Math 4200

Assignment 7

Page 54: 4, 5a, 5d Page 55: 7, 14 Page 56: 28, 32a, 32b, 32c, 32d Page 57: 40, 45

1. Establish the existence or nonexistence of limits for the following sequences.

- $a) \qquad \left\{ rac{n}{n^2+1}
 ight\}$
- $b) \qquad \left\{1 \,+\, (\,-\,1)^n\right\}$
- c) $\left\{\frac{\sin n}{n}\right\}$
- $d) \qquad \left\{\sqrt{n+3} \sqrt{n}\right\}$
- $e) \qquad \left\{ rac{2^n}{n!}
 ight\}$
- $f) \qquad \left\{ rac{1^2}{n^3} + rac{2^2}{n^3} + \ldots + rac{n^2}{n^3}
 ight\}$

2. Given $\epsilon = .0000005$, find a suitable M such that for all positive integers n > M, $\left|\frac{2n^3+5n}{3n^3-6} - \frac{2}{3}\right| < \epsilon$.

3. Prove that $\lim_{n\to\infty} a_n = L$ if and only if $\lim_{n\to\infty} b_n = 0$ where for each n in J, $b_n = a_n - L$. 4. If $\{a_n\}$ and $\{b_n\}$ are two convergent sequences satisfying $a_n \leq b_n$ for all n, can you conclude that $\lim_{n \to \infty} a_n = \lim_{n \to \infty} b_n$?

5. Let { a_n } and { b_n } be sequences having limits A and B respectively. Prove that { a_n+b_n } converges to A+B .

6. Let { a_n } and { b_n } be sequences having limits A and B respectively. Prove that { $a_n \cdot b_n$ } converges to $A \cdot B$.

7. Suppose $\{a_n\}$ converges to 0, and $\{b_n\}$ is bounded. Show that $\{a_n \cdot b_n\}$ converges to 0.