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IN CHAPTER 1 WE CONSIDER the nature of mathematics, where mathematics comes
from, and how it is used. This chapter lays a foundation for the entire book.
Section 1.1 describes how mathematical models represent real-world problems,
including calculator use and approximations. Sections 1.2 and 1.3 review terminol-
ogy and the properties of numbers related to ordering and absolute values. Sec-
tion 1.4 introduces the ideas of graphs and their uses, both on a number line and
in the plane. Section 1.5 reviews some of the techniques from elementary algebra,
how these techniques relate to graphing technology, and how they allow us to find
solution sets for a variety of kinds of open sentences. The final section demon-
strates how to approach and formulate a number of different problems, introducing
techniques that are useful throughout the rest of the book and all of the study of
mathematics.

1.1 M A T H E M A T I C S M O D E L S T H E W O R L D

Mathematics compares the most diverse phenomena and discovers the secret
analogies that unite them.

Joseph Fourier

What Is Mathematics?

Consider these situations and note what they have in common:

1. At the edge of the Beaufort Sea, north of the Arctic Circle, a dozen
adults of the Inuit people are tossing a young boy aloft on a human-
powered trampoline made of a blanket.
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2 Chapter 1 Basic Concepts: Review and Preview

2. From the observation deck of the Sears Tower (the world’s tallest build-
ing at 1454 feet) a visitor can see nearly six miles further out into Lake
Michigan than someone at the top of the John Hancock Center
(1127 feet tall).

3. A pilot of a Goodyear blimp heading south over Lake Okeechobee at
5300 feet wants to estimate the time remaining before visual contact
with the Orange Bowl, where a football game is to be televised.

Each of these situations deals with the curvature of the earth’s surface and the fact
that it is possible to see farther from a higher elevation. The Inuits want to get an
observer high enough to see whether the pack ice is breaking up in the spring; the
Sears Tower is 327 feet taller than the Hancock Center; at an elevation just over a
mile, how far can the blimp pilot see?

Mathematics strips away the differences in these situations and finds one
simple model to describe common key features. Figure 1 shows a cross section of
the earth as a circle with center at O and radius r. Our model assumes a spherical
earth, a fairly good approximation of the truth. From point A located x feet above
the earth, the line of sight extends to B. (Line AB is tangent to the circle and hence
perpendicular to radius OB.)

All of the situations listed above fit in this structure. The Inuit boy, the visitor
to the top of a skyscraper, and the blimp pilot could each be seen as located at point
A for different values of x. For any given x, applying the Pythagorean theorem
(discussed in Section 1.4) to the right triangle AOB gives the corresponding dis-
tance s to the horizon.

r 2 1 s 2 5 ~r 1 x!2, where x, r, and s are in miles.

r 2 1 s 2 5 r 2 1 2rx 1 x 2

s 2 5 2rx 1 x 2

s 5 Ï2rx 1 x 2.

Part of the power of mathematics comes from its capacity to express in a single
sentence truths about several seemingly diverse situations. The solution to one
equation automatically applies to any other application that gives rise to the sameGeometry really turned equation. The expression for s can be used to solve any of the problems listed above.

me on. My father taught
See Exercises 39–44.me by giving me problems

to solve. He gave me
Mathematics and the Real Worldthousands of geometry

problems while I was still in Much of the importance and vitality of mathematics comes from its relationship
high school. After he gave

with the world around us. Humans invented numbers to count our sheep; weme one and I came back
created rules for addition and multiplication as we needed to barter or comparewith a solution, he would

say, “Well, I’ll give you land holdings. As human understanding of the world grew more sophisticated,
another one.” The solving mathematical tools grew as well. Sometimes mathematical curiosity led people in
of thousands of problems unexpected directions and their explorations became important for their own sake.
during my high school

Mathematics is a lively part of our intellectual heritage. Some of the mostdays—at the time when my
intriguing and challenging mathematical investigations grew out of attempts tobrain was growing—did

more than anything else to answer seemingly innocuous questions or understand simple observations. The
develop my analytic power. most lasting and significant human achievements are direct consequences of our

George Dantzig desire to understand and control the world.

FIGURE 1
How far can you see from x

miles above the earth?
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Mathematics and Mathematical Models

When we encounter a problem whose solution involves the use of mathematics, we
must decide how much detail is essential. In the line-of-sight examples the solution
assumed the earth as a perfect sphere. The differences between that mathemati-
cian’s earth and the actual globe are substantial. The equation for the distance to
the horizon (s miles) implies that someone could see more than 40 miles from the
top of either the Sears Tower or the Hancock Center; on a clear day someone in
Chicago might want to check that conclusion.

In a mountain valley ringed by peaks that rise several thousand feet, it isn’t
possible to see 40 miles in any direction, even from 1500 feet up. Does that
invalidate our mathematical model? Of course not; we must know something about
particulars when we interpret a result. Questions about the way the world works
frequently require simplifying assumptions to make the problems more tractable.
See the Historical Note, Mathematical Models and Gravity (p. 135).

Technology

We assume that every student has access to some kind of graphing technology that
permits graphing functions. Yours may be as simple as a graphing calculator or as
complex as sophisticated computer software. We use the language of graphing
calculators in this text, but you can use any available technology to do the work. If
you are working with technology that is new to you, perhaps the most important
thing is to experiment freely so that you become comfortable and confident with
your own tools. Verify every computation in our examples. Talk with others about
what works and what doesn’t. Make sure that you can produce the same kinds of
pictures that we show in the text.

Each graphing calculator and computer graphing software package is different;
display screens have different proportions, and commands and syntax vary. We
cannot give instructions to fit every kind of machine, but it should be possible to
duplicate our computations and calculator graphs on almost any kind of graphing
technology you have available. In our Technology Tips we make suggestions that
may be helpful. If it seems that your calculator won’t do something we are describ-
ing, discuss it with your instructor, look at your owner’s manual, and ask class-
mates. There may be another way to get around the problem.

Calculators and computers have become incredibly powerful, but they remain
limited. While they can do wonders, they may still properly be called “Smart-
Stupids,” a name coined by Douglas Hofstadter. However amazing their computing
power, the machine is not smart enough to know that we meant to press 571 when
we pressed the 574 key.

Approximate Numbers and Significant Digits

When we use mathematics to model the real world, we have to realize that mea-
surements of physical quantities can be only approximations. A biologist may be
able to count exactly the number of eggs in a bird’s nest, but comparing the volume
or weight of two eggs requires approximate numbers, since any number we use is
only as good as our measuring device. We also use approximate numbers when we
need a decimal form for a number such as Ï3.

Questions involving approximations entail decisions about the tolerable degree
of error. Error tolerance decisions usually hinge on concerns other than mathemat-
ics, but all of us must make such decisions in working problems that involve
measurements or when we use calculators. We need guidelines.
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Perhaps the greatest problem in working with calculators is interpreting dis-
played results. When we enter data, the calculator returns so many digits so quickly
and easily that we may think we have gained more information than we really have.
This difficulty can be illustrated by an example from a recent calculus text. The
book derives an equation for the volume of a pyramid, as shown in Figure 2, and
then applies the formula to find the volume of the Great Pyramid of Cheops. The
original dimensions are given (approximately) as

s 5 754 feet and h 5 482 feet.

When we substitute these numbers into the formula, a calculator immediately
displays 91341570.67, from which the authors conclude that the volume is
“approximately 91,341,571 cubic feet.” In the following example, we illustrate why
we are not justified in rounding to the nearest cubic foot, even if the values for s and
h are measured to the nearest foot.

cEXAMPLE 1 Appropriate rounding Assuming that the height h and side
length s are measured to the nearest foot, giving 482 feet for h and 754 for s, how
much variation can this leave in the computed volume, using V 5

s2h

3
?

Strategy: Let V0 be the vol- Solution
ume using the smaller values To say the linear measurements are correct to the nearest foot means that they
of s and h, while V1 is the satisfy the inequalities
volume using the larger val-
ues of s and h. Compute V0 753.5 , s , 754.5 and 481.5 , h , 482.5.
and V1, and then compare

Using the smaller values for s and h givesthe results.

V0 5
~753.5!2~481.5!

3
< 91,125,841.12.

The upper values for s and h yield

V1 5
~754.5!2~482.5!

3
< 91,557,631.87.

The difference between V1 and V0 is

V1 2 V0 < 431,790.75.

The computed and actual volumes could differ by nearly half a million cubic feet!
See Example 3. b

The world of mathematics is an ideal world, dealing with exact numbers and
precise relationships, but mathematics also says much about the inexactitude and
fuzziness of the physical world. In applying mathematics, we create a precise model
to mirror an imprecise reality. Whenever mathematics delivers an answer for an
applied problem, we must ask what the numbers mean and what degree of
significance they have for the original problem.

What Do the Digits Mean?

What is the diagonal of a square that measures a mile on each side? The mathemat-
ical model of a square of side 1 has a diagonal of exactly Ï2. Our calculator
displays 1.414213562 for Ï2. For a mile, what does each of these decimal places

FIGURE 2
The volume of a pyramid of

height h and sides s:
V 5 1

3 s2h.
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measure? We must consider what degree of accuracy makes sense in the real world.
If the sides are measured only to the nearest 10 feet, it makes no sense to pretend
to have an accuracy indicated by enough digits to measure the thickness of a blade
of grass! The following box shows something of the meaning of each decimal place
when we talk of the decimal parts of a mile.

Decimal parts of a mile:

.1 Two football fields

.01 Width of a city street

.001 Height of a 5930 person

.0001 60 (less than a handspan)

.00001 Width of a finger

.000001 1
160 (smallest mark on a ruler)

.0000001 Thickness of 1.5 sheets of paper

.00000001 Half the thickness of a human hair

Significant Digits, Precision, and Scientific Notation

When multiplying and dividing approximate numbers, we consider significant
digits, the digits that indicate measured accuracy. Normally zeros that serve only
to locate the decimal point are not significant. These numbers each have four
significant digits:

400.5 ft. 0.002596 mm. 1.032 km. 93,410,000 mi.
In scientific applications, special notation makes it easy to identify the

significant digits. By moving the decimal point as needed, any positive real number
can be written as a product of a number between 1 and 10 and some power of 10.
A number written as such a product is said to be in scientific notation. We would
write the four numbers above in scientific notation as follows.

4.005 3 102 2.596 3 1023 1.032 9.341 3 107

Usually we do not write 100 for a number that is already between 1 and 10.
In addition and subtraction, our concern is precision, the question of which

decimal places have meaning. If we are told that an ancient tree is 3000 years old,
we consider that 3000 as a less precise number than the age of a 17 year old.

Guidelines for computation with approximate numbers

In multiplication and division with approximate numbers, round off final
results to the least number of significant digits in the data used. Results are
no more accurate than the least accurate data; record no more significant
digits than occur in any of the given data.
In addition and subtraction with approximate numbers, round off final results
to the least level of precision in the data used.

cEXAMPLE 2 Significant digits Determine which digits are significant,
and write the number in scientific notation.

(a) 325.6 (b) 28.40 (c) 205,000 (d) 0.00640

Solution

(a) All digits are significant: 325.6 5 3.256 3 102.
(b) The last 0 does not locate the decimal point; all digits are significant: 28.40 5

2.480 3 10.
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(c) Without additional information, we can only assume that the first three digits
are significant: 205,000 5 2.05 3 105. If we had some reason to believe that
205,000 represented a measurement accurate to the nearest hundred, then four
digits would be significant and we would write 205,000 5 2.050 3 105.

(d) The first three zeros just locate the decimal point, but the last zero is sig-
nificant: 0.00640 5 6.40 3 1023. b

Strategy: Since both s and
cEXAMPLE 3 Rounding off Use the formula V 5

s2h

3
to calculate the vol-h are given to three signifi-

ume of the Great Pyramid of Cheops, where s 5 754 feet and h 5 482 feet.cant digits, use the formula
and round off the result to

Solutionthe same accuracy.
Follow the strategy.

V 5
~754!2~482!

3
< 91,341,570.67 < 91,300,000.

Hence the volume is approximately 91,300,000 cubic feet. As we would expect, the
result lies well between the extreme values of V0 and V1 in Example 1. b

cEXAMPLE 4 Precision Simplify, assuming that the numbers are approxi-
mate measurements:

(a) 2.483 1 15.4 (b) 7200 2 1720 1 32

Solution

(a) Since 15.4 (measured to the nearest tenth) is less precise than 2.483 (measured
to the nearest thousandth), round off the sum to the precision of the less precise
number.

2.483 1 15.4 5 17.883 < 17.9.

(b) The least precise of these numbers is 7200, so round off the sum to the same
level of precision, to the nearest 100:

7200 2 1720 1 32 5 5512 < 5500. b

The Number Pi

The number pi, denoted by the Greek letter p , pops up in the most unexpected
places in mathematics, several of which we encounter in this book. See the Histor-
ical Note, “The Number p .” Most of us first meet pi in connection with circles
through its historical definition as the ratio of the circumference to the diameter of
a circle. Scientific calculators have a key labeled 57p , which approximates p :

p < 3.141592654.

cEXAMPLE 5 Rounding off A rectangular garden measures 23 feet by
36 feet (to the nearest foot). What is the distance c between its opposite corners?
(See Figure 3.)

Solution
Using the Pythagorean theorem,

c 5 Ï232 1 362 < 42.72001873.

Our rule suggests stating the result to two significant digits, so the diagonal
distance is 43. b

FIGURE 3
Find the distance between

opposite corners.
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HISTORICAL NOTE THE NUMBER p

cEXAMPLE 6 Area of circle The radius of a circle measures 24.5 cm. What
is its area?

Solution
The equation for the area A of a circle in terms of the radius is A 5 pr 2. Replacing
r with 24.5, and rounding off to three significant digits,

A 5 p~24.5!2 < 1890.

The area is approximately 1890 cm2. b

EXERCISES 1.1
Check Your Understanding

Exercises 1–5 True or False. Give reasons.

1. If x is any real number, then x 2 is positive.

2. If x is a number such that
1
x

, 1, then x must be greater

than 1.

3. For all nonnegative numbers x and y, Ïx 1 y $
Ïx 1 Ïy.

4. Without additional information, we must assume that
the zeros in the numbers 45,000 and 0.0045 are not
significant digits.

5. All of the zeros in the numbers 3.005 and 4.720 are
significant digits.

Exercises 6–10 Fill in the blank so that the resulting
statement is true.

6. In the decimal representation of the quotient 5
7 , the digit

in the fourth decimal place is .

7. The number of significant digits in
(a) 10.2 is . (b) 1200 is .
(c) 0.12 is .

8. If the dimensions (in inches) of a cereal box are mea-
sured to be 3.1 3 7.2 3 8.0, then the diagonal of the
box can be calculated and the number of meaningful
significant digits is .

9. Of the three numbers p , 333
106 , 355

113 , the largest one is
.

10. If the radius of a circle is doubled, then its area in-
creases by a factor of .

The number p (which represents
the ratio of the circumference to
the diameter of a circle) has
fascinated people since
antiquity. The Babylonians,
Chinese, and Hebrews all knew
that the value of p was near 3. The
Egyptians computed the area of a
circle by squaring 8

9 of the diameter,
implying a value for p of
256
81 5 3.16. In about 200 B.C.,
Archimedes used inscribed and circumscribed
polygons (see figure) to get the bounds
3 10

71 , p , 3 1
7 . We still use 22

7 as a convenient
(and fairly good) approximation.

More than 1700 years passed before a
Frenchman, Viète, significantly improved on the

efforts of the Greeks. Real progress
accompanied the invention of
calculus. Sir Isaac Newton
calculated p to 15 decimal places
and confessed to a colleague, “I am
ashamed to tell you to how many
figures I carried these calculations,
having no other business at the
time.” By 1706 Machin in England
correctly computed p to 100 digits.

Through all this time, people
were looking for a repeating pattern of digits. It
wasn’t until 1761 (2000 years after the
Pythagoreans proved that Ï2 is not rational) that
Lambert (from Germany) finally proved that p is
irrational, so the pattern of digits will never
repeat.



pg008 [V] G2 5-36058 / HCG / Cannon & Elich mjg 11-21-95 mp1

8 Chapter 1 Basic Concepts: Review and Preview

Develop Mastery

Exercises 1–15 Calculator Evaluation The purpose of
these exercises is to give you practice with your calculator.
Many of the exercises are simple enough to solve in your
head. Their real value comes from the effort to make your
calculator do all the necessary steps and agree with the
result in brackets. Some answers are rounded off to three
decimal places.

1. ~6 1 3! · 8 @72# 2. 6 · 3 1 3 · 8 @42#

3. 2 · 32 1 3 · 42 @66# 4.
1y2 2 3

4
@20.625#

5.
2y3 1 3y4

7y8
@1.619#

6. ~2 · 3!2 1 ~3 · 4!2 @180#

7.
~4.5 2 3.1!2

5.6
@0.35#

8. 4.52 2
~3.1!2

5.6
@18.534#

9.
~4.5!2 2 ~3.1!2

5.6
@1.9# 10. Ï2 1 3 @2.236#

11. Ï2 1 Ï3 @3.146# 12.
1

Ï2
1

1

Ï3
@1.284#

13.
1

Ï2 1 Ï3
@0.318#

14.
1 1 Ï32 2 1

3
@1.276#

15. Î4 2 Ï2
2

@1.137#

Exercises 16–17 Scientific Notation Write in scientific
notation and tell which digits are significant.

16. (a) 406 (b) 40600 (c) 406.0 (d) 0.0406

17. (a) 807 (b) 8070 (c) 807.0

(d) 0.008070

Exercises 18–19 Significant Digits Tell which digits are
significant, and then express in standard decimal notation.

18. (a) 3.2 3 103 (b) 5.06 3 1023

(c) 8.400 3 1022 (d) 3.40 3 103

19. (a) 6.4 3 103 (b) 7.06 3 1023

(c) 3.470 3 1022 (d) 5.60 3 104

Exercises 20–21 Round off to two significant digits.

20. (a) 3254 (b) 4.32 (c) 0.05642

(d) 357894

21. (a) 80.5 (b) 0.35501 (c) 0.03618

(d) 247631

Exercises 22–23 How Big Is a Trillion?

22. A stack of 250 dollar bills is about 1 inch high. How
high would a stack of
(a) 4 million (b) 4 billion (c) 4 trillion dollar
bills reach? Make a guess before you do any calcula-
tions, such as: 250 feet, 1

4 mile, the distance from Boston
to New York (230 miles), the distance from the earth to
the moon (240,000 miles), the distance from the earth
to the sun. (The federal debt is well over 5 trillion
dollars.)

23. Would you classify as a baby, a teenager, an adult, an
old person, or otherwise a person who is
(a) a million seconds old?
(b) a billion seconds old?
(c) a trillion seconds old?

Exercises 24–25 Give decimal approximations rounded
off to three significant digits.

24. (a) Ï7 (b)
2p

5
(c) Ï4p (d) Ï25 2 Ï5

25. (a) Ï3 (b)
p

5
(c) Ï25p

(d) Ï17 1 Ï47

Exercises 26–32 Rounding Off Consider all data as
measured numbers. Round off each computation to an ap-
propriate number of significant digits.

26. x 5 33.7, y 5 2.35, z 5 0.431. Find

(a) xy (b) yz (c)
y
z

.

27. Evaluate
(a) 32.51 1 63.2 (b) 65.1 2 23.18 1 2.407
(c) Ï3.822 1 2.632.

28. Find the length of a diagonal of a rectangle with sides
of 31.4 feet and 16.3 feet.

29. The radius of a circle is 3.64 feet. What is its
(a) circumference? (b) area?

30. The legs of a right triangle measure 2.4 meters and 5.8
meters. Find the
(a) hypotenuse (b) perimeter (c) area

31. What is the volume of a sphere whose radius measures
31.4 inches? See inside cover.

32. The length of a side of a square is 2.4 yards and the
radius of a circle is 4.1 feet. Which has the greater area,
the square or the circle? By how much?

