Locating Real Zeros of a Polynomials

The Factor Theorem:

If c is a zero of the polynomial p(x) then (x - c) is a factor of p(x).

The Rational Zeros Theorem:

If the rational number $\frac{p}{q}$ is a zero of a polynomial, then p is a factor of the constant term and q is a factor of the leading coefficient.

Example:

Write out a list of the possible rational zeros for the polynomials given below:

$$f(x) = x^3 - 7x^2 - 4x + 28$$
 Factors of 28 are t , $t = 2$, $t = 4$, $t = 7$

Possible genes me ±1, ±2, ±4, ±7

$$g(x) = 2x^4 - 3x^3 - 6x^2 + 6x + 4$$
Factors of 4 are ± 1 , ± 2 , ± 4
Factors of 2 are ± 1 , ± 2
Possible rational genos are ± 1 , ± 3 , ± 4 , $\pm \frac{1}{2}$

The Intermediate Value Theorem:

Assume that f(x) is a polynomial with real coefficients, and that a and b are real numbers with a < b. If f(a) and f(b) have different signs then there is at least one real zero c of f such that a < c < b. See graph below:

Does the Intermediate Value Theorem guarantee that the polynomial function $f(x)=2x^3-x^2-3x$ has a zero in the interval [1,2]? $\mathcal{F}(\mathcal{L})=-\mathcal{L}, \quad \mathcal{F}(\mathcal{L})=6$

Yes!

Does the Intermediate Value Theorem guarantee that the polynomial function $g(x) = 4x^3 + 16x^2 + 5x - 25$ has a zero in the interval [-3, -2]? g(-3) = -4, g(-2) = -3

If -5/2 is a zero of g, does that contradict the Intermediate Value Theorem?