MATHEMATICS 4200
Assignment 2.

1. Write each of the following statements equivalently in the form if p then q and then write the converse and contrapositive.
a) Whenever the phone rings, I run to answer it.
b) The earth will not rotate if $\mathrm{x}^{2}+\mathrm{y}^{2}$ is negative.
c) It is necessary for you to eat in order to live.
d) A sufficient condition for getting good grades is to be a genius.
2. Construct a truth table for each of the following statements.
a) $(\mathrm{p} \Rightarrow \mathrm{q}) \Rightarrow \mathrm{r}$
b) $(\mathrm{p}$ and $\sim \mathrm{r}) \Rightarrow \sim \mathrm{q}$
3. Show that the following statements are logically equivalent.
a) $p \Rightarrow q$
b) $\quad \sim(\mathrm{p}$ and $\sim \mathrm{q})$
c) $\sim \mathrm{q} \Rightarrow \sim \mathrm{p}$
d) q or $\sim \mathrm{p}$
4. Give a logical negation of each of the following statements.
a) Some problems are not easy.
b) $\exists x$ such that $x>0$ and $f(x)=4$.
c) $\exists x$ such that $f(x)=0$ or $f(x)=x$.
d) $\forall \mathrm{x}$, there exists y such that $\mathrm{f}(\mathrm{x}, \mathrm{y})=0$.
5. Rewrite the following statements using the symbols \forall and \exists, and then obtain a logical negation of each.
a) Given y in A, there exists an x in the domain of f such that $y=f(x)$.
b) If x, y are in the domain of f , then $\mathrm{x}<\mathrm{y}$ implies $\mathrm{f}(\mathrm{x})<\mathrm{f}(\mathrm{y})$
c) Given $\epsilon>0$, there exists a real number $\mathrm{N}>0$ such that if $\mathrm{n}>\mathrm{N}$, then $\left|\mathrm{a}_{\mathrm{n}}-\mathrm{L}\right|<\epsilon$.
d) Given $\epsilon>0$, there exists a real number $\delta>0$ such that for all x in the domain of $\mathrm{f},|\mathrm{x}-\mathrm{c}|<\delta$ implies $|\mathrm{f}(\mathrm{x})-\mathrm{f}(\mathrm{c})|<\epsilon$.
e) Given $\epsilon>0$, there exists a real number $\delta>0$ such that for all x , y in A , $|f(x)-\mathrm{f}(\mathrm{y})|<\epsilon$ whenever $|\mathrm{x}-\mathrm{y}|<\delta$.
6. Read the Wikipedia article on History of Logic The link is on the Math 4200 website, or go to http://en.wikipedia.org/wiki/Logic.