Exercises 33–38 Circular Motion Consider the following.

(a) Nicole rides the Sky Scraper, a gigantic Ferris wheel
at Lagoon.

(b) The Galapagos islands, located near the equator,
rotate with the earth.
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(c) Minneapolis, located near 458 latitude, rotates with
the earth.

(d) A space capsule orbits the earth.
(e) The earth orbits the sun.

Each situation can be modeled mathematically as
an object traveling in a circular orbit of radius r at
a fixed speed. The distance traveled in one revolu-
tion is 2pr ~the circumference of the circle!. The
time T for one rotation and the rotational speed V
are related by the equation VT 5 2pr. ~Hint: If N
is the number of rotations per unit of time, then
T 5 1

N .!

33. The Sky Scraper carries its riders to a height of nearly
150 feet, has a wheel diameter of 137 feet, and has two
speeds, 1.30 or 1.60 rotations per minute. At the slower
speed, determine Nicole’s speed in
(a) feet per second (b) feet per minute
(c) miles per hour.

34. Determine Nicole’s speed, as in Exercise 33, when the
Sky Scraper rotates 1.60 times per minute.

35. How fast are the giant tortoises of the Galapagos islands
moving about the center of the earth (in miles per
hour)? Take the radius of the earth to be 3960 miles.

36. How fast is a baseball player standing at first base in
Minneapolis moving about the axis of the earth (in
miles per hour)? See the diagram.

37. If the space capsule is 270 miles above the surface of the
earth and makes a complete orbit in 1.70 hours, how
fast is it traveling due to its rotation? The radius of the
earth is 3960 miles.

38. How fast are Nicole, the Galapagos tortoises, and the
entire baseball team in Minneapolis traveling (in miles
per hour) about the sun? Use 93 million miles as the
distance from the earth to the sun.

Exercises 39–44 Distance to Horizon Use the model
discussed at the beginning of this section (Figure 1), with

the radius of the earth as 3.960 3 103 miles. If h is the
height in feet, then x 5 h

5280 miles.

39. How far can the Inuit boy see if he is tossed 15 feet
high?

40. Compare the distances that can be seen from
(a) the Sears Tower (h 5 1454 feet)
(b) John Hancock Center (h 5 1127 feet).

41. If the air is clear, how far should the pilot of the
Goodyear blimp be able to see from an elevation of
5300 feet?

42. From the top of Lagoon’s Sky Scraper ride (see Exer-
cise 33), how far should Nicole be able to see over the
Great Salt Lake?

43. Sailors follow a rule of thumb that they can see as many
miles to the horizon as the square root of their height
above the waterline, so a lookout in a crow’s nest 64 feet
up should be able to see about 8 miles. How does this
estimate compare with the figure given by the model in
this section? Which do you think is more accurate?
Why? See Develop Mastery Exercise 45, Section 7.1.

44. If s 5 Ï2rx 1 x 2, as in this section, write an equation
giving x in terms of s. A lighthouse is to be built on Cape
Cod on the shore of the Atlantic Ocean. How high
above the ocean must the observation platform be to
allow the operator to see a ship 12 miles from shore?

45. The distance between the earth and the sun is some-
times given as 93 million miles. Actually, the distance
varies, from the nearest point (perihelion), about 91.4
million miles, to the furthest (aphelion), about 94.4 mil-
lion miles. The speed of light is approximately 186,000
miles per second.
(a) How long does it take light from the sun to reach the

earth when the earth is at perihelion? At the aphe-
lion? Give answers in seconds and also in minutes
rounded off.

(b) What is the difference between the times in
part (a)?

Exercises 46–51 Applying Geometric Formulas Use
the formulas for the following diagrams.

(a) Section cut from a sphere of
radius R, of depth d:

V 5 pd 2~R 2 dy3!



R/2

R

R

r

h

pg010 [V] G2 5-36058 / HCG / Cannon & Elich mjg 11-21-95 mp1

10 Chapter 1 Basic Concepts: Review and Preview

Conversion between fluid ounces and cubic inches:
1 quart 5 32 ounces 5 57.75 cubic inches

46. The height h and diameter d of a cylindrical can of
pineapple juice are measured: h 5 6 3

4 inches, d 5 4 1
8

inches. Find the volume in cubic inches and its equiva-
lent in fluid ounces. Use the formula for frustum of a
cone with r 5 R. The label on the can indicates 46
ounces of pineapple juice. What is the difference be-
tween your answer and 46 ounces? Explain.

47. For a soft drink cup that is supposed to hold 44 ounces,
the top diameter is 4 3

8
0 and the bottom diameter is 3 3

80.
The height of the cup is measured as 6 3

40. If all measure-
ments are accurate to the nearest 1

80, find the largest and
smallest possible values for the volume. Is it reasonable
to call the cup as 44-ounce cup?

48. A soft drink cup is made in the shape of a frustum of a
cone. If the cup is to have an upper diameter of 40 and

1.2 R E A L N U M B E R S

The complexities of modern science and modern society have created a need
for scientific generalists, for men (and women as well) trained in many fields
of science. The habits of mind and not the subject matter are what distinguish
the sciences.

Mosteller, Bode, Tukey, Winsor

Numbers occur in every phase of life. It is impossible to imagine how anyone could
function in a civilized society without having some familiarity with numbers. We
recognize that you have had considerable experience working with numbers, and
we also assume that you know something about the language and notation of sets.

the lower diameter of 30, what should the height be if it
is to hold 32 ounces?

49. A direct mail catalog features an Oriental wok in the
shape of a section of a sphere. The catalog gives dimen-
sions that indicate R 5 6 in., d 5 3 in. and claims that
the wok holds 2 1

2 qts. Assuming that the measurements
are accurate to the nearest 1

8 in., find the volume corre-
sponding to
(a) R 5 5 7

8 in. d 5 2 7
8 in.

(b) R 5 6 1
8 in. d 5 3 1

8 in.
On the basis of your results in parts (a) and (b), is the
catalog claim of 2 1

2 qts reasonable? Explain.

50. A metal barrel 180 in diameter and 300 long is cut in
half to make a trough 90 deep and 300 long.
(a) Find the volume (in cubic inches) of the resulting

trough.
(b) If the diameter and length are measured accurate to

the nearest quarter-inch, find the largest and
smallest possible values for the volume (see Exam-
ple 1).

51. Suppose the trough in Exercise 50 is cut down to make
a trough of depth 4.50. What percent of the volume of
the original is now in the shallower trough?

52. The box “Decimal Parts of a Mile” gives some familiar
comparison measurements for decimal parts of a mile.
Complete a similar chart for decimal parts of a kilome-
ter.

0.1 km

0.01 km

0.001 km

0.0001 km

0.00001 km

0.000001 km

(b) Segment of a circle of radius

R, depth Ry2:

A 5 ~p
3 2 Ï3

4 !R2

(c) Frustum of cone:

V 5 1
3ph~R2 1 Rr 1 r 2!



H  Irrational numbers

R  Real numbers

Q  Rational numbers

I  Integers 

W  Whole numbers

N  Natural numbers

P  Primes

E  Even integers

O  Odd integers
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Subsets of Real Numbers

We denote the set of real numbers by R. We make no attempt to develop the
properties and operations of R; this is reserved for more advanced courses. Several
subsets of the set of real numbers are used so frequently that we give them names.
Most of these sets are familiar. The set of natural numbers is also called the set
of positive integers or counting numbers. A prime is a positive integer greater
than 1 that is divisible only by 1 and itself. The table lists the most commonly
encountered subsets of R.

Subsets of R

Subset Symbol and Elements

Natural numbers N 5 $1, 2, 3, . . . %

Whole numbers W 5 $0, 1, 2, 3, . . . %

Integers I 5 $ . . . , 21, 0, 1, 2, 3, . . . %

Even integers E 5 $ . . . , 22, 0, 2, 4, 6, . . . %

Odd integers O 5 $ . . . , 23, 21, 1, 3, 5, . . . %

Prime numbers P 5 $2, 3, 5, 7, 11, 13, . . . %

Rationals Q 5 $
p
q _ p, q [ I, q 5/ 0%

Irrationals H 5 $x _ x [ R and x [/ Q%

Figure 4 indicates schematically that some of the sets listed are subsets of
others. For example, P , N, N , W, and W , I. The sets E and O together make
up I, so we can write E < O 5 I. Further, for any p [ I, since p 5

p

1, every integer
is also a rational number, so I , Q.

The existence of some irrational numbers has been known since at least the
time of the ancient Greeks, who discovered that the length of the diagonal of a

I had such an amazingly
deprived high school
education. There wasn’t a
useful math book in the
library.

Bill Gosper

FIGURE 4
Subsets of the real numbers.
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square is not a rational multiple of the length of the sides (see Develop Mastery
Exercise 38). The length of the diagonal of a unit square is the irrational number
Ï2, and we recognize many others such as Ï3 2 1 and 2 1

3Ï7 and p . The ratio
of the circumference of any circle to its diameter is the number p (pi), approxi-
mately 3.1416. (See the earlier Historical Note, “The Number Pi.”)

Although most of this book (and most of calculus as well) involves only real
numbers, we also make use of the set of complex numbers (see Section 1.3),
especially in Chapters 3 and 7.

cEXAMPLE 1 Set notation Determine whether the statement is true.

(a) N , Q (b) I > H 5 y0 (c) Ï5 [ Q
(d) Ï64 [ H (e) 41 [ P (f) 87 [/ P

Solution

(a) True; every natural number is rational.
(b) True; every integer is rational and hence not in H.
(c) False; Ï5 is an irrational number.
(d) False; Ï64 5 8 and is not irrational.
(e) True; 41 is a prime number.
(f) True; 87 5 3 · 29, so 87 is not a prime number. b

cEXAMPLE 2 Union and intersection Simplify:

(a) P > N (b) W > Q (c) Q < H

Solution

(a) P > N 5 P; every prime number is also a natural number.
(b) W > Q 5 W; every whole number is also a rational number.
(c) Q < H 5 R; every real number is rational or irrational. b

Decimal Representation of Numbers

Every real number also has a decimal “name.” For instance, the rational number
3
4 can also be written as 0.75, which is called a terminating decimal. To get the
decimal representation for the rational number 5

11 , we divide 5 by 11 and get the
repeating (nonterminating) decimal 0.454545. . . , which we write as 0.45. The
bar notation indicates that the block under the bar, in this instance 45, repeats
forever. A terminating decimal can also be considered as repeating. For instance,
3
4 can be named by 0.75, or by 0.750, or even by 0.749 (see Example 3).

An irrational number such as Ï2 has a nonterminating and nonrepeating
decimal representation. The distinction between repeating and nonrepeating deci-
mals distinguishes the rational numbers from the irrationals.

Approximating Pi

As indicated in Section 1.1, the important number p occurs in problem-solving
applications as well as theoretical mathematics. In recent years sophisticated tech-
niques have allowed computer evaluation of p to billions of decimal places, but
there is still no way to express the decimal representation of p exactly. See the
Historical Note, “Approximating the Number p .”

Strategy: Think about the
meaning of each set (in
words). For given numbers,
decide if each fits the descrip-
tion of the indicated set.
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HISTORICAL NOTE APPROXIMATING THE NUMBER p

The rational number 22
7 is sometimes used as an approximation to p , but it is

important to understand that p is not equal to 22
7 . Other rational number approxi-

mations of p include 333
106 , 355

113 , and 208, 341
66,317 (see Develop Mastery Exercises 39 and 40).

Characterizing real numbers

A real number is rational if and only if its decimal representation repeats or
terminates.
A real number is irrational if and only if its decimal representation is
nonterminating and nonrepeating.

From Decimal Representations to Quotient Form

Finding a decimal representation for a given rational number is simply a matter of
division; going the other way is more involved but is not difficult. Some graphing
calculators have built-in routines to convert decimals to fractions. Such programs
are limited because calculators must work with truncated (cut-off, finite) decimals.

People continued to be fascinated
by p even after it was shown to be
irrational. In 1844 Johann Dase,
who could multiply 100 digit
numbers in his head, took months
to compute p to 205 digits. The
champion at hand calculating must
be William Shanks, who spent 20
years to grind out 707 digits. His
record stood until 1945, when
D. W. Ferguson used a mechanical
calculator to find an error in
Shanks’ 528th digit.

No further search for accuracy
can be justified for practical
purposes of distance or area computation. An
approximation to 45 digits would measure the
circumference of a circle encompassing the entire

universe with an error
less than the radius of a single
electron. People have found many
other reasons, in addition to the
sheer fascination of knowing, for
computing the digits of p .

Computers brought a new era.
In 1949, a machine called ENIAC,
composed of rooms full of vacuum
tubes and wires, in 70 hours
computed 2037 digits of p .

More recent milestones are
listed below. Remarkably, the last
record was achieved on a
home-built super computer. You

can read more in “Ramanujan and Pi,” Scientific
American (Feb. 1988), and in “The Mountains of
Pi,” The New Yorker (Mar. 12, 1992).

p 5 3.14159 26535 89793 23846 26433
83279 50288 41971 69399 37510
58209 74944 59230 78164 06286
20899 86280 34825 34211 70679
82148 08651 32823 06647 09384
46095 50582 23172 53594 08128
48111 74502 84102 70193 85211
05559 64462 29489 54930 38196
44288 10975 66593 34461 28475
64823 37867 83165 27120 19091
45648 56692 34603 48610 45432
66482 13393 60726 02491 41273

A computer can calculate
these first 300 digits of p in a

fraction of a second. The
same calculation by hand
requires months of work.

1973 Jean Guilloud, M. Bouyer CDC7600 1 million digits
1985 R. William Gosper Symbolics 17 million digits
1986 David H. Bailey Cray-2 29 million digits
1987 Yasumasa Kanada NEC SX-2 134 million digits
1989 D. and G. Chudnovsky 480 million digits
1990 Yasumasa Kanada NEC SX-2 1 billion digits
1991 D. and G. Chudnovsky M Zero 2.26 billion digits
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There is no way to tell a calculator that a given decimal repeats (infinitely). If we
know that a given number x has a repeating decimal representation, these steps
will give the desired rational number as a quotient.

1. Multiply x by an appropriate power of 10 to move the decimal point to
the beginning of the repeating block.

2. Multiply x by another power of 10 to move the decimal point to the
beginning of the next block.

3. The difference between these two multiples of x is an integer, which
allows us to solve for x.

cEXAMPLE 3 From decimal to quotient Express each number as a quo-
tient of integers in lowest terms.

(a) 0.74 (b) 0.74 (c) 0.749

Solution

(a) From the meaning of decimal notation, 0.74 5 74
100 , which reduces to 37

50 . Thus
0.74 represents the rational number 37

50 .
(b) With a repeating block, we follow the procedure outlined above. Let x 5 0.74.

The decimal point is already at the beginning of the block, so multiply by 100
to move the decimal point to the beginning of the next block.

100x 5 74.74
x 5 0.74

99x 5 74, from which x 5
74
99

.

Thus 0.74 represents the rational number 74
99 . You may wish to verify this by

dividing 74 by 99.
(c)Let y 5 0.749, multiply by 1000, then by 100, and take the difference:

1000y 5 749.9
100y 5 74.9

1900y 5 675, from which y 5
675
900

5
3
4

.

Hence 0.749 represents the rational number 3
4 , which says that 3

4 has two
different decimal names, 0.749 and 0.75. Actually, every rational number that
can be written as a terminating decimal has two representations. b

Note that the procedure outlined above involves subtracting repeating decimals
as if they were finite decimals. We justify such operations in Section 8.3.

Exact Answers and Decimal Approximations

When we use a calculator to evaluate a numerical expression, in most cases the
answer is a decimal approximation of the exact answer. When we ask for a four
decimal place approximation, we mean round off the calculator display to four
decimal places.

cEXAMPLE 4 Calculator evaluation Use a calculator to get a four decimal
place value. Is the value exact or an approximation?

(a) 3
4 1 1

8 (b) 1
5 1 2

3 (c) Ï2
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Solution

(a) 3
4 1 1

8 5 0.8750; exact decimal value.
(b) 1

5 1 2
3 < 0.866666667 < 0.8667; approximation.

(c) Ï2 < 1.414213562 < 1.4142; approximation. b

Square Roots and the Square Root Symbol

There are two numbers whose square is 2. That is, the equation x 2 5 2 has two
roots. We reserve the symbol Ï2 for the positive root, so the roots of the equation
are Ï2 and 2Ï2, which we often write as 6Ï2. For every positive x, the
calculator will display a positive number when we press 57Ïx , and we use Ïx to
denote the positive number whose square is x.

cEXAMPLE 5 Calculators and rounding off Find an approximation
rounded off to four decimal places.

(a) 1 1 Ï3 (b) Ï1 1 Ï3

Solution

(a) Using a calculator, we get 1 1 Ï3 < 2.7321.
(b) After evaluating 1 1 Ï3, take the square root to get

Ï1 1 Ï3 < 1.6529. b

EXERCISES 1.2
Check Your Understanding

Exercises 1–5 True or False. Give reasons.

1. The number p is equal to 22
7 .

2. The integer 119 is a prime number.

3. The intersection of the set of rational numbers and the
set of irrational numbers is the empty set.

4. The set of prime numbers is a subset of the set of odd
numbers.

5. The sum of any two odd numbers is an odd number.

Exercises 6–10 Fill in the blank so that the resulting
statement is true.

6. The product of two odd numbers is an number.

7. When 5
7 is expressed as a repeating decimal, the eighth

digit after the decimal is .

8. Of the numbers 5
71 , 2 24

17 , Ï25 2 9, Ï64 2 14, the one
that is irrational is .

9. Of the four numbers p , Ï64 1 16, 0.564, Ï5
2 , the one

that is rational is .

10. Of the four numbers 8
11 , 5

7 , 0.714, 0.714 the smallest one
is .

Develop Mastery
Exercises 1–8 Subsets of Real Numbers Determine
whether each statement is true or false. Refer to the subsets
of R listed in this section.

1. (a) 0 [ N (b) 17 [/ P

2. (a) 25 [/ N (b) 25 [ I

3. (a) $24, 3% # I (b) $7, 81% , P

4. (a) $Ï4,Ï5% , H (b) $0.5, 0.7% , Q

5. (a) I < N 5 I (b) I > W 5 W

6. (a) P > I 5 P (b) Q < I 5 Q

7. (a) Q # H (b) H < I 5 H

8. (a) P < Q 5 Q (b) I > Q 5 I

Exercises 9–10 Indicate which of the subsets P, N, I, O, E,
Q, and H contain each number. For instance, 17 belongs to
P, N, I, O, and Q.

9. (a)
29
3

(b) Ï16 (c) Ï32 (d)
25

23

10. (a) 3.27 (b) 29 (c)
0.13
1.27

(d) 2p 2 1
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Exercises 11–14 Fraction to Decimal Express each as a
terminating decimal, or as a repeating decimal using the
bar notation.

11. (a)
5
8

(b)
5

12

12. (a)
73
40

(b)
25
33

13. (a)
37
45

(b)
10
13

14. (a)
16
35

(b)
48
65

Exercises 15–18 Decimal to Fraction Express each as a
fraction (quotient of integers) in lowest terms.

15. (a) 0.63 (b) 0.63

16. (a) 1.45 (b) 1.45

17. (a) 0.83 (b) 0.83

18. (a) 1.36 (b) 0.621

Exercises 19–21 Give a decimal approximation rounded
off to three decimal places.

19. (a)
67

195
(b)

Ï17
12

20. (a)
1142
735

(b) Ï1 1 Ï2

21. (a)
343
110

(b)
11~4 2 Ï3!

