Math 4200

Assignment 4

Text Exercises: Sets $-1,2,3,4,8,10$

1. Let $S=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$. Suppose that $A \subset S$ and that A is represented by the binary sequence $\quad a_{1} a_{2} \ldots a_{n}$. This means that $a_{j}=1$ if $x_{j} \in A$ and $a_{j}=0$ if $x_{j} \notin A$.
a) How can the number of elements of A be determined from $a_{1} a_{2} \ldots a_{n}$?
b) Which binary sequence corresponds to \varnothing ?
c) Which sequence corresponds to $A=\left\{x_{1}, x_{4}, x_{7}, \ldots, x_{9}\right\}$ Assume $n>9$.
d) Use the Fundamental Counting Principle to determine the number of subsets of S.
2. Let U be a set and A, B, C be subsets of U. Prove that $A \times(B \cup C)=(A \times B) \cup(A \times C)$.
3. Let R^{+}denote the positive real numbers. For $\delta \in R^{+}$, let $B_{\delta}=(13-\delta, 13+\delta)$.

Find $\bigcap_{\delta \in R^{+}} B_{\delta}$ and $\bigcup_{\delta \in R^{+}} B_{\delta}$.

