Geometic Series

For $r \neq 1$, the sum of the first n terms of a geometric series is

$$a + ar + ar^2 + ar^3 + \cdots + ar^{n-1} = \sum_{k=0}^{n-1} ar^k = a \, rac{1-r^n}{1-r},$$

$$s = a + ar + ar^2 + ar^3 + \cdots + ar^{n-1}, \ rs = ar + ar^2 + ar^3 + ar^4 + \cdots + ar^n, \ s - rs = a - ar^n, \ s(1-r) = a(1-r^n),$$

$$s=arac{1-r^n}{1-r}\quad (ext{if }r
eq 1).$$

As n goes to infinity

$$a + ar + ar^2 + ar^3 + ar^4 + \dots = \sum_{k=0}^{\infty} ar^k = \frac{a}{1-r}, \; ext{for} \; |r| < 1.$$

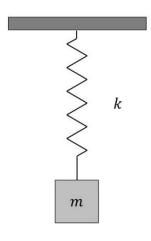
When a = 1

$$1 + r + r^2 + r^3 + \cdots = \frac{1}{1-r}$$

The geometric series $\sum_{n=1}^{\infty} ar^{n-1}$ converges if |r| < 1 and diverges if $|r| \ge 1$. When |r| < 1.

$$\sum_{n=1}^{\infty} ar^{n-1} = \frac{a}{1-r}$$
 First term divided by the difference between one and the common ratio.

Example 1.


Find all values of x for which the geometric series $\sum_{n=1}^{\infty} 5(4-5x)^{n-1}$ converges.

Example 2.

Express the repeating decimal $.43\overline{429}$ as a geometric series and evaluate the series to express the decimal as a rational number.

Example 3.

A spring is attached to a platform so that it is hanging down vertically. A 1 pound weight is attached and released. The tension in the spring is such that it extends 12 inches and then rebounds up 9 inches. If the oscillations continue, what is the total distance the weight has traveled when the spring reaches equilibrium?