8

Exercises 22–30 Decimal Approximations Give deci-
mal approximations rounded off to six decimal places. Do
the numbers appear to be equal?

22. Ï8; 2Ï2

23. Ï48; 4Ï3

24. 1 1 Ï2;
1

Ï2 2 1

25.
Ï3 1 1

2
;

1

Ï3 2 1

26. Ï6 1 Ï2; 2Ï2 1 Ï3

27. Ï3 1 Ï5 1 Ï3 2 Ï5; Ï10

28. Ï6 1 4Ï2; 2 1 Ï2

29. Ï8 1 2Ï15; Ï5 1 Ï3

30. Ï6 2 2Ï5; 1 2 Ï5

31. What is the smallest nonprime positive integer greater
than 1 that has no factors less than 12?

32. What is the smallest prime number that divides
37 1 711?

Exercises 33–34 True or False. Give reasons.

33. (a) The sum of any two odd numbers is an odd number.
(b) The product of any two odd numbers is an odd

number.
(c) The product of any two consecutive positive in-

tegers is an even number.

34. (a) The sum of three consecutive even numbers is an
odd number.

(b) If a positive even integer is a perfect square, then it
is the square of an even number.

(c) If the sum of two integers is even, then both must be
even.

35. Give an example of irrational numbers for x and y that
satisfy the given condition.
(a) x 1 y is irrational. (b) x 1 y is rational.
(c) x · y is rational. (d) x

y is rational.

36. If x 5 Ï1.5 1 Ï2 1 Ï1.5 2 Ï2, determine
whether x is rational or irrational. (Hint: Evaluate x 2.)

37. If x 5 Ï2 1 Ï3 1 Ï2 2 Ï3, determine whether x
is rational or irrational. (Hint: Evaluate x 2.)

38. Prove that Ï2 is not a rational number. (Hint: Suppose
Ï2 5 b

c , where b, c [ N and b
c is in lowest terms. Then

b 2 5 2c 2. Explain why b must be even. Then also ex-
plain why c must be even. This would contradict the
assumption that b

c is in lowest terms.)

Exercises 39–40 Approximations for p Refer to the
number p , whose decimal form is nonterminating and non-
repeating. Rounded off to 24 decimal places,

p < 3.1415 92653 58979 32384 62643.

39. The following rational numbers are used as approxima-
tions of p . Use your calculator to evaluate and compare
each result with the given decimal approximation of p .

(a)
22
7

(b)
333
106

(c)
355
113

40. The rational number 208,341
66,317 is an excellent approxima-

tion of p . Evaluate it to at least 12 decimal places and
compare the result with the approximation given above.

41. In 1991 the Chudnovsky brothers used a supercom-
puter they built to compute more than 2.26 billion digits
of p . Count the number of symbols in an average line of
this book and estimate how long a line of type (mea-
sured in miles) the Chudnovsky result would give. (See
the Historical Note, “Approximating the Number p .”)



– 2 – 1 0 1 2 3

O P

(a) Integers on a number line.

– 2 – 1 0 1 2 3

p– 2 3
1
2

– 2
3

(b) Real numbers on a number line.
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1.3 R E A L N U M B E R P R O P E R T I E S ; C O M P L E X N U M B E R S

. . . one of the central themes of science @is# the mysterious power of
mathematics to prepare the ground for physical discoveries which could not
have been foreseen by the mathematicians who gave the concepts birth.

Freeman Dyson

Real Number Line

One of the great ideas in the history of mathematics is that the set of real numbers
can be associated with the set of points on a line. We assume a one-to-one corre-
spondence that associates each real number with exactly one point on a line, and
every point on the line corresponds to exactly one real number.

We frequently identify a number with its point, and vice versa, speaking of “the
point 2” rather than “the point that corresponds to 2.” Figure 5 shows a few
numbers and the corresponding points on a number line.

Order Relations and Intervals

The number line also represents the ordering of the real numbers. We assume that
the ideas of less than and greater than, and the following notation are familiar:

Order relations for real numbers

Notation Terminology Meaning

b , c b is less than c. c 5 b 1 d, for some positiveThe mathematics course
number dat San Diego High School

c . b c is greater than b b , cwas standard for that time:
plane geometry in the b # c b is less than or b , c or b 5 c
tenth grade, advanced equal to c.
algebra in the eleventh, c $ b c is greater than b # c
and trigonometry and solid

or equal to b.geometry in the twelfth.
. . . After plane geometry, I
was the only girl still We also need notation for sets of all numbers between two given numbers, or
taking mathematics. all numbers less than or greater than a given number. Such sets are called

Julia Robinson intervals.

Definition: intervals

Suppose b and c are real numbers and b , c:

Name Notation Number-line diagram

Open interval ~b, c! 5 $x _ b , x , c%
Closed interval @b, c# 5 $x _ b # x # c%
Half-open interval @b, c! 5 $x _ b # x , c%
Half-open interval ~b, c# 5 $x _ b , x # c%
Infinite intervals ~b, `! 5 $x _ x . b%

@b, `! 5 $x _ x $ b%
~2`, b! 5 $x _ x , b%
~2`, b# 5 $x _ x # b%

In these definitions, the symbol ` (infinity) does not represent a number, and we
never use a closed bracket to indicate that ` is included in an infinite interval.

FIGURE 5
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Absolute Value and Distance

We have no difficulty in finding the absolute value of specific numbers, as in

_ 2 _ 5 2, _ 0 _ 5 0, _ 21.375 _ 5 1.375.

There are always two numbers having the same nonzero absolute value, as

_ 2 _ 5 _ 22 _ 5 2, and U2p

3 U 5 Up

3 U 5
p

3
.

Following the pattern of the above examples, the absolute value of a positive
number is itself; the absolute value of a negative number is its opposite.

In working with an expression like _ 2x 2 3 _ , the quantity 2x 2 3 is neither
positive nor negative until we give a value to x. All we can say is that _ 2x 2 3 _ is
either 2x 2 3 or its opposite, 2~2x 2 3!. Thus

_ 2x 2 3 _ 5 2x 2 3 for all the x-values that make 2x 2 3 positive

~2, 9
5 , 5p , . . .!,

_ 2x 2 3 _ 5 22x 1 3 for all the x-values that make 2x 2 3 negative

~1, p
3 , 0, . . . !.

Looking at a number line, the numbers satisfying _ x _ 5 3 are 3 and 23, the two
numbers whose distance from 0 is 3. More generally, the numbers located two units
from 7 are the numbers 5 and 9, and _ 7 2 5 _ 5 2, and _ 7 2 9 _ 5 2.

These examples lead to two ways of looking at absolute values, both of which
are useful, so we include them in our definition.

Definition: absolute value

For any expression u, the absolute value of u, denoted by _ u _ , is given by

_ u _ 5 H u if u $ 0
2u if u , 0

If a and b are any real numbers, then the distance between a and b is
given by

_ a 2 b _ 5 _ b 2 a _ .

It follows that _ a _ 5 _ a 2 0 _ is the distance between a and 0.

Calculators and Absolute Value

In finding the absolute value of any particular number, we shouldn’t have to rely
on a calculator, but a calculator can be helpful nonetheless.

We know, for example, that _p 2 Ï10 _ is either p 2 Ï10 or Ï10 2 p ,
depending on which is positive. We do not need to use the calculator function 57ABS ;
in fact, if we were to try (see the Technology Tip in Section 1.5 for suggestions
about how to enter 57ABS ), we would find only that

ABS~p 2 Ï10! < 0.020685.

This is true, but not helpful in deciding whether _p 2 Ï10 _ is equal to p 2 Ï10
or Ï10 2 p . If, however, we use the calculator to learn that p 2 Ï10 is negative,
about 20.020685, then we immediately know that _p 2 Ï10 _ 5 Ï10 2 p .



– 1 0 1

3t = 1 – – t

3 – 1.Distance is
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cEXAMPLE 1 Absolute value
(a) If t 5 1 2 Ï3, show both t and 2t on a number line and express _ t _ in
exact form without using absolute values. (b) Find all numbers x such that
_ 2x 2 3 _ 5 1.

Solution

(a) Since t is negative ~t < 2.0732!, _ t _ is the opposite of t:

_ t _ 5 _ 1 2 Ï3 _ 5 2~1 2 Ï3! 5 Ï3 2 1.

Both t and 2t are shown on the number line in Figure 6.
(b) The two numbers whose absolute value is 1 are 1 and 21. Thus, if _ 2x 2 3 _ 5 1,

we have either

2x 2 3 5 1 or 2x 2 3 5 21.

Solving each, we have

x 5 2 or x 5 1. b

Some useful properties of absolute values

Suppose x and y are any real numbers.

1. _ x _ $ 0 2. _ x _ 5 _ 2x _

3. _x · y _ 5 _ x _ · _ y _ 4. Ïx 2 5 _ x _

5. UxyU 5
_ x _

_ y _
if y 5/ 0 6. _ x 1 y _ # _ x _ 1 _ y _

cEXAMPLE 2 Absolute value arithmetic Let x 5 23, y 5 2, and
z 5 1 2 Ï3. Evaluate the expressions. Are the values in each pair equal or not?

(a) Ïx 2, x (b) _ x · y _ , _ x _ · _ y _ (c) _ y 1 z _ , _ y _ 1 _ z _

(d) _ x 1 z _ , _ x _ 1 _ z _

SolutionStrategy: Identify each
number as positive or nega-

(a) Ïx 2 5 Ï~23!2 5 Ï9 5 3; x 5 23.tive before applying a
definition of absolute value. (b) _ x · y _ 5 _ ~23! · 2 _ 5 _ 26 _ 5 6; _ x _ · _ y _ 5 _ 23 _ · _ 2 _ 5 3 · 2 5 6.

(c) _ y 1 z _ 5 _ 2 1 ~1 2 Ï3! _ 5 _ 3 2 Ï3 _ 5 3 2 Ï3 < 1.27.
_ y _ 1 _ z _ 5 _ 2 _ 1 _ 1 2 Ï3 _ 5 2 1 ~Ï3 2 1! 5 1 1 Ï3 < 2.73.

(d) _ x 1 z _ 5 _ 23 1 ~1 2 Ï3! _ 5 _ 22 2 Ï3 _ 5 2 1 Ï3 < 3.73.
_ x _ 1 _ z _ 5 _ 23 _ 1 _ 1 2 Ï3 _ 5 3 1 ~Ï3 2 1! 5 2 1 Ï3.

The pairs in parts (b) and (d) are equal; those in (a) and (c) are not. b

Complex Numbers

Although most of our work deals exclusively with real numbers, sometimes we
must expand to a larger set, the set of complex numbers. We need complex
numbers mostly in two settings: for the solutions of polynomial equations, and for
some trigonometric applications (Chapter 7). For the time being, all the informa-
tion we need is simple complex-number arithmetic and how to take square roots.
We include a picture of the complex plane and some properties of complex numbers
for reference.

FIGURE 6
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HISTORICAL NOTE GROWTH OF THE NUMBER SYSTEM

We are familiar with the fact that whenever we take the square of a nonzero
real number, we always get a positive number. There is no real number that satisfies
the simple equation x 2 1 1 5 0. Accordingly, we extend the real number system
by introducing a new number i, whose distinguishing characteristic is that its square
equals 21, i 2 5 21, which is sufficient to define the set C of complex numbers. See
the Historical Note, “Growth of the Number System.”

Definition: the set of complex numbers

C 5 $c 1 di _ c and d are real numbers, and i 2 5 21%.

The set of complex numbers is really an extension of the set of real numbers
because for any real number a, a 5 a 1 0i. This observation gives the conclusion:

Every real number is also a complex number.

The ancient Greeks believed
numbers expressed the essence of
the whole world. Numbers to the
Pythagorean philosophers meant
whole numbers and their
ratios—what we would call the
positive rational numbers. It was
extremely distressing to some when
they discovered that something as
simple as the diagonal of a square
cannot be expressed rationally in
terms of the length of the side of
the square. Pythagoras (ca. 550
B.C.) is said to have sacrificed 100
oxen in honor of the discovery of
irrational numbers. Nonetheless,
irrational numbers were called
alogos in Greek, carrying the double
meaning that such numbers were not ratios and
also that they were not to be spoken.

Hundreds of years passed before
mathematicians became comfortable with the use
of numbers like Ï2. Even we are reluctant to
accept new numbers, as our language reflects. We
equate rational with reasonable, and dislike
irrational or negative concepts.

Not until the Middle Ages did mathematicians
become secure with fractions and negative
numbers. Also at that time, they recognized that

irrationals have negatives, so two
numbers have the square 2, namely
Ï2 and 2Ï2.

Complex numbers have a
history somewhat shorter than that
of irrational numbers. Cardan made
the first public use of complex
numbers in 1545 when he showed
how to find two numbers with a
sum of 10 and a product of 40,
giving the result as 5 1 Ï215 and
5 2 Ï215. Although he observed
that the product equals 52 2 ~215!
or 40, he considered such
expressions no more real than
negative numbers describing lengths
of line segments. In 1777 Euler first
used the symbol i to denote Ï21.

As with Ï2, people first considered only one root
of 21, but then recognized that i and 2i both
satisfy the equation x 2 1 1 5 0.

We have come gradually to recognize that our
number system is much larger and richer than
childhood experience conceives. We extend our
counting numbers to accommodate subtraction
and division and then to solve simple equations
such as x 2 5 2 and x 2 5 21. Other extensions
are possible, and we hope to be open to accepting
whatever is useful for solving new problems.

Boethius (left), using written
Arabic numerals, triumphs

over Pythagoras and his
abacus in a mathematical

contest. The goddess
Arithmetica presides over the

competition.
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The Quadratic Formula, Complex Numbers, and Principal Square Roots

The roots of a quadratic equation may or may not be real numbers. For solving such
an equation, we rely on another familiar tool from introductory algebra, the
quadratic formula.

Quadratic formula

The roots of the equation ax 2 1 bx 1 c 5 0, where a 5/ 0, are given by

x 5
2b 6 Ïb 2 2 4ac

2a

The expression b 2 2 4ac is called the discriminant of the equation and
determines the nature of the roots.

If b 2 2 4ac 5 0, there is only one root, given by x 5
2b
2a

.

If b 2 2 4ac . 0, the quadratic formula gives two real roots.
If b 2 2 4ac , 0, there are two nonreal complex roots.

To apply the quadratic formula in the case with a negative discriminant, we
need to extend the idea of square roots from our definition in Section 1.2 to the
following.

Definition: principal square root

Suppose p is a positive real number. Then the principal square roots of p
and 2 p are given by:

Ïp is the nonnegative number whose square is p, as Ï4 5 2.
Ï2 p is the complex number Ïpi, as Ï29 5 3i.

For example, if x 2 2 4x 1 5 5 0, the discriminant is negative and the

quadratic formula gives the roots as x 5
4 6 Ï24

2
5

4 6 2i
2

5 2 6 i. The

nonreal complex roots given by the quadratic formula always occur in what are
called conjugate pairs, in this case 2 1 i and 2 2 i. In general, for the complex
number z 5 c 1 di, the conjugate of z, denoted by z, is given by z 5 c 2 di.

The Complex Plane

Just as we identify each real number with a point on a number line, we identify each
complex number c 1 di with a point in the plane having coordinates ~c, d!. See
Figure 7. In this correspondence, the x-axis is the real number line and all real
multiples of i are located on the y-axis.

The standard form for a complex number is c 1 di, where c and d are real
numbers. The number c is called the real part and d is the imaginary part. If the
imaginary part is nonzero, then we call the complex number c 1 di a nonreal-
complex number.

Complex Number Arithmetic

When are two complex numbers equal? How do we add, subtract, multiply, and
divide complex numbers? Given complex numbers z and w in standard form, say
z 5 a 1 bi and w 5 c 1 di, we treat these numbers as we would any algebraic

FIGURE 7
The complex number c 1 di is

identified with the point
(c, d ).
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expressions, combining like terms in the usual fashion, with one exception. In
multiplication we replace i 2 by 21 wherever it occurs. For division, z

w ~w 5/ 0!, we
multiply numerator and denominator by w as follows:

z
w

5
a 1 bi
c 1 di

5
a 1 bi
c 1 di

·
c 2 di
c 2 di

5
ac 2 adi 1 bci 2 bdi 2

c 2 2 d 2i 2 5
~ac 1 bd! 1 ~bc 2 ad!i

c 2 1 d 2

Definitions: complex number arithmetic

Suppose z 5 a 1 bi, w 5 c 1 di, where a, b, c, and d are real numbers.

Equality: z 5 w if and only if a 5 c and b 5 d.
Addition: z 1 w 5 ~a 1 c! 1 ~b 1 d!i
Subtraction: z 2 w 5 ~a 2 c! 1 ~b 2 d!i
Multiplication: z · w 5 ~ac 2 bd! 1 ~ad 1 bc!i

Division:
z
w

5
ac 1 bd
c 2 1 d 2 1

bc 2 ad
c 2 1 d 2 i,

where c 2 1 d 2 5/ 0.

cEXAMPLE 3 Complex number arithmetic If z 5 2 2 i and w 5 21 1 i,
write each expression as a complex number in standard form and locate each on a
diagram of the complex plane:

(a) z 1 w (b) z and 2z (c) zw (d)
1
w

Solution

(a) z 1 w 5 ~2 2 i! 1 ~21 1 i! 5 1 1 0i 5 1.
(b) z 5 2 1 i, and 2z 5 22 1 i.
(c) zw 5 ~2 2 i!~21 1 i! 5 22 1 2i 1 i 2 i 2 5 22 1 3i 2 ~21!

5 21 1 3i.

(d)
1
w

5
1w–

ww–
5

1~21 2 i!
~21 1 i!~21 2 i!

5
21 2 i
1 2 i 2 5

21 2 i
1 2 ~21!

5 2
1
2

2
1
2

i.

The points are shown in Figure 8. b

Absolute Value of a Complex Number

We define the absolute value of a real number x as the distance between the point
x and the origin 0. In a similar manner, we define the absolute value of a 1 bi as
the distance in the plane between ~a, b! and the origin ~0, 0!. The diagram in
Figure 9 and the Pythagorean theorem give a distance of Ïa2 1 b 2.

Definition: absolute value of a complex number

Suppose z is the complex number a 1 bi. The absolute value of z, denoted
by _ z _ , is Ïa2 1 b 2 , and we write _ z _ 5 Ïa2 1 b 2.

Many of the properties of absolute values of complex numbers are the same as
those for real numbers. From the definition of distance in the next section, we can
also observe that _ z 2 w _ is the distance between the complex numbers z and w.

FIGURE 8
Points in the complex plane.

FIGURE 9
The absolute value of a
complex number is the

distance to the origin in the
complex plane.
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Properties of absolute value of a complex number

If z and w are any complex numbers, then:

1. _ z _ $ 0 2. _ z _ 5 _ 2z _ 5 _ z _

3. _ z · w _ 5 _ z _ · _ w _ 4. Ïz · z 5 _ z _

5. U z
wU 5

_ z _

_ w _
if w 5/ 0 6. _ z 1 w _ # _ z _ 1 _ w _

cEXAMPLE 4 Absolute values of complex numbers Suppose z 5 2 2 i
and w 5 21 1 i (the complex numbers of Example 3). Verify that the properties
of absolute values hold for each pair.

(a) _ z _ 1 _ w _ , _ z 1 w _ (b) _ z _ , _ 2z _ (c) _ zw _ , _ z _ · _ w _

Solution

(a) _ z _ 1 _ w _ 5 _ 2 2 i _ 1 _ 21 1 i _ 5 Ï22 1 ~21!2 1 Ï~21!2 1 12

5 Ï5 1 Ï2.
_ z 1 w _ 5 _ 1 1 0i _ 5 Ï12 1 02 5 1.

