Solving Exponential and Logarithmic Equations

An **exponential equation** is any equation where the variable to be solved for is found in an exponent of the expression.

Review:

Solve the equation elementary exponential equation $3^{x+2} = 27^{x-1}$

$$(x+2) \log_3 3 = (x-1) \log_3 27$$

 $(x+3) = (x-1) 3$, $x+2 = 3x-3$
 $-2x = -5$, $x = \frac{5}{2}$

Solve the equation $9^{x+1} = 1237$

$$(x+1) \ln 9 = \ln(1237)$$

$$x+1 = \frac{\ln(1237)}{\ln 9}$$

$$x = \frac{\ln(1237)}{\ln 9} - 1$$

$$x = \frac{\ln(1237)}{\ln 9}$$

$$x = 2.24065$$

Solve the equation $3e^{-x-8} = 27$

$$e^{-x-8} = 9$$
 $(-x-8) lne = ln9$
 $-x-8 = ln9$
 $x = -8 - ln9$
 $x = -10, 1972$

Solve the equation
$$e^{2x-6} = 7^{x/10}$$

 $(2x-6)$ $|ne| = \frac{x}{10}$ $|n|$
 $2x-6 = (.194591) \times (.194591) \times (.2-.194591) = 6$
 $x = \frac{6}{2-.194591} = 3.3233$

Solve the equation
$$\log_{11}(x+3) - \log_{11}(x-2) = 2$$

$$1/09_{11}\left(\frac{x+3}{x-2}\right) = 2$$

$$1/2 = \frac{x+3}{x-2}$$

$$1/2 = \frac{x+3}{x-2}$$

$$1/2/x - 24/2 = x+3$$

Solving Logarithmic Equations:

- 1. Combine all logarithms into one logarithm using logarithmic properties.
- 2. Convert from logarithmic form to exponent form.
- 3. Solve for the variable.
- 4. Check your solutions to see if they are in the domain of the original equation!!

Solve the equation
$$\log_6(x-5) + \log_6(x+2) = \log_6(x-2)$$

$$|\log_{6}(x-5)(x+2)| = |\log_{6}(x-2)
 (x-5-)(x+2)| = (x-2)
 x^{2}-3x-10| = x-2
 x^{2}-4x-8| = 0
 x = 4 \pm \sqrt{16-4(-8)}| = 4 \pm \sqrt{48}
 \alpha = 4 \pm 4\sqrt{3} = 2 \pm 2\sqrt{3}$$

Solve the equation
$$2 \ln (x-3) = \ln (3x)$$

$$\ln (x-3)^{2} = \ln (3x)$$

$$(x-3)^{2} = 3x$$

$$x^{2}-6x+9 = 3x$$

$$x^{2}-9x+9 = 0$$

$$x = 9 \pm \sqrt{81-4(9)} = 9 \pm \sqrt{45}$$

$$x = 9 \pm 3\sqrt{5}, \quad x = 9+3\sqrt{5}$$

Solve the equation ln(x-4) - ln x = 3

$$|n\left(\frac{x-4}{x}\right)| = 3, \quad \frac{x-4}{x} = e^{3}$$

$$x-4 = e^{3}x, \quad e^{3}x-x = -4$$

$$x(e^{3}-1) = -4, \quad x = \frac{-4}{e^{3}-1}$$

$$\frac{-4}{e^{3}-1} < 0, \quad not \text{ in the domain}$$

$$0 + he equation.$$

$$50, \quad no \text{ solution},$$

Steve is saving up money for a down payment on a motorcycle. He currently has \$4187, but knows he can get a loan at a lower interest rate if he can put down \$4903. If he invests the \$4187 in an account that earns 5.1% annually, compounded monthly, how long will it take Steve to accumulate the \$4903?

take Steve to accumulate the \$4903?

$$A(t) = P(1+\frac{t}{h})^{ht}$$

$$4903 = 4187 (1 + \frac{051}{12})^{12} \pm \frac{4903}{4187} = (1.00425)^{12} \pm \frac{10(1.00425)}{4187}$$

$$In(\frac{4903}{4187}) = 12 \pm In(1.00425)$$

$$\pm = \frac{In(\frac{4903}{4187})}{12 \ln(1.00425)} = 3.102$$

$$4903 + \frac{10(1.00425)}{4187} = 3.102$$