Polar Coordinates

Representing Points Using Polar Coordinates (r, θ) :

To define polar coordinates in a plane, we first an origin O (called the pole) and an initial ray from O.
θ represents a directed angle rotated from the initial ray.
r presents a directed distance from O.

Plot the following points whose polar coordinates are given:

$$
\begin{array}{lll}
A\left(3, \frac{\pi}{6}\right) & B\left(2,90^{\circ}\right) & C\left(-2, \frac{3 \pi}{4}\right) \\
D\left(4,-\frac{\pi}{2}\right) & E\left(-5,-150^{\circ}\right) &
\end{array}
$$

Rewrite each of the following points using four different sets of polar coordinates.
$A\left(3, \frac{\pi}{6}\right)$

$$
B\left(-5,-\frac{5 \pi}{6}\right)
$$

Conversion Equations for Polar and Rectangular Coordinates:

$$
x=r \cos \theta \quad y=r \sin \theta \quad r^{2}=x^{2}+y^{2}
$$

Convert the point whose polar coordinates are $\left(5, \frac{3 \pi}{4}\right)$ into rectangular coordinates.

$$
\begin{aligned}
& x=5 \cos \frac{3 \pi}{4}=-5 \frac{\sqrt{2}}{2} \\
& y=5 \sin \frac{3 \pi}{4}=5 \frac{\sqrt{2}}{2}
\end{aligned}
$$

Convert the point whose rectangular coordinates are $\left(-\frac{5}{4},-\frac{5 \sqrt{3}}{4}\right)$ into polar coordinates.

Convert the equation $2 x+3 y=5$ into a polar equation and then graph the equation on your calculator.

$$
\begin{aligned}
& 2 r \cos \theta+3 r \sin \theta=5 \\
& r[2 \cos \theta+3 \sin \theta]=5
\end{aligned}
$$

Convert the equation $y=x^{2}$ into a polar equation and then graph the equation on your calculator.

$$
r \sin \theta=r^{2} \cos ^{2} \theta
$$

Convert the equation $r=2 \cos \theta$ into a rectangular equation.

$$
\begin{aligned}
& r^{2}=2 r \cos \theta \\
& x^{2}+y^{2}=2 x
\end{aligned}
$$

Convert the equation $r=\cos \theta+2 \sin \theta$ into a rectangular equation.

$$
\begin{aligned}
& r^{2}=r \cos \theta+2 r \sin \theta \\
& x^{2} x y^{2}=x+2 y
\end{aligned}
$$

Polar Equations and Their Graphs
What is the graph of an equation?

$$
\{(r, \theta) \text { which stirs the quadim }\}
$$

What does the graph of the polar equation $r=3$ look like?
o can be any value circle with radius 3.

$$
r=2 \cos (2 \theta)
$$

$$
r=3 \sin (3 \theta)
$$