Since 1 , Ï5 1 Ï2, _ z 1 w _ , _ z _ 1 _ w _ (Property 6).
(b) _ z _ 5 _ 2 1 i _ 5 Ï22 1 12 5 Ï5;

_ 2z _ 5 _ 22 1 i _ 5 Ï~22!2 1 12 5 Ï5.
Thus _ z _ 5 _ 2z _ (Property 2).

(c) zw 5 21 1 3i, and so _ zw _ 5 _ 21 1 3i _ 5 Ï10.
_ z _ · _ w _ 5 Ï5 · Ï2 5 Ï10. Therefore _ zw _ 5 _ z _ · _ w _
(Property 3). b

Ordering of the Complex Numbers

Real numbers are ordered by the less than relation, so that if b is any real number,
then exactly one of the following is true:

b 5 0 or b , 0 or b . 0.

Since R is a subset of C, any ordering of the complex numbers should be consistent
with the ordering of R. Consider the nonzero complex number i. If we could extend
the ordering of R to C, then we would have to have

i , 0 or i . 0.

If i . 0, then we can multiply both sides by i and get

i · i . i · 0 or 21 . 0,

which is not a true statement in R. That leaves only the possibility that i is negative,
i , 0. If we multiply both sides by a negative number, we must reverse the direc-
tion of the inequality, and we get the same contradiction:

i · i . i · 0 or 21 . 0.

We are forced to conclude that there is no consistent way to order the set of complex
numbers using the less than relation. Thus, for example, we cannot say that one of
the two numbers 3 2 4i and 21 1 2i is less than the other.
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EXERCISES 1.3

Check Your Understanding

Exercises 1–5 True or False. Give reasons.

1. If both b and d are negative real numbers, then
Ï2b Ï2d 5 Ïbd.

2. _ 3 2 Ï10 _ 5 Ï10 2 3.

3. 1 2 Ï10 . 1 2 p

4. In the complex plane, 3 1 4i is farther from the origin
than 5i.

5. If 0 , b , 1 and 21 , c , 0, then
21 , b 2 c , 1.

Exercises 6–10 Fill in the blank so that the resulting
statement is true.

6. The smallest integer that is greater than 3 2 Ï10 is
.

7. The greatest integer less than
3 2 p

4
is .

8. The largest integer in the set $x _ 2Ï3 , x , Ï148%
is .

9. The number of integers between Ï29 1 1 and 8p is
.

10. The number of prime numbers between Ï17 2 2 and
Ï83 1 8 is .

Develop Mastery

Exercises 1–6 Number Line Show the set on a number
line.

1. $x _ x . 22 and x , 2%

2. $x _ x $ 21 and x # 1%

3. $x _ x , 1 or x . 3%

4. $x _ x # 21% < $x _ x . 4%

5. $x _ x . 0% > $x _ x , 3%

6. $x _ 1 # x , Ï7%

Exercises 7–9 Absolute Value Simplify. Express in ex-
act form without using absolute values, and as a decimal
approximation rounded off to four decimal places.

7. (a) U 1
4

2
3
2 U (b) U3 2

9
2 U

8. (a) U 1 2
4
7 U (b) _ 3 2 Ï17 _

9. (a) _p 2 3 _ (b) Up 2
22
7 U

Exercises 10–13 Enter one of the three symbols ,, .,
or 5 in each blank space to make the resulting statement
true.

10. (a) 24 26
(b) 2p 2Ï10

11. (a)
5

11
0.45

(b) 1 1 Ï2 2.9

12. (a)
47
3

16

(b) 0.63 7
11

13. (a) _ 1 2 Ï3 _ Ï3 2 1
(b) _ 25 _ 4

Exercises 14–17 Ordering Numbers Order the set of
three numbers from smallest to largest. Express the result
using the symbol ,, as, for instance, y , z , x.

14. x 5 5, y 5 27, z 5 23

15. x 5
16
23

, y 5
5

12
, z 5

7
15

16. x 5 1 2 Ï3 , y 5 Ï3 2 1, z 5 21

17. x 5 U1 2
7
5 U, y 5 U1 2

6
5 U, z 5 U1 2

1
5 U

Exercises 18–19 True or False.

18. (a) p 2 , 10 (b)
1

Ï2 2 1
. 2.28

19. (a) 1.33 , 1.3 (b) 0.54 .
6

11

Exercises 20–25 Intervals on Number Line Show the
intervals on a number line.

20. ~21, 4! 21. ~2`, 2!

22. @22, `! 23. @1, 4# > ~0, 5!

24. ~2`, 3! < ~3, 4# 25. @23, 2# > @2, 5#

Exercises 26–31 Verbal to Number Line Set S is de-
scribed verbally. Show S on the number line.

26. Set S contains all negative numbers greater than 25.

27. Set S contains all real numbers greater than 22 and less
than 3.

28. Set S consists of all integers between 23 and 8.

29. Set S consists of all prime numbers between 0 and 16.

30. Set S consists of all real numbers between 2Ï3 and
Ï5.

31. Set S consists of all positive real numbers less than 4.

32. What is the largest integer that is (a) less than or equal
to 25? (b) less than 25?

33. What is the largest integer that is less than 1 1 Ï17?
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34. What is the smallest integer that is greater than 348
37 ?

35. What is the smallest even integer that is greater than
12 1 Ï5?

36. What is the largest prime number that is less than 23
0.23 ?

Exercises 37–50 Complex Number Arithmetic Perform
the indicated operations. Express the result as a complex
number in standard form.

37. ~5 1 2i! 1 ~3 2 6i! 38. ~3 2 i! 1 ~21 1 5i!

39. ~6 2 i! 2 ~3 2 4i! 40. 8 2 ~3 1 5i! 1 2i

41. ~2 1 i!~3 2 i! 42. ~21 1 i!~2 1 3i!

43. ~1 1 3i!~1 2 3i! 44. ~7 2 2i!~7 1 2i!

45.
1 1 3i

i
46.

1 1 i
1 2 i

47. ~1 1 Ï3i!2 48.
2i

~1 2 i!~2 2 i!

49. (a) i 2 (b) i 6 (c) i 12 (d) i 18

50. (a) i 5 (b) i 9 (c) i 15 (d) i 21

Exercises 51–55 If z is 1 2 i and w is 22 1 i, express in
standard form.

1.4 R E C T A N G U L A R C O O R D I N A T E S ,
T E C H N O L O G Y , A N D G R A P H S

Creative people live in two worlds. One is the ordinary world which they share
with others and in which they are not in any special way set apart from their
fellow men. The other is private and it is in this world that the creative acts
take place. It is a world with its own passions, elations and despairs, and it is
here that, if one is as great as Einstein, one may even hear the voice of God.

Mark Kac

Rectangular Coordinates

Few intellectual discoveries have had more far-reaching consequences than coordi-
natizing the plane by René Descartes nearly 400 years ago. We speak of Cartesian
or rectangular coordinates in his honor.

A rectangular coordinate system uses two perpendicular number lines in the
plane, which we call coordinate axes. The more common orientation is a horizontal
x-axis and a vertical y-axis, but other variable names and orientations are some-
times useful.

Each point P in the plane is identified by an ordered pair of real numbers ~c, d!,
called the coordinates of P, where c and d are numbers on the respective axes as
shown in Figure 10. Conversely, every pair of real numbers names a unique point
on the plane.

A rectangular system of coordinates provides a one-to-one correspondence
between the set of ordered pairs of real numbers and the points in the plane.

FIGURE 10

51. z 1 3w 52. zw 2 4 53. z · w

54. _ z 1 w _ 55.
z 2 w–

w

Exercises 56–59 Complex Plane For the given z and w,
show in the complex plane:
(a) z (b) w (c) z (d) z 1 w (e) z · w

56. z 5 2 2 2i; w 5 3 1 4i

57. z 5 23 1 2i; w 5 22 2 i

58. z 5 21 1 2i; w 5 3i

59. z 5 5 2 i; w 5 21 1 i

60. (a) If z 5
1
2

1
Ï3

2
i; find z 2, z 3, z 4, z 5, z 6.

(b) Evaluate each of _ z _ , _ z 2 _ , _ z 3 _ , . . . , _ z 6 _ .

61. From Exercise 60 draw a diagram showing z, z 2, z 3, z 4,
z 5, and z 6 in the complex plane. Note the distance from
each of these points to the origin. On what circle do
these points lie?

Exercises 62–63 In Exercises 60–61, replace z with z 5
1

Ï2
~1 1 i!.
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The axes divide the plane into four quadrants labeled I, II, III, IV, as shown in
Figure 11. In the figure, points A and B are in Quadrant I, C is in II, D is in III, and
E is in IV. Point F is on the x-axis while G is on the y -axis; points on the coordinate
axes are not in any quadrant.

The distance d~r, s! between points r and s on a number line is expressed in
terms of absolute value.

d~r, s! 5 _ r 2 s _

We extend the idea of distance to the coordinate plane by means of the familiar
Pythagorean Theorem.

Pythagorean theorem

Suppose a and b are the lengths of the legs of a right triangle and c is the
hypotenuse. Then

a2 1 b 2 5 c 2.

Conversely, suppose a2 1 b 2 5 c 2. Then the triangle must be a right triangle
with hypotenuse c.

Distance Between Points in a Plane

Suppose P~x1, y1! and Q~x2, y2! are any two points in the plane. The distance
between P and Q, denoted d~P, Q! or _ PQ _ , is defined to be the length of the line
segment between P and Q. ~PQ denotes the line segment from P to Q.! Figure 12
shows right triangle PTQ whose legs are given in terms of absolute values.

_PT _ 5 _ x1 2 x2 _ and _TQ _ 5 _ y1 2 y2 _

Applying the Pythagorean theorem gives

_PQ _2 5 _PT _2 1 _TQ _2 5 _ x1 2 x2 _2 1 _ y1 2 y2 _2.

Since _ x1 2 x2 _2 5 ~x1 2 x2!
2 and _ y1 2 y2 _2 5 ~y1 2 y2!

2, we have the follow-
ing.

I had lots of exams at
school. At sixteen I took
@a nationwide exam# in
mathematics, physics, and
chemistry, and was told
that if I passed chemistry I
could then drop it and do
just pure math, applied
math, and physics. So I
did . . . I now realize that I
quite enjoyed organic
chemistry because that ties
in somewhat with graph
theory.

Robin Wilson

FIGURE 11

FIGURE 12
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Distance formula

Suppose P~x1, y1! and Q~x2, y2! are any two points in the plane. If d~P, Q!
denotes the distance between P and Q, then

d~P, Q! 5 Ï~x1 2 x2!
2 1 ~y1 2 y2!

2.

We can also write d~P, Q! as _PQ _ .

Midpoint of a Line Segment

Suppose P~x1, y1! and Q~x2, y2! are any two points in the plane. To get the midpoint
M of the line segment PQ, we take the average of the two x-values and the average
of the two y-values. M is the point

MSx1 1 x2

2
,

y1 1 y2

2 D.

It is easy to show that d~P, M! 5 d~Q, M! and that d~P, Q! 5 2 · d~P, M!.

cEXAMPLE 1 Midpoint Given points A~24, 21! and B~2, 3!, find the
coordinates of the midpoint M of the segment AB and locate all three points on a
diagram. In which quadrant is A? B? M? Find d~A, B! and d~A, M!.

Solution
The coordinates of M are ~24 1 2

2 , 21 1 3
2 !, or ~21, 1!. Point A is in Quadrant III, M

is in Quadrant II, and B is in Quadrant I, as shown in Figure 13.

d~A, B! 5 _AB _ 5 Ï@2 2 ~24!#2 1 @3 2 ~21!#2 5 Ï52 5 2Ï13.

d~A, M! 5 _AM _ 5 Ï@21 2 ~24!#2 1 @1 2 ~21!#2 5 Ï13. b

Graphs

A coordinate plane allows us to make an algebraic relation visible in the form of
a graph. We can then apply visual and geometric tools to reveal analytic properties.

Definition: graph of an equation in two variables

The graph of an equation in variables x and y is the set of points whose
coordinates ~x, y! satisfy the equation.

Technically, there is a difference between a graph as a set of points and a sketch
or picture of a set. Here we use graph to refer to the set or to any representation
of the set, most often a pencil sketch, a figure in the book, or a display on a graphing
calculator or computer. Without the aid of technology, graphing can be a very
tedious process, but graphing is one of the things a graphing calculator does best.
To make the best use of a graphing calculator, we need to understand a little about
how such a calculator (or computer) works.

How a Graphing Calculator Represents a Graph

A graphing calculator screen is a rectangular array of picture elements or pixels.
After we have entered an equation (usually of the form y 5 . . . ), we choose the
window through which we will view the graph. This is done by setting an x-range

FIGURE 13



a

b
c

c

b a

c
b

a

pg028 [V] G6 5-36058 / HCG / Cannon & Elich jb 11-21-95 mp2

28 Chapter 1 Basic Concepts: Review and Preview

HISTORICAL NOTE A PROOF OF THE PYTHAGOREAN THEOREM

and a y-range. The calculator divides the x-range into as many pieces as there are
columns of pixels (the number differs on each type of calculator, but current
graphing calculators have from 94 to 130 pixel columns; see inside front cover) and
computes a y-value for every column. The pixel in each column nearest the com-
puted y-value is turned on, to make a graph we can see. In connected mode, the
calculator turns on as many pixels in a column as needed to “connect the dots,” in
dot mode, we see at most one lighted pixel in each column.

It is essential to understand that a graph produced by any calculator or com-
puter is obtained by computing one value for each pixel column; the calculator only
samples a graph. Whatever happens (if anything) between pixels does not show on
the screen. No matter what window we use, we see at most about a hundred points
of the graph from the specified x-range.

Decimal and “Friendly” Windows

When we TRACE on a graph, coordinates are displayed on the screen. The x-coordinate
of the n th pixel is given by Xmin 1 (n 2 1!~Xmax 2 Xmin!yk, where k is the number of pixel
columns. Although usually we don’t care about making the x-coordinates “nice”
numbers, there are times when it is convenient. Most calculators either have a
default window or a ZOOM or RANGE option (labeled something like ZDECM or INIT that sets
a window in which x-coordinates are tenths (as 1.1, 1.2, . . . ). For obvious reasons
we refer to such a window as a Decimal Window, although there are other windows
with similarly “nice” coordinates. For convenient reference, we give the settings
for several calculators.

How many United States presidents
have made an original contribution
to mathematics? There is at least
one. In 1876 while a member of
Congress, four years before he
became president, James A.
Garfield discovered an original
proof for the Pythagorean theorem,
one of dozens of proofs given after
Euclid’s (ca. 300 B.C.).

President Garfield’s proof uses
two facts. First, the area of a right
triangle is half the product of the legs (base 3
altitude). Second, the area of a trapezoid equals
its base times its average height. Given any right

triangle, two copies and an isosceles
right triangle can be put together to
form a trapezoid, as shown in the
figure. The sum of the areas of the

triangles is 2
ab
2

1
c 2

2
; the area of

the trapezoid is ~a 1 b!Sa 1 b
2 D.

Equating these expressions and
multiplying by 2 gives

2ab 1 c 2 5 a2 1 2ab 1 b 2

or
c 2 5 a2 1 b 2.
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Decimal windowsTECHNOLOGY TIP r

Calculator Set acols x-range y-range

TI-81 Range Values 95 @24.8, 4.7# @23.2, 3.1#

TI-82 ZOOM 4 94 @24.7, 4.7# @23.1, 3.1#

TI-85 ZOOM MORE ZDECM 126 @26.3, 6.3# @23.1, 3.1#

Casio9700
7700 94

126

@24.7, 4.7#

@26.3, 6.3#

@23.1, 3.1#

@23.7, 3.7#

HP-38 n PLOT n CLEAR 130 @26.5, 6.5# @23.1, 3.2#

HP-48 130 @26.5, 6.5# @23.1, 3.2#

From the Decimal Window as outlined above, there are obvious adjustments
that keep nice x-pixel coordinates. Without being more specific, we sometimes call
such a window “Friendly.” For example, if we divide all range values by 2, or
multiply each by 2, the result is a friendly window. We can shift a window right, left,
up or down, by adding the same quantity to both ends of a range. We could reason-
ably call such a friendly window a “shifted decimal window.” When we suggest a
window for a calculator graph in this book, we use the notation @a, b# 3 @c, d#,
where the interval @a, b# is the x-range and @c, d# is the y-range. More often, we
encourage you to choose your window as you wish. Experiment to find the picture
that is most helpful for your purposes at the moment.

Equal Scale Windows

When we sketch a graph by hand, we usually use the same scale for the two
coordinate axes. The unit of distance is the same horizontally and vertically. That
relationship does not hold with calculator graphs unless we take special care to set
what we call an Equal Scale Window. The ranges for an equal scale window
depend on the pixel dimensions of your calculator, and can only be approximate.
If your calculator screen is 94 by 62, then the ratio of the x-range to the y-range
must be approximately 94

62 , or about 3
2 ; if your default screen is 130 by 63, then you

need a ratio of about 2
1 . Experiment with your calculator. If you have a window that

distorts the picture you want to see, you may be able to “square-up” the display by
using a command from the ZOOM menu such as ZSQR.

We begin our graphing with two simple and important graphs, both of which
we revisit in later chapters: lines and circles.

Lines: Graphs of Linear Equations

Linear equations and lines

A linear equation in x and y is an equation equivalent to

ax 1 by 1 c 5 0, (1)

where a, b, and c are real numbers and at least one of a and b is nonzero.
The graph of any linear equation is a line. We will often identify the line
with its equation, so that we will speak of “the line ax 1 by 1 c 5 0.”

We find points on a line by substituting a value for x or y, and solving the equation
for the corresponding value of the other variable. Since a line is determined by any

Range INIT

Range INIT

PLOT NXT Reset Plot



(b) Decimal Window

(0, – 2)

(3, 0)

y

x

2x – 3y = 6

B (3, 0)

A (0, – 2)

(a)

[– 20, 20] by [– 10, 10]
(c) 

(0, – 2)

(3, 0)

[– 10, 10] by [– 20, 20]
(d) 

(0, – 2)

(3, 0)
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two points, to sketch the graph of a linear equation, it is sufficient to locate any pair
of points on the line. A point where a graph crosses a coordinate axis is called an
intercept point. Intercept points are often convenient for drawing a line. If the line
contains the origin (that is, if c 5 0), then of course the x- and y-intercept points
coincide, and we must find another point to enable us to draw the line.

Intercept points of a line

To find the y-intercept point,

substitute 0 for x in Equation (1) and solve for y.

To find the x-intercept point,

substitute 0 for y in Equation (1) and solve for x.

cEXAMPLE 2 Graphing a line Given the line 2x 2 3y 5 6, find the inter-
cept points and draw a graph (a) by hand, and (b) on the graphing calculator.

Solution
Substituting 0 for x, we have 23y 5 6, or y 5 22, so the y-intercept point is
A~0, 22!. Similarly, if y 5 0, then x 5 3, giving the x-intercept point B~3, 0!.

(a) Plotting the intercept points A and B and drawing the line containing them
gives the graph in Figure 14a.

FIGURE 14
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(b) To enter an equation for graphing, we must first solve for y: y 5
2x 2 6

3
, so

we enter Y 5 (2x 2 6)y3 , and we then must select a window. In a decimal window
(Figure 14b) the graph looks much like the line we drew by hand. Other
windows can greatly affect the appearance of the line. For example, in the
@220, 20# 3 @210, 10# window, we get something like Figure 14c, and in the
@210, 10# 3 @220, 20# window, we see a much less steep line (Figure 14d). We
need to keep in mind that the line remains the same; by changing the window we
alter the portion of the line that appears on our (non-square) screen. b

TECHNOLOGY TIP r Proper use of parentheses

Since equations are entered on a single line in a calculator, it is hard to
overemphasize the importance of the proper use of parentheses. The equation
in Example 2 must be entered as Y 5 (2X 2 6)y3 . See what happens if you forget
parentheses by graphing Y 5 2X 2 6y3 on the same screen. How would you enter
y 5 2

3 x 2 2? Check by graphing.

