Math 4200
 Final Test (Practice)

Name

1. Show that $\sqrt{210}$ is an irrational number.
2. Suppose f is a function with domain I. Give the negation of the following statement:

For each a in $I, \forall \epsilon>0, \exists \delta>0$ such that if $|x-a|<\delta$ then $|f(x)-f(a)|<\epsilon$.
3. Let $S=\{(a, b): a$ and b are integers and $a b \geq 0\}$. Show that S is a countable set.
4. Prove that there are uncountably many sequences of zeros and ones.
5. Prove: For each natural number $n, 17^{n}-13^{n}$ is divisible by 4 .
6. Suppose $\left\{s_{n}\right\}$ is a monotone, non increasing sequence; that is, for each n, $s_{n} \geq s_{n+1}$. Suppose also that $\left\{s_{n}\right\}$ is bounded below; that is, there exists a real number M such that for all $n, s_{n} \geq M$. Prove that $\left\{s_{n}\right\}$ converges.
7. Suppose $\quad \lim _{x \rightarrow b} r(x)=L, \quad \lim _{x \rightarrow b} t(x)=L$, and for all $x, \quad r(x) \leq s(x) \leq t(x)$.

Prove that $\quad \lim _{x \rightarrow b} s(x)=L$.
8. Suppose h is continuous at $x=a$, and $\left\{c_{n}\right\}$ is a sequence such that $c_{n} \longrightarrow c$. Show that $h\left(c_{n}\right) \longrightarrow h(c)$.
9. Suppose f is one-to-one, continuous on $[a, b]$, and $f(a)<f(b)$. Use the Intermediate Value Theorem to show that for all x in $(a, b), f(a)<f(x)<f(b)$.

