Exponential Functions

Before we study exponential functions, make sure to review and understand some of the properties of exponents that you learned in beginning and intermediate algebra:

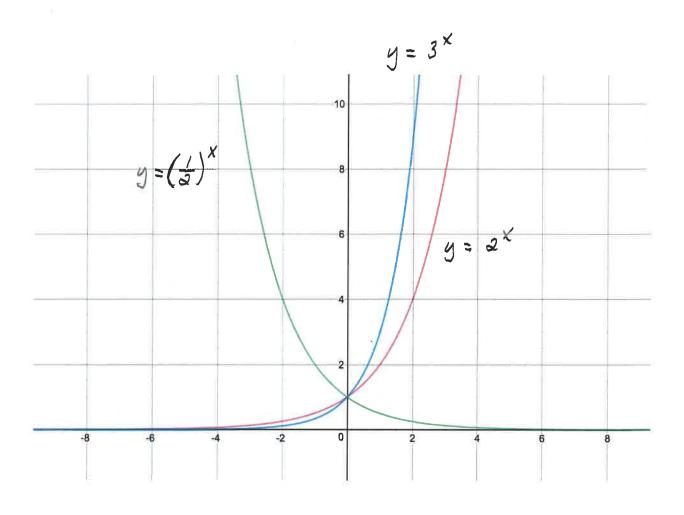
$$a^n a^m = a^{n+m}$$

$$\frac{a^n}{a^m} = a^{n-m}$$

$$(a^n)^m = a^{nm}$$

$$(ab)^n = a^n b^n$$

$$\left(\frac{a}{b}\right)^n = \frac{a^n}{b^n}$$

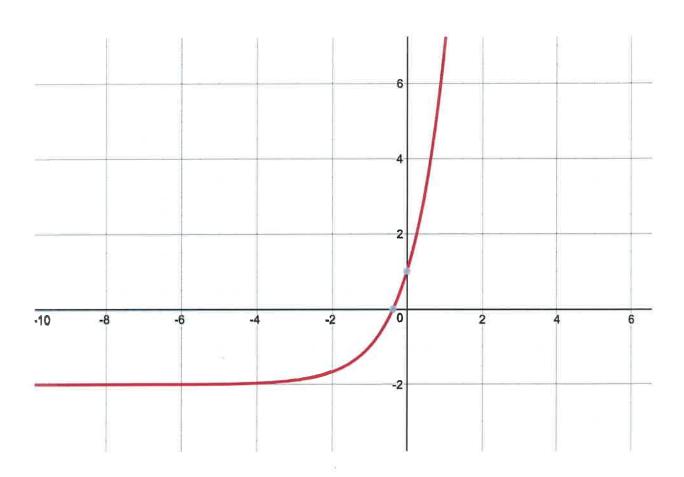

$$a^0 = 1$$
 for all $a \neq 0$

$$a^{-n} = \left(\frac{1}{a}\right)^n = \frac{1}{a^n}$$
 (examples: $3^{-2} = \frac{1}{9}$; $x^{-4} = \frac{1}{x^4}$)

$$a^{m/n} = (\sqrt[n]{a})^m = \sqrt[n]{a^m}$$
 (examples: $3^{1/2} = \sqrt{3}$; $10^{2/3} = \sqrt[3]{100}$)

An **exponential** function is any function that can be written as $f(x) = a^x$ where a is any positive real number except 1.

Use the axes below and draw a graph of the functions $f(x) = 2^x$ $g(x) = 3^x$ and $h(x) = \left(\frac{1}{2}\right)^x$ by independently choosing value for x and plotting points.



Properties of Exponential Functions

- 1. Graph contains the point (0, 1)
- 2. Domain all reals
- 3. Range y > 0
- 4. *x*-axis is horizontal asymptote.
- 5. One-to-One.
- 6. Increasing for a > 1. Decreasing for 0 < a < 1.


Use Transformations to write the graph of the following functions.

$$y = 3^{x+1} - 2$$

The number e is an irrational number called Euler's number. $e \approx 2.718$

Use the axes below and draw a graph of the natural exponential function $f(x)=e^{x}$

Solve the elementary exponential equations:

$$2^{4x+1} = 8^{3x-2} = (2^3)^{3x-2}$$

$$2^{4x+1} = 2^{9x-6}$$

$$4x+1 = 9x-6$$

$$-5x = -7, x = \frac{7}{5}$$

$$100^{3-x} = 1000^{2x+1}$$

$$(10^{2})^{3-x} = (10^{3})^{2x+1}$$

$$10^{6-2x} = 10^{6x+3}$$

$$6-2x = 6x+3$$

$$-8x = -3, \quad x = \frac{3}{8}$$

$$16^{3x-1} = \left(\frac{1}{4}\right)^{1-2x} \qquad \left(4^{2}\right)^{3x-1} = \left(4^{-1}\right)^{1-2x}$$

$$4^{2x-2} = 4^{-1+2x}$$

$$6x-2 = -1+2x$$

$$4x = 1$$

$$x = \frac{1}{4}$$