Slope of a Nonvertical Line

The intuitive idea we have of the direction of a line may not be apparent in a
calculator graph, as we can see from the figures for Example 2. We make this idea
more precise with the concept of slope, which measures how steeply a line rises or
drops as we move along the line to the right. See Figure 15.

Definition: slope of a nonvertical line

If L is a nonvertical line and P~x1, y1! and Q~x2, y2! are any two points on L,
then

Dy 5 y2 2 y1 is called the rise from P to Q,

Dx 5 x2 2 x1 is called the run from P to Q,

m 5
Dy
Dx

5
y2 2 y1

x2 2 x1

is called the slope of L. (2)

The slope of a line is independent of the two points we choose on the line, as
Figure 16 shows. The slope from Equation (2) is the ratio of two sides of a triangle.
Triangles ABC and PQR are similar, so ratios of corresponding sides are the same.

The slope of L is either
a
b

or
p
q

.

The slope of a line is very handy in drawing a graph. Express the slope m as
a fraction (with denominator 1 if needed). The denominator is the run and the
numerator is the corresponding rise. From any point on the line, move to the right
for the run and up or down for the rise, to get the coordinates of another point on
the line.

cEXAMPLE 3 Using slopes to draw lines Line L1 passes through the
origin, and the y-intercept point of line L2 is B~0, 1!. Their slopes are given
respectively by m1 5 2 and m2 5 2 1

2 . Draw both lines on the same set of coordi-
nate axes.

FIGURE 15
Slope: m 5

y2 2 y1
x 2 2 x 1

FIGURE 16
Slope: m 5 a

b 5 p
q
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Solution
Express m1 as a fraction, m1 5 2

1 . To locate another point on L1, from O~0, 0! plot a
run of 1 unit to the right and a rise of 2, giving point A~1, 2!. Similarly, since m2 5 21

2 ,
a run of 2 corresponds to a rise of 21 (so the line drops as it moves rightward). From
the y-intercept point, 2 units right and 1 down gives point C~2, 0!. Line L1 is deter-
mined by O and A; L2 contains B and C. Both lines are shown in Figure 17. b

Horizontal and Vertical Lines

A horizontal line has slope zero because the rise from one point to any other is zero;
Dy 5 0. Since every point on a horizontal line has the same y-coordinate, every
horizontal line has an equation of the form y 5 c for some constant c. On the
other hand, it is impossible to define the slope of a vertical line because the run
between any two points is zero; Dx 5 0, and we cannot divide by 0. Every point
on a vertical line has the same x-coordinate, so every vertical line has an equation
of the form x 5 c.

Circles

A circle is defined as the set of points that are a fixed distance, called the radius,
from a fixed point, called the center. If the center is point C~h, k!, then P~x, y! is
on the circle with radius r precisely when the distance d~P, C! equals r (see
Figure 18). Using the distance formula,

d~P, C! 5 Ï~x 2 h!2 1 ~y 2 k!2 5 r.

Since the radius r is a positive number, we may square both sides to get the standard
form for an equation of a circle.

Standard form for equation of a circle

Suppose h, k, and r are given real numbers ~r . 0!. Point ~x, y! lies on a
circle of radius r and center ~h, k! if and only if ~x, y! satisfies

~x 2 h!2 1 ~y 2 k!2 5 r 2 (3)

cEXAMPLE 4 Equation and graph of a circle

(a) Write an equation for the circle with center C~2, 23! and radius 3. Sketch the
graph.

(b) Determine which of the points O~0, 0!, A~2, 0!, and B~4, 21! are inside the
circle.

Solution

(a) Given the coordinates of the center, h 5 2 and k 5 23, replace h by 2, k
by 23, and r by 3 in Equation 3 to get

~x 2 2!2 1 @y 2 ~23!#2 5 32 or ~x 2 2!2 1 ~y 1 3!2 5 9.

The graph, with points O, A, and B, is shown in Figure 19.
(b) From the graph, it appears that O is outside the circle, but it is not as clear

whether A and B are inside or outside. Using the distance formula,

d~A, C! 5 Ï~2 2 2!2 1 ~0 1 3!2 5 Ï9 5 3,

d~B, C! 5 Ï~4 2 2!2 1 ~21 1 3!2 5 Ï8.

FIGURE 17

FIGURE 18
Circle with center C (h, k) and

radius r

FIGURE 19



[– 1, 7] by [– 6, 2]
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From the definition of a circle, A is on the circle and B is inside because
Ï8 , 3. b

Calculator Graphs of Circles

While there are some calculators that have special adaptations for drawing circles,
most graphing calculators do not graph circles as easily as lines. At this point we
are limited to entering equations in the form y 5 . . . . For the circle in Example
4, ~x 2 2!2 1 ~y 1 3!2 5 9, we would have to solve the equation for y by subtract-
ing ~x 2 2!2 from both sides, taking square roots (there are two), and finally
subtracting 3:

~y 1 3!2 5 9 2 ~x 2 2!2, y 1 3 5 6 Ï9 2 ~x 2 2!2,

y 5 23 6 Ï9 2 ~x 2 2!2.

Thus we must enter two equations, one for each sign, Y1 5 23 1 Ï(9 2 (X 2 2)2) and
Y2 5 23 2 Ï(9 2 (X 2 2)2) (watch the parentheses), choose a window, and graph. In the
standard decimal window we see only the upper portion of the circle, so we need
a larger window. Looking carefully at Figure 19, we see that our window must
include at least the interval @21, 5# in the x-direction and @26, 0# in the y-direction.
If we try, say, @21, 7# 3 @26, 2#, the result doesn’t look much like the circle in
Figure 19. See Figure 20. There are two problems: We don’t have an equal scale
window, so the circle is “squashed,” and when we trace along the curve, we see that
there is no x-pixel coordinate for 21 or for 5. Thus the two pieces of the circle don’t
meet at the ends. Both obstacles may be overcome with some work (in this instance
by simply shifting all the x-and y-values the same amount from the decimal win-
dow), but we suggest that you learn to interpret what the calculator shows. You
should recognize that what appears on your display screen need not look like what
you would draw yourself.

There is another way to draw circles on a graphing calculator that avoids gaps.
In Chapter 6 we discuss the use of trigonometric functions to graph circles in
parametric mode.

The standard form for an equation of a circle identifies the center and the
radius. If we expand the squared terms on the left side of Equation ~3! and collect
the constants, we get a general form for an equation of a circle.

General form for the equation of a circle

For any real numbers A, B, and C, the graph of the equation

x 2 1 y 2 1 Ax 1 By 1 C 5 0 (4)

is either a circle, a point, or no points.

We can show that Equation ~4! is equivalent to Equation ~3! by completing the
square on x 2 1 Ax and on y 2 1 By, as illustrated in Example 5.

cEXAMPLE 5 Finding center and radius Find the center and radius. Draw
a graph.

(a) x 2 1 y 2 5 4x (b) 2x 2 1 2y 2 2 4x 1 6y 1
1
2

5 0

Strategy: Write in the form
of Equation ~4! and then
complete the squares. Re-
member to add the same
quantity to both sides of the
equation.

FIGURE 20
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Solution

(a) Follow the strategy.

(x 2 2 4x! 1 y 2 5 0

~x 2 2 4x 1 4! 1 y 2 5 4 or ~x 2 2!2 1 ~y 2 0!2 5 22

The center is (2, 0) and the radius is 2.
(b) Divide by 2 and collect x- and y-terms. Complete the squares.

x 2 1 y 2 2 2x 1 3y 1
1
4

5 0

~x 2 2 2x! 1 ~y 2 1 3y! 5 2
1
4

~x 2 2 2x 1 1! 1 Sy 2 1 3y 1
9
4D 5 2

1
4

1 1 1
9
4

~x 2 1!2 1 Sy 1
3
2D

2

5 3.

The center is (1, 2 3
2) and the radius is Ï3. Both circles are shown in Figure 21.

b

cEXAMPLE 6 Finding extreme points Find the coordinates of the highest
and the lowest points on the graph of x 2 1 y 2 2 4x 1 6y 2 3 5 0.

Solution
Looking at the equation, our first observation is that the graph appears to be a circle.
From the graph we should be able to locate the high and low points. Find the center
and radius by completing the squares on x 2 2 4x and y 2 1 6y.

~x 2 2!2 1 ~y 1 3!2 5 16.

The center of the circle is at (2, 23) and the radius is 4. The graph is shown
in Figure 22. The graph shows the highest point 4 units above the center, at (2, 1),
and the lowest point 4 units below the center, at (2, 27). b

cEXAMPLE 7 Intercept points Find the distance between the x-intercept
points on the graph of x 2 1 y 2 2 4x 1 6y 2 3 5 0.

Solution
This is the equation from Example 6, with the graph in Figure 22. Find the distance
between points A and B. To find the x-intercept points, replace y by 0 and get

x 2 2 4x 2 3 5 0.

Using the quadratic formula, the roots are 2 6 Ï7.
Here we have two different values of x. The graph makes it clear that the

x-coordinate of A is negative, namely 2 2 Ï7 (< 20.65), and the x-coordinate of
B is 2 1 Ï7 (< 4.65), so A and B are the points (2 2 Ï7, 0) and (2 1 Ï7, 0),
respectively. Since A and B lie on the same horizontal line, the distance between
them is given by the difference in their x-coordinates:

d~A, B! 5 _ ~2 1 Ï7 ! 2 ~2 2 Ï7! _ 5 2Ï7 < 5.29. b

FIGURE 21

FIGURE 22
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cEXAMPLE 8 Point and imaginary circles Describe the graphs of

(a) x 2 1 y 2 2 2x 1 4y 1 5 5 0. (b) x 2 1 y 2 2 2x 1 4y 1 6 5 0.

Solution

(a) Completing the squares on x 2 2 2x and y 2 1 4y gives

~x 2 1!2 1 ~y 1 2!2 5 0.

This equation has the appearance of the equation of a circle with center at
(1, 22) and radius 0! We want the set of points whose coordinates satisfy the
equation. The sum of two squares can be 0 only if both terms are 0. The graph is
a single point, (1, 22). This is sometimes called a point circle.
(b) Completing the squares on the x and y terms, we get

~x 2 1!2 1 ~y 1 2!2 5 21.

This is even worse; there are no points whose coordinates satisfy the given
equation. No graph is associated with the equation, but, by analogy with the point
circle of part (a), the equation in part (b) is sometimes called an imaginary
circle. b

EXERCISES 1.4

Check Your Understanding

Exercises 1–7 True or False. Given reasons.

1. The graph of x 2 1 y 2 1 2x 1 1 5 0 is a single point.

2. The point (1, 22) is the center of the circle whose
equation is x 2 1 y 2 1 2x 2 4y 5 0.

3. The graph of x 2 1 y 2 2 2x 5 0 is a circle with diame-
ter 2.

4. If the graphs of 5x 2 2y 5 4 and 3x 1 y 5 20 are
drawn simultaneously using the window @210, 10# by
@25, 5#, the display will show two lines intersecting at
a point on the screen.

5. When the graphs of 2x 1 3y 5 12 and x 2 1 y 2 5 8
are drawn simultaneously using the window @29.4, 9.6#
by @26.2, 6.4#, the display will show a line and a circle
intersecting at two points.

6. There is no real number c such that the point ~1, c! is 1
unit from (21, 2). (Hint: Think geometrically.)

7. There are two numbers c for which the point ~1, c! is 4
units from (21, 2). (Hint: Think geometrically.)

Exercises 8–10 Fill in the blank so that the resulting
statement is true.

8. The graph of x 2 1 y 2 2 2x 1 4y 2 5 5 0 is a circle
having center in Quadrant .

9. If ~a, b! is any point in the second quadrant, then ~b, a!
is in Quadrant .

10. The graph of x 1 y 2 1 5 0 does not contain any
points in Quadrant .

Develop Mastery

Exercises 1–5 Applying Distance Formula (a) Draw a
diagram showing points A and B and find the distance be-
tween them. (b) Find the coordinates of the midpoint M of
the line segment AB. (c) Verify that d~A, M! 5 1

2 d~A, B!.

1. A~1, 3!, B~22, 4! 2. A~22, 3!, B~4, 21!

3. A~2 1
2 , 2!, B~1, 2 1

3 ! 4. A~1, 22!, B~2 1
3 , 2 1

3!

5. A~2Ï2, 23Ï2!, B~22Ï2, Ï2!

Exercises 6–11 Special Triangles Determine whether
the three points are vertices of a right triangle, an equilat-
eral triangle, an isosceles triangle, or none of these. (Hint:
For a right triangle, use the Pythagorean theorem.)

6. A~21, 2!, B~4, 22!, C~8, 3!

7. A~4, 22!, B~24, 2!, C~7, 4!

8. A~0, 0! B~2Ï3, 2!, C~0, 4!

9. A~0, 0!, B~4, 2!, C~0, 4!

10. A~21, 21!, B~4, 1!, C~1, 4!

11. A~22, 23!, B~4, 6!, C~26, 2 1
3!

Exercises 12–21 Equation of a Circle Write an equa-
tion for the circle that satisfies the given conditions. First
draw a diagram showing the circle. Give the result in ex-
panded form.

12. Center (0, 0); radius 3

13. Center (1, 1); radius Ï3

14. Center (2, 21); radius Ï5
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15. Center (21, 5); diameter 1

16. Center (22, 21); tangent to the x-axis

17. Center (22, 21); tangent to the y-axis

18. The segment from A~23, 4! to B~1, 1! is a diameter.

19. The segment from A~3, 22! to B~5, 4! is a diameter.

20. The circle is circumscribed about the triangle having ver-
tices A~0, 0!, B~8, 0! and C~8, 6!. (Hint: Triangle ABC is
a right triangle.)

21. The circle passes through the three points A~2, 1!,
B~6, 1! and C~6, 4!. (Hint: /ABC is a right angle.)

Exercises 22–23 Extreme Points An equation of a cir-
cle is given. Find (a) the highest and lowest points and (b)
the points furthest to the right and left. See Example 6.

22. x 2 1 y 2 1 4x 2 4y 2 8 5 0

23. x 2 1 y 2 2 6x 2 2y 1 1 5 0

Exercises 24–25 An equation of a circle is given. Find (a)
the x- and y-intercept points, (b) the distance between the
x-intercept points, and (c) the distance between the
y-intercept points. See Example 7.

24. x 2 1 y 2 1 2x 2 2y 2 8 5 0

25. x 2 1 y 2 2 6x 2 2y 1 1 5 0

Exercises 26–29 Intercept Points An equation of a line
is given. Find (a) the x- and y-intercept points, (b) the dis-
tance between the intercept points, (c) the slope of the line.

26. 2x 2 3y 5 6 27. 3x 2 4y 1 12 5 0

28. 4x 1 3y 5 6 29. 3x 2 4y 5 6

Exercises 30–33 Using Distance Formula Find the val-
ue(s) of x or y so that the distance d between the two points
is the given distance.

30. ~22, 3!, ~x, 21!; d 5 6

31. ~3, 21!, ~x, 4!; d 5 8

32. ~24, 2!, ~2, y!; d 5 5

33. ~3, 21!, ~5, y!; d 5 3

Exercises 34–44 Graph of Equation (a) Identify the
graph of the equation as a line or a circle. (b) For a line, find
the coordinates of the intercept points. For a circle, find the
radius and the coordinates of the center. (c) Sketch the
graph.

34. 2x 1 3y 5 6 35. x 1 y 5 4

36. x 2 1 y 2 5 4 37. y 5 3x 2 2

38. 2y 5 x 2 1 y 2 39. 3x 2 1 3y 2 5 21

40. 7x 1 7y 5 21 41. x 2 1 2x 1 y 2 5 0

42. x 2 1 y 2 5 2x 1 4y

43. x 2 2 4x 1 y 2 1 2y 1 1 5 0

44. 2x 2 1 2y 2 1 4y 5 12x 1 15

Exercises 45–55 Draw a calculator graph of each equa-
tion in Exercises 34–44. Experiment with windows of vari-
ous sizes.

Exercises 56–59 Windows The graphs of the given
equations are perpendicular lines. Draw the graphs. Exper-
iment with windows of different sizes until you get lines that
appear to be perpendicular. Indicate the window size you
use. Use TRACE to find the point of intersection of the lines (one
decimal place).

56. 2x 2 y 5 4, x 1 2y 2 2 5 0

57. 3x 2 2y 2 6 5 0, 2x 1 3y 5 12

58. 8x 2 5y 5 36, 5x 1 8y 5 4

59. 3x 2 y 2 7 5 0, x 1 3y 1 5 5 0

Exercises 60–63 Viewing Windows In order to draw a
graph of the equation that will show the x- and y-intercept
points, which window would you use? Try each one.

60. 2x 1 y 5 25
(i) @210, 10# 3 @210, 10#
(ii) @215, 5# 3 @215, 15#
(iii) @25, 20# 3 @25, 30#

61. 3x 2 2y 1 40 5 0
(i) @210, 10# 3 @210, 10#
(ii) @220, 5# 3 @210, 10#
(iii) @215, 5# 3 @25, 25#

62. ~x 2 2!2 1 ~y 1 4!2 5 64
(i) @210, 10# 3 @210, 10#
(ii) @24.7, 4.8# 3 @23.2, 3.6#
(iii) @213.1, 14.5# 3 @213.3, 5.6#

63. x 2 1 y 2 2 2x 1 4y 2 100 5 0
(i) @210, 10# 3 @210, 10#
(ii) @25.5, 18.3# 3 @25.2, 18.3#
(iii) @217.0, 17.3# 3 @212.5, 8.9#

Exercises 64–65 The graph of the equation is a circle.
Which of the windows gives a graph that is nearly circular?

64. x 2 1 y 2 5 16
(i) @210, 10# 3 @210, 10#
(ii) @28, 8# 3 @25, 5#
(iii) @210, 10# 3 @25, 5#

65. (x 2 1!2 1 ~y 1 4!2 5 25
(i) @210, 10# 3 @210, 10#
(ii) @212, 12# 3 @210, 2#
(iii) @28, 10# 3 @210, 2#

Exercises 66–69 Half Circle Graphs Draw graphs to
determine the quadrant(s) in which the two half circles
intersect (if any).

66. Lower half of x 2 1 y 2 5 16 and the lower half of
x 2 1 y 2 2 12x 1 11 5 0.

67. Lower half of x 2 1 y 2 5 16 and the lower half of
x 2 1 y 2 2 12x 2 28 5 0.
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68. Upper half of x 2 1 y 2 5 16 and the upper half of
x 2 1 y 2 2 12x 1 20 5 0.

69. Upper half of x 2 1 y 2 5 16 and the upper half of
x 2 1 y 2 1 12x 1 20 5 0.

Exercises 70–72 Lattice Points For these exercises, re-
member that point ~x, y! is a lattice point if both x and y are
integers.

70. Give an example of two lattice points in Quadrant I that
define a line segment whose midpoint is not a lattice
point.

71. Give an example of two lattice points in Quadrant I that
define a line segment whose midpoint is also a lattice
point.

72. Find a pair of lattice points, A and B, with A in Quad-
rant II and B in Quadrant IV for which the midpoint of
segment AB is (a) in Quadrant I, (b) in Quadrant II,
(c) in Quadrant III, (d) not in any quadrant.

Exercises 73–75 Find all lattice points in Quadrant I on
the graph of the equation.

