Relations and Functions

Basic Definition of a relation:

A relation is a set of ordered pairs of real numbers. The *domain* of a relation is the set of all first coordinates in the relation and the *range* of a relation is the set of all second coordinates in the relation.

Basic definition of a function:

A function is a relation such that no two ordered pairs have the same first coordinates and different second coordinates.

Examples:

Determine the domain and the range of the following relations and then determine if each relation is a function:

$$\{(1,3)(2,4)(3,5)(6,7)(8,9)\}$$

domain = $\{1,2,3,6,8\}$, range = $\{3,4,5,7,9\}$

It is a function.

$$\{(1,3)(2,3)(3,3)(4,3)(5,3)\}$$

domain = $\{1,2,3,4,5,3\}$ range = $\{3,3,4,5,3\}$

It is a function.

$$\{(1,3)(2,5)(0,1)(-1,8)(0,2)\}$$
 domain = $\{1,2,0,-1\}$
range = $\{3,5,1,8,2\}$
Not a punction.

Examples:

Determine the domain and the range of the following relations and then determine if each relation is a function:

$$\left\{ (4,2), (3,2), (-2,-1), (-1,1), (0,3), (1-4), (1,4) \right\}$$

$$domain = \left\{ -2, -1, 0, 1, 2, 43 \right\}$$

$$range = \left\{ -2, 2, -1, 1, 3, -4, 43 \right\}$$

$$Not a function$$

$$(1,-4), (1,4)$$

domain =
$$(-5, 6)$$

range = $(-2, 4]$
It is a function,

domain =
$$[-3,1) \cup (1,5]$$

range = $[-2,4)$
Not a bunction

The Vertical Line Test

Examples of equations that are used as rules to define functions.

$$y=2x+3$$
 This defines a pair of numbers for every real number X $\{(x, 2x+3): x \in \mathbb{R}^3\}$

$$y = x^2 + 2$$

$$\{ (x, x^2 + 2) : x \in \mathbb{R} \}$$

$$A=\pi r^2$$
 $\{(r,\pi r^2): r \in (0,\infty)\}$

Function Notation:

The equation y = 2x + 3 written as f(x) = 2x + 3

Suppose DER. A real-valued bunchion f is a rule or correspondence such that each real number $x \in D$ is associated with me and only one real number F(x).

Let
$$f(x) = \frac{5x^2+2}{x-1}$$

What is
$$f(1)$$
?

What is
$$f(a)$$
?

$$\frac{5a^2+2}{a-1}$$

What is the domain of f?

What is
$$f(-2)$$
?

$$\frac{5(4)+2}{-3} = -\frac{22}{3}$$

What is
$$f(x+2)$$
?

Example:

Let
$$h(x) = \sqrt{2x+3}$$

What is
$$h(1)$$
?

What is
$$h(a)$$
? $\sqrt{2a+1}$

What is
$$h(-2)$$
?

What is
$$h(x-1)$$
?

What is the domain of
$$h$$
?

What is the domain of
$$h$$
? $2x+3 20$, $x = -\frac{3}{2}$

If
$$f(x) = 3x + 2$$
 then find and simplify the difference quotient

$$\frac{f(x+h)-f(x)}{h} = \frac{3(x+h)+2-(3x+2)}{h}$$

(x, x(x) \

$$= \frac{3x+3h+2-3x-2}{h} = \frac{3h}{h} = 3, h \neq 0$$

If $s(x) = x^2 + 2x - 1$ then find and simplify the difference quotient

$$\frac{s(x+h)-s(x)}{h} = \frac{(x+h)^2 + 2(x+h) - 1 - [x^2 + 2x - 1]}{h}$$

$$= x^{2} + 2xh + h^{2} + 3x + 2h - 1 - x^{2} - 2x + 1$$

$$= \frac{2xh + h^2 + 2h}{h} = \frac{h(2x + h + 2)}{h}$$