Math 4200 Final Test (Practice)

Name_____

1. Show that $\sqrt{210}$ is an irrational number.

2. Suppose f is a function with domain I. Give the negation of the following statement:

 $\text{For each } a \text{ in } I, \forall \epsilon > 0, \exists \, \delta > 0 \text{ such that if } | \, x - a \, | < \delta \text{ then } | \, f(x) - f(a) \, | \, < \, \epsilon.$

3. Let $S = \{(a, b) : a \text{ and } b \text{ are integers and } ab \ge 0\}$. Show that S is a countable set.

4. Prove that there are uncountably many sequences of zeros and ones.

5. Prove: For each natural number $n, 17^n - 13^n$ is divisible by 4.

6. Suppose $\{s_n\}$ is a monotone, non increasing sequence; that is, for each n, $s_n \ge s_{n+1}$. Suppose also that $\{s_n\}$ is bounded below; that is, there exists a real number M such that for all $n, s_n \ge M$. Prove that $\{s_n\}$ converges.

7. Suppose $\lim_{x \to b} r(x) = L$, $\lim_{x \to b} t(x) = L$, and for all x, $r(x) \le s(x) \le t(x)$. Prove that $\lim_{x \to b} s(x) = L$. 8. Suppose h is continuous at x = a, and $\{c_n\}$ is a sequence such that $c_n \longrightarrow c$. Show that $h(c_n) \longrightarrow h(c)$.

9. Suppose f is one-to-one, continuous on [a, b], and f(a) < f(b). Use the Intermediate Value Theorem to show that for all x in (a, b), f(a) < f(x) < f(b).