73. 2x 1 y 5 6 74. x 1 3y 5 13

75. 2x 1 3y 5 12

Exercises 76–77 Pythagorean Triples If the lengths of
the three sides of a right triangle are integers, then the
triplet of numbers is called a Pythagorean triple. For exam-
ple, a 5 3, b 5 4, and so 32 1 42 5 25 5 52, and @3, 4, 5#
is a Pythagorean triple. We illustrate an interesting way to
find Pythagorean triples:

1
2

1
1
4

5
3
4

; 32 1 42 5 52 gives @3, 4, 5#

1
3

1
1
5

5
8

15
; 82 1 152 5 172 gives @8, 15, 17#

1
7

1
1
9

5
16
63

; 162 1 632 5 652 gives @16, 63, 65#

76. Follow the pattern suggested above and find three addi-
tional Pythagorean triples.

77. Prove that the pattern illustrated here always yields a

Pythagorean triple. (Hint: Consider
1

n 2 1
1

1
n 1 1

where n is any positive integer greater than 1.)

78. If A~0, 3!, B~21, 21!, and C~4, 1! are three vertices of
a parallelogram, what are the coordinates of the fourth
vertex? Draw a diagram. Is the answer unique?

Exercises 79–80 Find the point P that is equidistant from
the three points A, B, and C; that is, find P such that _PA _ 5
_PB _ 5 _PC _ . (Hint: First show that the three points are
vertices of a right triangle and consider the circle circum-
scribing nABC.)

79. A~8, 3!, B~4, 10!, C~2, 6!

80. A~2, 3!, B~8, 0!, C~5, 9!

81. A rectangle has sides parallel to the coordinate axes.
Two of its vertices are at (25, 27) and (4, 22). Find
the coordinates of the other two vertices and the length
of a diagonal.

82. A rectangle has sides parallel to the coordinate axes and
its upper left corner at A~23, 2! as shown in the dia-
gram (which is not drawn to scale). The length (hori-
zontal side) is twice the width, and the perimeter is 30.
Find the coordinates of the other three vertices.

83. A 908 rotation of a plane counterclockwise about the
origin moves point (3, 0) to (0, 3) and point (0, 5) to
(25, 0) (see the diagram). What is the image of each
point under the same rotation? Draw diagrams.
(a) (24, 0) (b) (0, 23)
(c) (3, 4) (d) (23, 24)

84. Find the area of the region that is inside the circle
x 2 1 y 2 2 2x 2 3 5 0 and outside the circle
x 3 1 y 2 5 1.
(Hint: First draw a diagram.)

85. What is the area of a circle if the reciprocal of its
circumference equals the length of its radius?

86. The line x 1 y 5 3 divides the interior of the circle
x 2 1 y 2 5 9 into two regions. If A1 and A2 are the areas
of the larger and smaller of the two regions, respec-

tively, find the ratio
A1

A2
.
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1.5 O N E - V A R I A B L E S E N T E N C E S :
A L G E B R A I C A N D G R A P H I C A L T O O L S

There is something very funny here. We can teach a computer to decide
whether a mathematical formula is well formed or not. That’s very easy. But
we cannot teach a computer to talk, to form sentences. It is obviously a
million times as hard. But take any kid who learns how to speak. If, as a kid,
he hears two languages, he learns two languages. If he is mentally retarded,
he still becomes bilingual. He will know fewer words, but he will know those
words in both languages. He will form sentences. Now try to explain to him
what is a well formed algebraic formula!

Lipman Bers

In mathematics, language is the key to understanding while problem solving is the
key to learning. The two are closely related since it is impossible to solve a problem
without first understanding it. Learning to communicate is fundamental to all
education. People express ideas in words, which they combine to form meaningful
sentences. Sentences are the basic elements of communication.

The language of mathematics is both precise and concise, often making use of
symbols. However, mathematical symbols are combined together to form sentences
having similar grammatical structures, including subjects and predicates, as sen-
tences in our more familiar daily language.

The use of symbols allows us to write sentences in very compact form. For
instance, in place of “The sum of 2 and 3 is 5,” we write “2 1 3 5 5.” Similarly,
the symbolic sentence “x # 4” in everyday language means “x is less than or equal
to 4,” which is a complete sentence.

Statements and Open Sentences

One of our primary interests in mathematics is to determine the truth value of a
statement, or to find all values of a particular variable that make a sentence true.
Consider the following sentences.

(a) 2 1 5 5 7 (b) 3 . Ï16 (c) x 2 2 2x 2 3 5 0

(d) Every even integer greater than 2 is the sum of two primes.

We can say that sentence (a) is true and sentence (b) is false (since Ï16 5 4).
Sentence (d) has a truth value; it is either true or false. But in more than 300 years
no one has been able to prove either that it is true or to find a single counterexample
to show that it is false. This famous unsolved problem is known as Goldbach’s
conjecture (see the Historical Note).

We cannot assign a truth value to sentence (c) above unless we replace x by a
number. Replacing x by 2 gives 22 2 2 · 2 2 3 5 0, which is false. Replacing x by
3, however, gives 32 2 2 · 3 2 3 5 0, which is true. Sentence (c) is called an open
sentence; there is no truth value until the variable x (a placeholder, an open spot)
is filled. The remaining three sentences, because they are either true or false, are
called statements.

Definition: statement

A statement is a sentence that has a truth value, either true or false.

I was definitely not the
best student in my class.
There were five of us who
graduated, and there was
one girl who was much
smarter than I. There was
another very bright kid. I
was maybe third out of
five. I went to the
university thinking that I
would make C’s but I made
A’s without any trouble.

Mary Ellen Rudin
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HISTORICAL NOTE GOLDBACH, COUNTEREXAMPLES, AND UNSOLVED PROBLEMS

Solving Open Sentences

Open sentences include equations and inequalities. Because many of the methods
of solution are the same, we treat equations and inequalities together. By solving
an open sentence we mean finding all the admissible replacement values for the
variable that make the sentence true. The domain or replacement set for a variable
is the set of numbers that the problem allows as replacements for the variable. Any
restrictions on the domain must be clearly stated; otherwise we adopt the following
convention regarding domains.

Domain convention

If no restrictions are stated, the domain of a variable is assumed to be the set
of all real numbers that give meaningful real number statements. This
excludes any division by zero or square roots of negative numbers.

On page 38 we mentioned
Goldbach’s conjecture that “Every
even integer greater than 2 is the
sum of two primes.” Goldbach
made this assertion in 1742 in a
letter to Euler. A quick look at the
first cases shows how reasonable
the conjecture seems:

4 5 2 1 2, 6 5 3 1 3,
8 5 5 1 3, 10 5 7 1 3.

The question, of course, is how
long this continues. Could we use
computers to check?

Computer searches support
Goldbach’s assertion for all even
numbers up to a hundred million,
but forever? Who knows? A single
counterexample, one even number
that is not the sum of two primes,
would prove Goldbach’s conjecture
false. Computers could conceivably
show that Goldbach was wrong; no blind search
process can ever prove him right.

An unsolved problem in mathematics does
not necessarily mean there is no solution; it
means that we cannot yet prove or disprove an
assertion.

Each year, some long-standing questions are
answered, and each answer raises more questions.

Some recent milestones:
Four Color Theorem Four colors
are enough to color any map; part
of the proof required 1200 hours of
computer time.
Classification of Simple
Groups There are exactly 26
simple groups of a special type; the
proof requires thousands of pages
contributed by many
mathematicians. The biggest group,
called “The Monster,” has more
than 1053 elements.
Fermat’s Last Theorem The
equation x n 1 y n 5 z n has no
solutions in integers if n . 2. (For
n 5 2 there are lots; see Explore
and Discover in Section 5.2.) A
major step was taken by a German
mathematician in 1983, marking
the most progress in more than a
hundred years. The problem is over

three hundred years old.
What makes such progress exciting is more

than just the solution of an unsolved problem.
Work on one problem can help us understand
others, and light shed in one corner of
mathematics often lights up whole new vistas
whose existence we may not even have suspected
previously.

Four colors suffice to color
even complicated maps.

Note: At a Cambridge
University seminar in June,

1993, Professor Andrew Wiles
of Princeton announced the
proof of a conjecture about
elliptic curves. His proof

establishes that Fermat’s Last
Theorem is true.



[– 4.5, 4.5] by [– 3, 3]


y = x + 1

y = 1
x – 3
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cEXAMPLE 1 Finding domain Find the domain of the variable x in the
open sentence:

Ïx 1 1 $
1

x 2 3
.

Solution

Algebraic Assuming the domain convention, we require x 2 3 5/ 0 or x 5/ 3,
and we must have x 1 1 $ 0, or x $ 21. Taking the conditions together, the
domain D of the variable consists of all real numbers greater than or equal to 21,
except for 3. In interval notation, D is @21, 3! < ~3, `!.

Graphical Graphing calculators can be used to confirm conclusions about the
domains of equations. If we graph the two expressions that appear in the above
inequality, y 5 Ïx 1 1 and y 5 1y~x 2 3!, we get the two graphs in Figure 23.
Tracing along each curve, the calculator shows that there is no y-value for y 5

Ïx 1 1 when x is less than 21. Similarly, there is no y-value for the other curve
when x 5 3. We can thus literally see that the domain of the open sentence consists
of all real numbers greater than 21, except for 3. b

The solution set for an open sentence is the set of all numbers in the domain
that yield true statements. To solve an equation or inequality means to find the
solution set, and the roots of an equation are the numbers in the solution set.

Solving equations and inequalities is not always easy, but to simplify this work
we most generally perform operations that give us equivalent open sentences,
hoping to reach a sentence whose solution set is obvious. For example, 2x 2 3 5 5
is equivalent to 2x 5 8, which is equivalent to x 5 4. The solution to 2x 2 3 5 5
is 4. Equivalent open sentences have the same solution set. The following equiva-
lence operations on open sentences yield equivalent open sentences.

Equivalence operations

1. Replace any expression in the sentence by another expression identically
equal to it.

2. Add or subtract the same quantity on both sides.
3. For an equation, multiply or divide both sides by the same nonzero

quantity.
4. For an inequality, multiply or divide both sides by the same positive

quantity, or multiply or divide both sides by the same negative quantity
and reverse the direction of the inequality.

The last equivalence operation for inequalities points up one of the major
differences between equations and inequalities: multiplication by a negative num-
ber reverses the direction of an inequality. To avoid the necessity of treating
separate cases, we suggest that you never multiply an inequality by an expression
involving a variable.

Linear Equations and Inequalities

A linear open sentence is one that is equivalent to

ax 1 b M 0, with M replaced by 5, ,, ., #, or $,

where a and b are constants and a is not zero.

FIGURE 23



y

x

3 – 2x > 0 3 – 2x < 0

y = 3 – 2x

cut point
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The equivalence operations allow us to find the solution set for any linear open
sentence.

cEXAMPLE 2 Solving linear open sentences Find the solution set.

(a) 3x 1 4 5 x 2 1
(b) 2 2 3x # 4

Solution
Follow the strategy.

(a) 3x 2 x 5 21 2 4, or 2x 5 25.

Divide both sides by 2 (Equivalence Operation 3), giving x 5 2 5
2 . The solu-

tion set is $2 5
2%.

(b) 23x # 4 2 2, or 23x # 2.

By Equivalence Operation 4, we can divide both sides by 23 if we reverse the
direction of the inequality, getting x $ 2 2

3 . The solution set is $x _ x $ 2 2
3%,

or in interval notation, @2 2
3 , `!. b

Factorable Equations and Inequalities

An equation or inequality that can be written in the form of a product (or quotient)
of linear factors on one side and 0 on the other side, can be solved using a variety
of techniques. All methods we discuss for finding the solution set of such open
sentences rely on the Signed Product Principles.

Signed product principles

Zero-product Principle A product of factors equals zero if and only if at
least one factor equals zero.

Positive-product Principle A product of two factors is positive if and only
if they have the same sign.

Negative-product Principle A product of two factors is negative if and
only if they have opposite signs.

Associated with each linear factor is what we call a cut point, the point on the
number line where the factor equals 0. A linear expression is always positive in one
direction from its cut point and negative in the other direction. For example,
3 2 2x 5 0 when x 5 3

2 , so 3
2 is the cut point. When we replace x by any number

greater than 3
2 (to the right of 3

2 on the number line), 3 2 2x is negative; for any x
less than 3

2 , 3 2 2x is positive. The name cut point reminds us that 3
2 cuts the

number line into a piece where 3 2 2x is positive and a piece where 3 2 2x is
negative. Looking at the graph of the line y 5 3 2 2x (Figure 24), we can see
where the line cuts the x-axis, separating the portion to the left of (3

2 , 0), where the
y-coordinates are positive ~3 2 2x . 0!, from the portion to the right.

Quadratic Equations and Inequalities

A quadratic open sentence is one that is equivalent to

ax 2 1 bx 1 c M 0, with M replaced by 5, ,, ., #, or $,

where a, b, and c are constants and a is not zero.

Strategy: (a) First use
Equivalence Operation 2 to
get all x-terms on one side
and the constants on the
other (i.e., subtract x and 4
from both sides).
(b) Similarly, use Operation
2 to collect the x-terms on
one side and constants on
the other.

FIGURE 24



– 1 0 1 2 3

2x + 1 > 0 when x > – 11

2

– 1 0 1 2 3
x – 2 > 0 when x > 2

[– 4, 4] by [– 3, 3]

(2, 0)(–  3, 0)1
2
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cEXAMPLE 3 Quadratic open sentences Find the solution set.

(a) 2x 2 2 3x 2 2 5 0 (b) 2x 2 2 3x 2 2 , 0

Solution

(a) 2x 2 2 3x 2 2 5 ~2x 1 1!~x 2 2!, and so by Equivalence Operation 1 the
given equation is equivalent to

~2x 1 1!~x 2 2! 5 0.

By the zero-product principle,

2x 1 1 5 0 or x 2 2 5 0.

Each of these equations determines a cut point for the linear factor and hence
a root of the original equation (Check!), so the solution set is $2 1

2 , 2%.

(b) Algebraic Equivalence Operation 1 says that the inequality is equivalent to

~2x 1 1!~x 2 2! , 0.

In the solution to part (a), we found the cut points for the expression, 2 1
2 from

2x 1 1 5 0, and 2 from x 2 2 5 0. We use the cut points to visualize the sign
pattern for the product. The factor 2x 1 1 is positive when x . 2 1

2 , that is, to the
right of 2 1

2 on the number line, and the factor x 2 2 is positive to the right of 2.
We show this information on a pair of number lines.

By the negative-product principle, the desired inequality holds when the two
factors have opposite signs. From the two number lines, we can see that the two
factors have opposite signs, 2x 1 1 positive, and x 2 2 negative, between 2 1

2 and
2. Thus the solution set is the open interval, (2 1

2 , 2).
Graphical Having the given inequality in factored form (so we can identify the
cut points), we can use a graphing calculator to see where the product is positive
or negative. We enter y 5 ~2x 1 1!~x 2 2! and graph. See Figure 25. From the
figure it is apparent that for any number x between the cut points, the y-value is
negative, which is the condition we want. We can see that the solution set is the
open interval, ~2 1

2 , 2!. b

For quadratic expressions that cannot be factored readily, we can use the
quadratic formula to find the zeros and hence to identify the cut points.FIGURE 25
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cEXAMPLE 4 Using the quadratic formula Apply the quadratic formula
to solve 2x 2 1 4x 1 3 5 0, where the domain set is

(a) the set of real numbers (b) the set of complex numbers.

Solution
Substituting 2 for a, 4 for b, and 3 for c in the quadratic formula gives

x 5
24 6 Ï42 2 4~2!~3!

2 · 2
5

24 6 Ï28
4

5
22 6 Ï2i

2
.

Since the solutions are imaginary numbers, we conclude that:

(a) The given equation has no solutions in R.
(b) In C the solutions are:

22 1 Ï2i
2

and
22 2 Ï2i

2
. b

More on Quadratic Inequalities

The solution sets for the inequality and the equation in Example 3 illustrate
a general relationship that applies to a broad class of quadratic inequalities.
Given an inequality ax 2 1 bx 1 c 4 0, we speak of the related equation,
ax 2 1 bx 1 c 5 0. If the related equation has two distinct real roots, say r1 , r2,
then the solution set for the inequality consists either of

all points between r1 and r2, or all points outside the interval ~r1, r2!.

The numbers r1 and r2 are included if the inequality sign is either # or $.

cEXAMPLE 5 Quadratic open sentence Find the solution set for
2x 2 1 2Ï2x 1 2 # 0.

Solution
Follow the strategy.

x 5
22Ï2 6 Ï~2Ï2!2 2 4~21!~2!

22

5
22Ï2 6 4

22

5 Ï2 6 2.

This gives us cut points r1 5 Ï2 2 2 and r2 5 Ï2 1 2 (about 20.59 and
3.41), both of which are included in the solution set S. Using either an analysis of
the sign pattern or from a graph of y 5 2x 2 1 2Ï2x 1 2, we find that S consists
of r1, r2, and everything outside the interval ~r1, r2!. That is,

S 5 ~2`, Ï2 2 2# < @Ï2 1 2, `!. b

More Applications of the Product Principles

We can use the zero-product principle whenever we have a product equal to zero.
The next example illustrates some typical uses.

Strategy: Use the quadratic
formula and determine
whether or not the solutions
are real numbers.

Strategy: Find the roots of
the related equation
2x 2 1 2Ï2x 1 2 5 0 by
using the quadratic formula,
with a 5 21, b 5 2Ï2,
c 5 2 to find r1 and r2. Pick
a test number to see whether
the solution set is inside or
outside the interval ~r1, r2!.
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cEXAMPLE 6 Solving other open sentences Find the solution set.

(a) x 3 5 x 2 1 4x (b) 1 ,
3

x 1 1

Solution

(a) Subtract x 2 1 4x from both sides to get zero on one side and factor.

x 3 2 x 2 2 4x 5 0 or x~x 2 2 x 2 4! 5 0

By the zero-product principle, either x 5 0 or x 2 2 x 2 4 5 0. We can use
the quadratic formula to find the roots of the second equation:

x 5
1 6 Ï1 2 4~1!~24!

2
5

1 6 Ï17
2

.

The solution set is

H0,
1 1 Ï17

2
,

1 2 Ï17
2 J.

(b) First, we get a zero on one side by subtraction.

1 2
3

x 1 1
, 0.

Combining fractions we get 1 2
3

x 1 1
5

x 2 2
x 1 1

. Therefore, by Equivalence

Operation 1, the given inequality is equivalent to

x 2 2
x 1 1

, 0.

The sign properties for quotients are the same as for products; to be negative,
the two factors, x 2 2 and x 1 1, must have opposite signs. Thus 21 and 2 are
cut points. Choose a test number in each of the three intervals, ~2`, 21!,
~21, 2!, or ~2, `!, say 22, 1, and 5. Go back to the original inequality and
replace x by each test number. The results are, respectively, 1 , 23 (false),
1 , 3

2 (true), and 1 , 3
6 (false). The solution set is the interval (21, 2). b

WARNING: If we were to “clear fractions” by multiplying both sides of the
inequality in Example 6(b) by x 1 1, we would not get an equivalent
inequality. In Equivalence Operation 4, the inequality may remain or reverse,
depending on the sign of the multiplier, and if there is a variable, the sign may
change.

Equations and Inequalities Involving Absolute Values

When working with an open sentence such as _ 2x 1 1 _ # 3 or _ x 2 1 _ . Ï2,
it is often easier to replace the sentence with an equivalent one without absolute
values. To understand the appropriate replacements, it is helpful to see a picture.

