(X)$.
6. Suppose X, Y are continuous random variables with joint density

$$
f(x, y)=\left\{\begin{array}{cc}
\frac{1}{2} x e^{-y} & \text { for } 0<x<2, y>0 \\
0 & \text { otherwise }
\end{array}\right.
$$

a) Find $P(X \leq 1, Y \leq 2)$.
b) Find $f_{X}(x)$ and $f_{Y}(y)$. Are X, Y independent?
c) Find $P\left(X^{2}+Y^{2} \leq 4\right)$. Write your answer as an integral; do not evaluate.
7. The joint probability density function of X and Y and is given by

$$
f(x, y)=e^{-(x+y)} \text { for } \quad 0 \leq x<\infty, 0 \leq y<\infty
$$

Find $\quad P(X<Y), f_{X}(x)$, and $f_{Y}(y)$.
8. Suppose X, Y are independent exponential random variables with parameter $\lambda=2$.
a) Find $f(x, y)$, the joint density of X and Y. .
b) Find $P(X+Y \leq 7)$. Write your answer as an integral; do not evaluate.
9. Suppose X, Y are independent uniform random variables on (0,2). Suppose $W=X+Y$. Find the density function of W.
10. The time until failure of each component in the following system is an exponential random variable with parameter $\lambda=3$. They operate independently of one another. Let W be the time until failure of the system. Find the density function for W.

11. If X and Y are independent random variables with equal variances, find $\operatorname{Cov}(X+Y, X-Y)$.
12. Let X be the minimum value when a pair of four-sided dice is rolled. Find the moment generating function for X and use it to find the mean and variance of X.
13. Suppose the probability density function of the continuous random variable X is given by

$$
f(x)=\left(\begin{array}{cc}
2 x, & 0<x<1 \\
0 & , \text { otherwise }
\end{array}\right.
$$

Find the moment-generating function for X and use it to find the mean and variance of X .

