Math 4200

Assignment 7

Page 54: 4, 5a, 5d
Page 55: 7, 14
Page 56: 28, 32a, 32b, 32c, 32d
Page 57: 40, 45

1. Establish the existence or nonexistence of limits for the following sequences.
a) $\left\{\frac{n}{n^{2}+1}\right\}$
b) $\left\{1+(-1)^{n}\right\}$
c) $\left\{\frac{\sin n}{n}\right\}$
d) $\{\sqrt{n+3}-\sqrt{n}\}$
e) $\left\{\frac{2^{n}}{n!}\right\}$
f) $\quad\left\{\frac{1^{2}}{n^{3}}+\frac{2^{2}}{n^{3}}+\ldots+\frac{n^{2}}{n^{3}}\right\}$
2. Given $\epsilon=.0000005$, find a suitable M such that for all positive integers $n>M$,

$$
\left|\frac{2 n^{3}+5 n}{3 n^{3}-6}-\frac{2}{3}\right|<\epsilon .
$$

3. Prove that $\lim _{n \rightarrow \infty} a_{n}=\mathrm{L}$ if and only if $\lim _{n \rightarrow \infty} \mathrm{~b}_{n}=0$ where for each n in J ,

$$
\mathrm{b}_{n}=a_{n}-\mathrm{L} .
$$

4. If $\left\{\mathrm{a}_{n}\right\}$ and $\left\{\mathrm{b}_{n}\right\}$ are two convergent sequences satisfying $a_{n} \leq b_{n}$ for all n , can you conclude that $\quad \lim _{n \rightarrow \infty} a_{n}=\lim _{n \rightarrow \infty} \mathrm{~b}_{n}$?
5. Let $\left\{\mathrm{a}_{n}\right\}$ and $\left\{\mathrm{b}_{n}\right\}$ be sequences having limits A and B respectively. Prove that $\left\{\mathrm{a}_{n}+b_{n}\right\}$ converges to $\mathrm{A}+\mathrm{B}$.
6. Let $\left\{\mathrm{a}_{n}\right\}$ and $\left\{\mathrm{b}_{n}\right\}$ be sequences having limits A and B respectively. Prove that $\left\{\mathrm{a}_{n} \cdot b_{n}\right\}$ converges to $\mathrm{A} \cdot \mathrm{B}$.
7. Suppose $\left\{\mathrm{a}_{n}\right\}$ converges to 0 , and $\left\{\mathrm{b}_{n}\right\}$ is bounded. Show that $\left\{\mathrm{a}_{n} \cdot b_{n}\right\}$ converges to 0 .
