Math 4200

Assignment 4

Text Exercises: Sets -1, 2, 3, 4, 8, 10

- 1. Let $S = \{x_1, x_2, \dots, x_n\}$. Suppose that $A \subset S$ and that A is represented by the binary sequence $a_1 a_2 \dots a_n$. This means that $a_j = 1$ if $x_j \in A$ and $a_j = 0$ if $x_j \notin A$.
 - a) How can the number of elements of A be determined from $a_1 a_2 \dots a_n$?
 - b) Which binary sequence corresponds to \emptyset ?
 - c) Which sequence corresponds to $A = \{ x_1, x_4, x_7, \dots, x_9 \}$ Assume n > 9.
 - d) Use the Fundamental Counting Principle to determine the number of subsets of S.
- 2. Let U be a set and A, B, C be subsets of U. Prove that

$$A \times (B \cup C) = (A \times B) \cup (A \times C)$$
.

3. Let R^+ denote the positive real numbers. For $\delta \in R^+$, let $B_{\delta} = (13 - \delta, 13 + \delta)$.

Find
$$\bigcap_{\delta \in {\mathbb R}^+} B_{\delta}$$
 and $\bigcup_{\delta \in {\mathbb R}^+} B_{\delta}$.