Strategy: Use Equivalence
Operation 2 to get a zero on
one side of the open sen-
tence. (a) Factor as far as
possible and apply the zero-
product principle. (b) Get a
single fraction and identify
cut points.
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2

–
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TECHNOLOGY TIP r Entering absolute values

On the TI-82 and TI-81 the absolute value key is easy to spot in the left
column, 2nd ABS. On the HP-38 ABS is above the 572x key. On other calcula-
tors the ABS key is hidden:

TI-85, 2nd MATH F1(NUM) F5 (Abs) .
Casio, SHIFT MATH F3(NUM) F1 (Abs) .
HP-48, MTH REAL NXT ABS.

On all calculators except the HP–48, the ABS key enters the function on the
home screen or on the function menu, and the HP–48 does the same thing
when you write a function in tick marks.

Figure 26 shows graphs of absolute value expressions y 5 _ 2x 1 1 _ and
y 5 _ x 2 1 _ . The graph of any expression of the form y 5 _ ax 1 b _ (entered on
most graphing calculators as Y 5 ABS(AX 1 B) ) is some sort of “vee” with its corner on
the x-axis. The absolute value graph meets a horizontal line y 5 c (for any positive
number c) at two points, ~r1, c! and ~r2, c!. The absolute value graph is below the
horizontal line between r1 and r2, and the solution set for _ ax 1 b _ , c is interval
~r1, r2!. Outside the interval from r1 to r2, the absolute value graph is above the line
and the solution set for _ ax 1 b _ . c is the union ~2`, r1! < ~r2, `!. See Figure
27. Finding the solution set for the type of open sentence inequalities we are
considering is simply a matter of finding the numbers r1 and r2 and thinking about
a graph, as illustrated in the next example.

cEXAMPLE 7 Absolute value inequalities

(a) Solve the equations _ 2x 1 1 _ 5 3 and _ x 2 1 _ 5 Ï2.
(b) Use the solutions from part (a) to find the solution set for _ 2x 1 1 _ # 3 and

_ x 2 1 _ . Ï2.

Solution

(a) Follow the strategy, 2x 1 1 must be either 3 or 23. That is, we must solve two
equations,

2x 1 1 5 3 or 2x 1 1 5 23, from which

x 5 1 or x 5 22.
Using the same reasoning, for the second equation, we have x 2 1 5 Ï2 or
x 2 1 5 2Ï2. The solutions are 1 1 Ï2 and 1 2 Ï2.

FIGURE 27

Strategy: For (a), recall
that _ 23 _ 5 _ 3 _ 5 3, so if
_ u _ 5 3 then u must be 3
or 23.

FIGURE 26
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(b) The solutions in part (a) give us the numbers r1 and r2 that we need for the
graphs above.

From Figure 28a the absolute value graph is below the line y 5 3, which means
that _ 2x 1 1_ # 3 when x is between 22 and 1. The solution set for the inequality
_ 2x 1 1_ # 3 is the closed interval @22, 1#. (Why are the endpoints 22 and 1
included in the solution set?)

From Figure 28b, the absolute value graph is above the line y 5 Ï2 when x
is any number outside the interval ~r1, r2!, so in interval notation, the solution set
for the second inequality is ~2`, 1 2 Ï2! < ~1 1 Ï2, `!. (Why are the end-
points 1 6 Ï2 not included?) b

Summing up our observations, we have some guidelines for equivalent absolute
value expressions and finding solution sets.

Absolute value equivalents

Suppose c is any positive number and u is an expression involving the
variable x. Then

_ u _ 5 c may be replaced by the two equations u 5 c or u 5 2c,
_ u _ , c may be replaced by the two inequalities 2c , u , c (the solution

set consists of the numbers between r1 and r2),
_ u _ . c may be replaced by the two inequalities u , 2c or u . c (the

solution set consists of the numbers outside @r1, r2#).

cEXAMPLE 8 Integer solutions What integers satisfy the inequality
x 2 1 2_ x _ 2 8 , 0?

Solution
Follow the strategy.

(i) x $ 0: x 2 1 2x 2 8 5 0, or ~x 1 4!~x 2 2! 5 0.

We have two roots, 24 and 2, but only 2 satisfies x $ 0.

Strategy: Consider two
cases: (i) for x $ 0, replace
_ x _ by x; (ii) for x , 0,
replace _ x _ by 2x. In each
case solve the related equa-
tion to get cut points.

FIGURE 28



[– 5, 5] by [– 10, 5]
y = x2 + 2|x| – 8
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(ii) x , 0: x 2 2 2x 2 8 5 0 or ~x 2 4!~x 1 2! 5 0.

Again, there are two roots, 4 and 22, but only 22 satisfies x , 0.
The cut points for the original inequality are 2 and 22. Checking test points

in the original, we find that the solution set is the interval (22, 2). The integers in
the interval (22, 2) are 21, 0, and 1.

Graphical If we look at a calculator graph of y 5 x 2 1 2_ x _ 2 8 in the window
@25, 5# 3 @210, 5# (see Figure 29), we see that the graph is below the x-axis
(meaning that the y-coordinates are less than zero, or that x 2 1 2_ x _ 2 8 , 0) on
an interval from about 22 to 2. Without a decimal window, when we trace, we may
not be able to tell exactly where the graph crosses the axis. We still need to do some
analysis as above to identify the endpoints precisely. From the graph we can easily
see that y is negative at the integer values 0, 1, and 21, and we can evaluate
x 2 1 2_ x _ 2 8 to verify that y 5 0 at 2 and 22. Thus the integer values that
satisfy the given inequality are 0, 1, and 21. b

EXERCISES 1.5

Check Your Understanding

Exercises 1–6 True or False. Give reasons.

1. The two equations x 3 2 2x 2 2 5x 5 0 and
x 2 2 2x 2 5 5 0 have the same solution set.

2. The sum of all the integers in the set
$x _ 27 , 3x 2 1 , 14% is 14.

3. The number 22 is in the solution set for
x 2 2 3x 2 5 . _ x _ .

4. The solution set for ~x 1 3!2 5 1 is the same as the
solution set for x 1 3 5 1.

5. The solution set for x , 4
x is the same as the solution set

for x 2 , 4.

6. The solution set for x , _ x _ is the set of negative num-
bers.

Exercise 7–10 Fill in the blank so that the resulting state-
ment is true.

7. The largest prime number in the set $x _ _ x 2 3 _ # 21%
is .

8. The smallest positive integer that is not in the set
$x _ x 2 2 4x 2 5 , 0% is .

9. If S 5 $x _ ~x 2 3!~x 1 2! # 0%, then the sum of all
integers in S is .

10. If k is any positive number, then the number of real
roots for x 2 1 2x 2 k 5 0 is .

Develop Mastery

If not specified, the domain of the variable is assumed to
be R.

FIGURE 29

Exercises 1–8 Solving Equations Solve. Simplify the
result.
1. 5 2 3x 5 7 1 x 2. 5x 2 1 5 Ï3

3. ~x 2 2!2 5 x 2 2 2 4. ~1 2 2x!2 5 4x 2 2 x

5. 3x 2 1 2x 2 1 5 0 6. 2x 2 1 x 5 10

7. 6x 1 5 5 9x 2 2 3 8. Ï3x 2 4 5 x

Exercises 9–10 Assume the replacement set is the set of
complex numbers. Solve. Simplify the result.

9. 4x 2 1 4x 2 15 5 0 10. 2x 2 1 4x 1 5 5 0

Exercises 11–26 Solving Inequalities Solve. Use a
graph as a check.

11. 3x 2 1 . 5 12. 1 2 2x
23 .

1
2

13. 20.1 # 2x 1 1 # 0.1 14. 21 # x 1 3
22 # 1

15. ~2 2 x!~1 1 x! $ 0 16. 2x 2 2 x 2 3 . 0

17. 4 2 x2

x 1 3 $ 0 18. x 1 1 .
2
x

19. 2 # 3x 2 1 # 8 20. 0 # x 2 2 1 # 8

21. _ x _ . x 22. x 4 1 4x 3 $ 12x 2

23. _ 2x 2 3 _ . 5 24. _ x 2 4 _ 1 x # 6

25. _ x 2 2 _ 1 2x # 4

26. x 2 2 71x 2 10,296 , 0

Exercises 27–30 Solution Set Find the solution set and
show it on a number line. Use a graph as a check.

27. 5x 2 1 . 3 1 7x 28. x 2 2 x . 12

29. x 1 2
x 2 2 9 . 0 30. 2x 1 1 . 2

x



a

b

c = b + 1
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Exercises 31–34 Absolute Value Inequalities Find the
solution set and express it in interval notation.

31. _ x 2 1 _ , 2 32. _ 2x 1 1 _ . 3

33. _ x _ 1 1 , Ï2 34. _ 1 2 x _ # 0.1

Exercises 35–36 Discriminant Use the discriminant to
determine the number of real roots.

35. x 2 2 15x 1 8 5 0

36. 4x 2 1 4Ï3x 1 3 5 0

Exercises 37–46 Solving Equations Solve. Use a graph
to support your answer.

37. x 4 1 3x 2 2 10 5 0

38. 2_ x 1 3 _ 2 1 5 5

39. _ 5 2 x _ 2 5 5 3

40. ~Ïx!2 2 2Ïx 2 3 5 0

41. _ x _2 2 2_ x _ 5 3

42. Ï2x 1 3 5 1

43. Ïx 2 1 4x 5 x 1 2

44. 1
x 2 3

x 5 1
2 1 1

4

45. Ïx 4 2 5x 2 2 35 5 1

46. x 2 2Ïx 2 8 5 0

Exercises 47–50 Find the solution set. Assume that the
replacement set is the set of integers.

47. 24 # 3x 2 2 # 4 48. _ 2 2 3x _ , 4

49. 2x 2 1 x , 15 50. Ï~x 2 2!2 # 3

Exercises 51–52 Determine the values of x for which the
expression yields a real number.

51. Ï2x 2 2 4x 2 3 52. Ïx 2 4
x

Exercises 53–54 Determine the values of x for which the
expression yields complex nonreal numbers.

53. Ï2x 2 2 5x 2 6 54. Ï4 2 2_ x _

Exercises 55–56 Find the solution set. (Hint: Recall
Ïu 2 5 _ u _ .)

55. Ï~2x 2 1!2 5 5 56. Ïx 2 5 2x

Exercises 57–58 Find the solution set.

57. x 1 2 , 3 and x 1 2 . 23

58. 2x 2 3 # 21 and 2x 2 3 . 24

Exercises 59–62 Zero-product Principle Use the zero-
product principle to find a quadratic equation with the pair
of roots.

59. 22, 24 60. 22, 1
2

61. 1 1 Ï2, 1 2 Ï2 62. 1 1 i, 1 2 i

Exercises 63–64 (a) Determine the number of integers in
the set. (b) Find the sum of all the integers in the set.

63. $x _ 2x 1 5 . 0 and 23x 1 16 . 3%

64. $x _ _ x 2 3 _ , Ï5%

Exercises 65–66 Use the zero-product principle to find the
solution set.

65. ~x 2 2 9!~x 2 1 x 2 6! 5 0

66. ~_ x _ 2 1!~3 2 _ x 1 1 _ ! 5 0

67. How many prime numbers are contained in the set
$x _ x 2 2 15x # 0%? What is the largest one?

68. Find the largest integer k for which the equation
kx 2 1 10x 1 3 5 0 will have real roots.

69. Find the smallest integer c for which the equation
x 2 1 5x 2 c 5 0 will have real roots.

70. What is the sum of all the positive integers x for which
x 2 2 2x 2 17 is negative?

71. What is the smallest integer k such that
3x~kx 2 4! 2 x 2 1 4 5 0 has no real roots?

72. What is the largest integer x such that the reciprocal of
x 1 4 is greater than x 2 4?

73. What is the sum of all prime numbers in the set
$x _ 3x 1 4 , 5x 1 7 , 4x 1 15%?

74. In the right triangle in the diagram, c 5 b 1 1, and the
perimeter is 12. Find a, b, and c.

75. In a triangle having sides a, b, and c, if a 5 10, b 5 12,
and b 2 5 a2 1 c 2 2 ac, find all possible values for c.

76. (a) If x 1 y 5 8 and x 2 1 4xy 1 3y 2 5 48, find
2x 1 6y. (Hint: Factor the left-hand side.)

(b) If a2b 1 ab 2 1 a 1 b 5 72 and a · b 5 8, then
find the sum a 1 b and the sum a2 1 b 2. (Hint:
First factor the left side, and then use ~a 1 b!2 5
a2 1 2ab 1 b 2.!

77. A certain chemical reaction takes place when the tem-
perature is between 58 and 208 Celsius. What is the
corresponding temperature on the Fahrenheit scale?
(Hint: F 5 9

5 C 1 32.)

78. In 1990 the population of Newbury increased by 1600
people. During 1991 the population decreased by 12
percent and the town ended up with 56 fewer people
than had lived there before the 1600 increase. What
was the original population?
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pg049 [R] G1 5-36058 / HCG / Cannon & Elich gj 10-14-95 QC

1.6 Models and Problem Solving 49

79. A boy walking to school averages 90 steps per minute,
each step 3 feet in length. It takes him 15 minutes to
reach school. His friend walks to school along the same
route averaging 100 steps per minute, each step cover-
ing 2.5 feet. How long does it take for the friend to walk
to school?

80. A beaker contains 100 cc of water. Suppose x cc of
water are removed and replaced by x cc of pure acid.
From the resulting mixture, another x cc are removed
and replaced by x cc of acid. In the final mixture the
ratio of water to acid is 16 to 9. Find x, and the final
volume of acid.

81. A farmer has 200 feet of fencing to enclose a rectangu-
lar garden. If the width of the garden is x feet, find an
equation that gives the area A of the garden in terms of
x. For what values of x is the equation meaningful?

82. Largest Area A rectangle is inscribed in a circle of
diameter 10 inches, as shown.

1.6 M O D E L S A N D P R O B L E M S O L V I N G

One cadet, who had a private airplane pilot’s license, was failing mathematics.
When he was asked how much gas he would need to carry if he were going
to fly two hundred miles at so many miles per gallon, he didn’t know whether
to multiply or divide. How, the officers asked, was he able to get the right
answer? He replied that he did it both ways and took the reasonable answer.
They felt that anybody who knew what was a reasonable answer had promise,
so they gave him a second chance.

Ralph P. Boas, Jr.

Problem solving is the key to learning mathematics. In this section we consider
problems that are somewhat different from some you may have met earlier. Here
we try to draw on what you already know, and to develop reasoning and strategy
to attack a given problem. Always try your own approach; do not just follow an
example in the book or mimic a solution from someone else. Genuine learning takes
place when you think for yourself.

(a) Using the information shown in the diagram, find
an equation that gives the area A of the rectangle in
terms of x.

(b) For what values of x is the equation meaningful?
(c) Use a graph to read the value of x (one decimal

place) that will give the largest value of A.

83. Maximum Volume A box with an open top is to be
made from a rectangular piece of tin 8 inches by 12
inches, by cutting a square from each corner and bend-
ing up the sides as shown in the diagram. Let x be the
length of the sides of each square.
(a) Show that the volume V of the box is given by

V 5 4x 3 2 40x 2 1 96x.
(b) For what values of x is V . 0?
(c) What is the value of x (one decimal place) that gives

the largest value of V? What is the maximum
volume?



A

D H

F

C

G

B

x

x
2

E

H

F

GE

pg050 [V] G2 5-36058 / HCG / Cannon & Elichclb 1q-9-95 QC1

50Chapter 1 Basic Concepts Review and Preview

No single strategy applies to all problems. Here we look at several examples
andthen outlineafew general guidelines. We begin with an example illustrating
two different methods of solution.

cEXAMPLE 1 Area in a square The area of the square ABCD, shown in
Figure 30 is 64. Points E, F, G, and H are midpoints of the sides, as shown. Find
the area of the shaded region.

FIGURE 30

Solution 1
First note that the shaded region consists of four congruent right triangles, so the
area of the shaded region is four times the area of any one of the shaded triangles.
If K denotes the area of nAEF and M is the area of the shaded region, then

M 5 4K. Our problem reduces to finding K.
Triangle AEF is an isosceles right triangle with legs half as long as x, the side

of the square. Since the area of the square is 64, x2564 so x 5 8. (Why not 68?)
Thus K 5

1
2 ~4!~4! 5 8, and M 5 4~8! 5 32. Hence the area of the shaded region

is 32.

Solution 2
Draw line segments EGand FH (see Figure 31). We have four more unshaded right
triangles,eachcongruenttotheshadedtriangles.(Why?)Therefore,the areaofthe
shaded region is half of the area of the square. The area of the shaded region is 64

2 ,
or 32.b

FIGURE 31



[0, 2500] by [0, 250]

(2000, 200)

y = 100 + .05x
(salary + commission)

y = .1x
(straight commission)
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Strategy: The ready-made cEXAMPLE 2 Time, rate, and distance Inichi and Maria share an apart-
model for such problems is ment 2 miles from campus, where they have the same 8:45 class. Inichi leaves home
d 5 r · t. Let T be the time at 8:00, walking at her usual 3 mph pace, while Maria is still in the shower. Maria,
it would take for Maria to

who has missed class three days in a row, knows that she can jog all the way at acatch up, when the distances
5 mph pace. If she gets out the door by 8:20, will that pace allow Maria to (a) catchwould have to be equal. We

know their rates; equate dis- up with Inichi on the way or (b) get to class on time?
tances and solve for T.

Solution

(a) Suppose Maria can catch Inichi in T minutes. Maria’s speed, 5 mph, is equal
to 1 mile in 1

5 of an hour (12 minutes), so in T minutes she travels ~ 1
12! T miles.

By the time Maria has jogged T minutes, Inichi has walked for T 1 20 minutes
at 3 mph (1 mile in 20 minutes), for a distance of ~ 1

20!~T 1 20! miles. Therefore
T must satisfy the equation

1
12

T 5
1

20
~T 1 20!, so

20T 5 12T 1 240 T 5 30.

Maria could catch Inichi in 30 minutes, or at 8:50. However, it takes Inichi only
40 minutes (2

3 of an hour) to get to school, so she arrives at 8:40; Maria cannot
catch her.

(b) It takes Maria 2
5 of an hour (24 minutes) to jog 2 miles, so if she leaves home

at 8:20 and doesn’t have to wait for a streetlight, she can make it to class with
1 minute to spare. b

cEXAMPLE 3 Commission options You are offered a job as a sales repre-Strategy: Let x be
the dollar amount of sales in sentative for a cosmetics firm. You can choose between two compensation arrange-
a week, and let A and B be ments: a straight 10 percent commission on total sales, or $100 per week plus a 5
the amounts earned per

percent commission on your total weekly sales.week with the given options.
(a) Evaluate both when you (a) How much money would you earn under each option if you sell $1500 a week?
sell $1500. (b) Express as an (b) At what weekly sales level would you earn more on straight commission?inequality to be solved for x.

(c) On a graphing calculator, plot your weekly earnings under both options and use
the graph to answer the question in part (b).

Solution
Follow the strategy. From the given information we have

A 5 ~0.10!x B 5 100 1 ~0.05!x.

(a) When x 5 1500, then A 5 150 and B 5 175. The salary plus commission
option pays $25 more.

(b) We want to find out when A . B, or the values of x for which

~0.10!x . 100 1 ~0.05!x.

Solving the inequality we get ~0.05!x . 100 or x . 2000. If you can sell more
than $2000 worth of cosmetics per week, you will earn more on straight
commission.

(c) We want to graph the equations Y 5 .1X and Y 5 100 1 .05X for the two options, so
that the y-value gives the weekly earnings. From the calculations in parts (a)
and (b), we know that we need a window with a much larger x-range than y.
Set a window @0,2500# 3 @0,250# and get a graph as shown in Figure 32.
Trace and zoom in as necessary to verify the conclusion of part (b) that straight
commission earnings become greater for weekly sales beyond $2000. bFIGURE 32
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In the next example we first show an indirect approach in solving a problem and
then suggest an alternate method.

cEXAMPLE 4 Altitudes of a triangle In the isosceles triangle ABC shown
in Figure 33(a), we are given

_AB _ 5 169, _AC _ 5 169, and _BC _ 5 130.

Find the length of the altitude h to side _AB _ .

FIGURE 33

Solution 1
If we had the area K of nABC, we could use the relation area 5 ~1

2!(base 3

altitude) and find h from K 5 ~1
2!~169!h. Let k be the altitude to side BC (Fig-

ure 33(b)). We can use the Pythagorean theorem to find k and then the area.

k 2 5 1692 2 652 5 24,336 or k 5 156.

Therefore the area of nABC is K 5 1
2 ~130!~156! 5 10,140. Since we also know

that K 5 1
2 ~169!h, we can solve for h.

h 5
2~10,140!

169
5 120.

Thus the length of the altitude to side AB is 120.

Solution 2
While Solution 1 is straightforward, try the following approach. In Figure 33(a), let
x be the length of BD and AD 5 169 2 x. Apply the Pythagorean theorem to the
right triangles ADC and BCD, and get two expressions for h 2 in terms of x. Set these
equal to each other, solve the resulting equation for x and then find h. See Exer-
cise 17. b

cEXAMPLE 5 Area of a circular segment Figure 34(a) shows an equilat-
eral triangle ABC in which the length of each side is 4 and a circle with center C
that passes through A and B. What is the area of the shaded region?FIGURE 34
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SolutionStrategy: If K1 is the area
of the circular sector and K2 Follow the strategy. The area K1 of the circular sector is one-sixth of the area of a
is the area of the triangle, circle of radius 4. (Why?) Thus
then the area K of the
shaded region is K1 2 K2.

K1 5
1
6

~pr 2! 5
1
6

~p · 42! 5
8p

3
.

To get the area K2 of nABC, draw a separate diagram (Figure 34(b)) and determine
the length h of an altitude. Applying the Pythagorean theorem to nBCD gives

h 2 1 22 5 42, or h 5 Ï12 5 2Ï3.

Therefore, for K2 we have

K2 5
1
2

_AB _ h 5
1
2

· 4 · 2Ï3 5 4Ï3.

Finally, the area K of the shaded region is equal to K1 2 K2, so the area of the
shaded region is 8p

3
2 4Ï3 (exact form), or approximately 1.45 square units. b

cEXAMPLE 6 Squares and cubes The sum of two numbers is 8 and their
product is 5. What is the sum (a) of their squares? (b) of their cubes?

SolutionStrategy: Let u and v de-
note the two numbers, so Follow the strategy.
u 1 v 5 8 and u · v 5 5.
Find u 2 1 v2 and u 3 1 v3. (a) From the identity ~u 1 v!2 5 u 2 1 2uv 1 v2 subtract 2uv from both sides to
If we try to find u and v, the express u 2 1 v2 in terms of the sum and product of u and v:
solution gets messy, but
identities for ~u 1 v!2 and u 2 1 v2 5 ~u 1 v!2 2 2uv 5 82 2 2 · 5 5 64 2 10 5 54.
for ~u 1 v!3 involve the

The sum of the squares is 54.product and sum of u and v.
(b) For the sum of the cubes we try a similar approach.

~u 1 v!3 5 u 3 1 3u 2v 1 3uv2 1 v3 5 u 3 1 v3 1 3uv~u 1 v!

u 3 1 v3 5 ~u 1 v!3 2 3uv~u 1 v! 5 83 2 3 · 5 · 8 5 392.

The sum of the cubes of the two numbers is 392. It is instructive to compare
the work we have done in this example with the work it takes to find the two
numbers u and v, and then to square each and cube each, to find the sums of
the squares and the cubes. See Develop Mastery Exercise 18. b

As should be clear from the diverse problems we have considered and the
variety of approaches illustrated, no single set of methods is sufficient to solve any
particular problem, but some consistent guidelines can help.

Problem solving guidelines

1. Be certain that you understand the problem. You may need to read it
several times.

2. Concentrate on what the problem calls for and identify all the
information given.

3. Draw diagrams or graphs whenever appropriate. This is extremely
important in planning your solution strategy.

4. Introduce variables to name the quantities involved and label diagrams.
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5. Use what you have learned earlier. For instance, if you need the area of
a figure, review pertinent formulas. Be aware that many useful formulas
and relations appear in this book, many of them on the inside front and
back covers.

6. Always check your results. Don’t just plug a number into a formula, but
ask yourself if your results make sense in terms of the original statement of
the problem. Whenever possible begin with some kind of reasonable
estimate of what the result should be.

7. Work in terms of complete sentences. Use clearly readable sentences and
precise mathematical notation to identify variables, state relationships, etc.
Write your conclusion as a sentence, as well. This care will pay great
dividends in clarity of thinking, in understanding how to approach a
problem, and in knowing what the result means.

EXERCISES 1.6

Check Your Understanding

Exercises 1–6 True or False. Give reasons.

1. The three line segments joining the midpoints of the
sides of an equilateral triangle form an equilateral tri-
angle.

2. When 3164 is expanded and written in usual base 10
form, the units digit is 4.

3. The isosceles triangle having sides of lengths 6, 6, and
4 has an altitude (drawn to the short side) of length
4Ï2.

4. The area of the triangle described in Exercise 3 is equal
to 16Ï2 .

5. Points ~22, 3! and ~4, 1! lie on a circle whose center is
at ~21, 24!.

6. When x is replaced by 22
3

in the open sentence
_ 3x 1 1 _ 2 2x 5 1, the resulting statement is true.

Exercises 7–10 Complete the sentence by entering “less
than,” “greater than,” or “equal to” in the blank so that the
resulting statement is true.

7. The area of a square having sides of length k is
the area of a circle with diameter of length k.

8. The time it takes to walk 2 miles at a rate of 4 mph is
the time it takes to walk 3 miles at a rate of 5

mph.

9. The distance from point A~21, 24! to point B~22, 3! is
the distance from A to point C~4, 1!.

10. If the sum of two numbers is 5 and their product is 3,
then the sum of their squares is 19.
(Hint: Use ~x 1 y!2 5 x 2 1 2xy 1 y 2.)

Develop Mastery

1. If the reciprocal of b is 12, and
b
c

5 1, then find c.

2. Find all values of x (if any) for which the reciprocal of
x 1 1 equals x 2 1.

3. When a meatball mixture is molded into a spherical
shape, the radius of the sphere is 4 inches. How many
meatballs of radius 1 inch each can be made from the
mixture?

4. Consecutive Integers
(a) Find five consecutive integers whose sum is 100.
(b) Find eight consecutive integers whose sum is 100.
(c) Are there six consecutive integers whose sum is

100? Explain.

5. An auto repair shop charges a $20 shop charge plus $25
per hour for labor. If the total charge for a repair job is
$80 plus parts, how many hours of labor did the job
require?

6. Robin and Bart are 0.7 miles apart when they begin
walking in a straight path toward each other. Robin
walks at the rate of 3 mph and Bart at the rate of 4 mph.
(a) How long (in minutes) will it take for the two to

meet?
(b) How far will each walk?

7. Anna enters a walkathon that covers a total distance
of 20 miles. She runs part of the distance at the rate of
6 mph and walks the remaining distance at a rate of
4 mph, completing the course in 4 hours and 30 min-
utes.
(a) How far did Anna run? How far did she walk?
(b) How many hours did she run? How many did she

walk?
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8. Two insurance companies, Arliss and Bailey, pay sales
representatives every month. Arliss pays a fixed 12 per-
cent commission on the total amount of insurance sold,
while Bailey pays $250 per month plus 7 percent com-
mission on the total sold. For a month’s sales of x dollars,
let A denote the amount Arliss pays, and let B denote the
amount Bailey pays for the same sales.
(a) Find formulas for A and B in terms of x.
(b) For what volume of sales will Arliss pay more than

Bailey?
(c) As a check draw graphs as in Example 3(c). Give the

window dimensions you are using.

9. The diameter of a circle is 6 times the reciprocal of the
circumference. Find the area of the circle.

10. Find the area of a circle if the reciprocal of the circum-
ference equals the length of the radius.

11. If
1
a

2
1
c

5
1

a 1 c
then find the value of the ratio

a
c

.

12. Antifreeze Solution The radiator of a car has a capac-
ity of 6 quarts and is filled with a 30 percent mixture of
antifreeze.
(a) How many quarts of antifreeze are in the radiator?
(b) If you drain a quarter of the mixture in the radiator

and replace it with pure antifreeze, what is the per-
centage of antifreeze in the resulting mixture?

(c) How many quarts of the original mixture should you
drain and replace with pure antifreeze to get a mix-
ture that is 51 percent antifreeze?

13. Is the expression
1 1 x 2

Ï1 1 x 2
2 Ï1 1 x 2 equal to zero

for every real number x? Give an algebraic explanation.
Check graphically.

14. A square is inscribed in a circle and then a circle is
inscribed in the square.
(a) What is the ratio of the area of the larger circle to

the area of the smaller circle?
(b) If the larger circle has a radius of 16 cm, what is the

area of the ring-shaped region between the two cir-
cles, and what is the area of the square?

15. A chord of a circle is the perpendicular bisector of a
radius of length 4. How long is the chord?

16. Two triangles are inscribed in a semicircle as shown
in the diagram, where _AB _ 5 12 and /BAC 5

/ABD 5 308. What is the area of the shaded triangular
region common to triangles ABC and ABD?

17. Carry out the details suggested in Solution 2 of Exam-
ple 4.

18. (a) If u 5 4 1 Ï11 and v 5 4 2 Ï11, show that
u 1 v 5 8 and u · v 5 5.

(b) Evaluate u 2 1 v2 and u 3 1 v3. Compare with Ex-
ample 6.

19. Given that the side of one square is the diagonal of a
second square. If A1 is the area of the first square and A2

is the area of the second square, then find the value of

the ratio
A1

A2
.

20. Average Speed If you drive 160 miles at an average
speed of 50 miles per hour, and then return along the
same route at a more leisurely speed of 30 miles per
hour, what is your average speed for the round trip?

21. If you drive d miles at an average speed of 50 mph and
return along the same route at an average speed of
30 mph, what is your average speed for the round trip?

22. If you drive d miles at an average speed of v1 mph and
return along the same route at an average speed of
v2 mph, what is your average speed for the round trip?

23. A race car driver must average 150 mph for four sepa-
rate laps to qualify for a race. Because of a minor engine
problem the car averages only 120 mph for the first two
laps. What average speed is required on the final two
laps to qualify for the race?

24. How many ounces of a 60 percent solution of acid must
be added to 20 ounces of a 30 percent solution to get a
40 percent solution?

25. A circle is inscribed in an equilateral triangle of side
length 4. Find the area of the circle.

26. In rectangle ABCD shown in the diagram, _AE _ is 3
4 of

_AB _ , and the area of triangle BEC is 24 cm2. What is
the area of the rectangle?
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Exercises 27–30 Circles The Center C and diameter d
of a circle are given. (a) Determine the dimensions of a
calculator window that will show the graph as nearly a
circle (rather than an ellipse) as possible. (b) Give formulas
for the upper half and the lower half of the circle. (c) Draw
a graph.

27. C~23, 2!, d 5 10

28. C~3, 5!, d 5 12

29. C~2, 4!, d 5 16

30. C~22, 24!, d 5 15

Exercises 31–32 Viewing Window (a) Determine the
dimensions of a window so that the display shows the two
circles (not ellipses) intersecting at two points. (b) Give
formulas you would use to graph. (c) Draw the graphs.

31. ~x 1 3!2 1 ~y 2 2!2 5 25, x 2 1 y 2 5 25

32. ~x 1 2!2 1 ~y 1 4!2 5 25, x 2 1 y 2 5 25

33. Denote the two x-intercept points of the graph of
x 2 1 y 2 5 16 by A and B, and the two y-intercept
points by C and D. What is the area of the quadrilateral
with vertices A, B, C, and D?

34. Two candles of the same length are made of different
materials and hence burn at different rates. One burns
down completely at a uniform rate in 4 hours while it
takes the other 5 hours. If both candles are lit at
2:00 P.M., at what time will one be half as long as the
other?

35. Given points A~22, 0! and B~4, 0!, find a point C with
both coordinates positive integers and such that the area
of nABC is a minimum. Is the answer unique? What is
the area of nABC?

36. Point P is 6 units from the center of a circle of radius 10.
How many chords having integer length can be drawn
through P? (Hint: First draw a diagram.) The longest
chord is a diameter. What is the shortest chord?

37. Three mirrors, each of length 4 feet, are placed to form
an equilateral triangle ABC. A light source is placed at
the midpoint M of side AB, as shown in the diagram,
and is aimed at an angle of 608 so that the light will be
reflected to follow the dotted line. How far does the light
travel before returning to M?

38. In the diagram square ABCD has an area of 16. The
vertices of each inscribed square are midpoints of the
sides of the square in which it is inscribed. Find the area
of the shaded square.

39. The diagram shows two concentric circles. Segment BC
is tangent to the inner circle and is a chord of length
12 cm in the outer circle. Suppose r is the radius of the
smaller circle. Find the area of the region between the
circles when (a) r 5 4, (b) r 5 8, (c) r 5 15, (d) Guess
a formula for the area A where r is any positive number.
Prove that your guess is valid.

40. In the diagram _AC _ 5 36, _CD _ 5 24, _ BE _ 5 12,
and _AB _ 5 m. Determine m. (Hint: Consider the area
of triangle ABC.)

41. Pattern The diagram at the top of the next page starts
with an isosceles right triangle with legs of length 2 and
hypotenuse of length a, then adds successive right trian-
gles each having one leg of length 2 and the other leg as
the hypotenuse of the preceding triangle.
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(a) Find lengths a, b, c, and d.
(b) If we continue constructing right triangles and label-

ing the length of each hypotenuse with successive
letters of the alphabet, what letter corresponds to the
hypotenuse of length 6?

42. Patio Design For the patio in the diagram, where ver-
tical walls AD and CE are 7 and 11 feet high, respec-

CHAPTER 1 REVIEW

Test Your Understanding

Exercises 1–41 True or False. Give reasons.

1. The largest real number is `.

2. There is only one even prime number.

3. There is no smallest positive real number.

4. There is no greatest negative integer.

5. There is no smallest positive rational number.

6. 216 1 365 is an odd number.

7. 317 1 727 is an odd number.

8. The imaginary number 3i is greater than 2i.

9. There is no real number x for which Ï2x . 0.

10. x $
1
x

for every positive real number x.

11. No real number x satisfies the equation Ï2x 5 Ïx.

12. For every real number x, _ x 2 4 _ 1 3 . 0.

13. It is not true that the solution set for the equation
_ x 2 1 _ 1 1 5 0 is the empty set.

14. Ïx 2 1 _ x _ 5 2_ x _ for every real number x.

tively, how far apart must the walls be to allow the lower
vertex of an equilateral triangle ~nABC! to touch the
floor? (Hint: First find x, then find y and z.)

43. Given three distinct lines l1, l2, and l3 in a plane, if l1

intersects the parallel lines l3 and l2, how many points
in the plane are equidistant from all three lines? (Hint:
Draw a diagram.)

44. Working with Large Numbers The Andromeda gal-
axy is approaching our galaxy at a speed of about 100
kilometers per second.
(a) How fast is Andromeda approaching us in miles per

hour? (1 mile 5 1.609 km)
(b) How far does Andromeda travel toward us each

year?
(c) How long would it take an object moving at

Andromeda’s speed to travel from the sun to the
earth (93 million miles)?

(d) How long would it take an object moving at
Andromeda’s speed to travel 1 light year (the dis-
tance light, moving at 186,000 miles per second,
travels in a year)?

(e) The estimated distance between the Milky Way (our
galaxy) and Andromeda is 2 million light years.
Assuming Andromeda continues to approach us at
its current speed, when will our galaxies meet?

15. The inequalities x 2 , 4 and x ,
4
x

have the same solu-

tion set.

16. If
a
b

5 x, where b 5/ 0 and a 5/ b, then
a 1 b
a 2 b

5

x 1 1
x 2 1

.

17. If x is any positive real number, then Ïx , x.

18. There is no positive real number x for which
Ï2x 2 2 x will be a real number.

19. If x 5
1

Ï2 2 1
and y 5 Ï2 1 1, then x 5 y.

20. The intervals ~22, 2# and ~2, 3# are disjoint.

21. The intersection of the intervals (0, 1.3) and (1.3, 2) is
the empty set.

22. The sum of any two irrational numbers is an irrational
number.

23. The product of any two irrational numbers is an irra-
tional number.
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24. If n is any positive integer, then n~n 1 1! will be an
even positive integer.

25. The product of any two different prime numbers is
greater than 5.

26. There is no point ~x, y! in Quadrant I that is on the line
x 1 y 1 1 5 0.

27. The graph of x 2 y 5 1 does not pass through Quad-
rant II.

28. The graph of x 2 1 y 2 5 2x passes through the point
~1, 1!.

29. For every real number x, Ïx 2 1 1 5 x 1 1.

30. The solution set for the equation ~x 1 1!2 2 1 5
x 2 1 2x is the set of real numbers.

31. If x and y are real numbers where x , y, then
_ x 2 y _ 5 y 2 x.

32. If both x and y are negative numbers, then
_ x 1 y _ 5 2x 2 y.

33. If x and y are any real numbers, then _ x 1 y _ 5 _ x _ 1
_ y _ .

34. If x is positive and y is negative, then _ x 2 y _ 5 x 2 y.

35. A triangle with sides 3, 4, and 5 is a right triangle.

36. A triangle with sides 1, 2, and Ï3 is a right triangle.

37. The graph of x 2 1 y 2 2 2x 5 0 is a circle with center
at (21, 0).

38. The graph of 2x 2 3y 5 6 is a line passing through
(3, 2).

39. The solution set for x 2 2 2x 2 3 5 0 is $21, 3%.

40. The solution set for
2x 2 4
x 2 5

5 0 is $2, 5%.

41. The graph of ~x 2 y!~x 2 1 y 2 2 1! 5 0 consists of a
line and a circle.

Exercises 42–44 From the diagram showing m, n, p, q,
and r on the number line, determine the truth value.

42. (a) mr , 0 (b)
1
r

, 1 (c) pq , q

43. (a) _ m 1 n _ 5 n 1 m (b) _ n 2 p _ 5 n 2 p
(c) _ p 2 q _ 5 p 2 q

44. (a)
m
n

, 0 (b)
m
n

. 1 (c) r 2 p . r 2 q

Exercises 45–50 Fill in the blank so that the resulting
statement is true.

45. The graphs of 5x 1 3y 1 21 5 0 and x 2 y 2 15 5
0 intersect in Quadrant .

46. The graphs of x 2 2y 1 12 5 0 and x 1 2y 1 4 5 0
intersect in Quadrant .

47. Thegraphsofx 1 y 5 2andy 1 Ï4 2 ~x 2 2!2 5 0
intersect in Quadrant .

48. The graphs of x 2 1 y 2 5 4 and x 2 1 y 2 1 4x 5 0
intersect in Quadrant(s) .

49. The number of points of intersection of the graphs of
x 2 1 y 2 2 6x 5 0 and 2x 2 y 5 3 is .

50. The number of points of intersection of the graphs of
x 2 1 y 2 2 8x 5 0 and x 2 1 y 2 1 2x 5 8 is .

Review for Mastery

1. Is Ï9 2 4Ï5 equal to 2 2 Ï5? Explain.

2. Is Ï23 2 8Ï7 equal to Ï7 2 4? Explain.

3. Is 0.54 equal to 5
11 ? Explain.

4. Which number, p , 22
7 , or 355

113 , is the smallest? Which is
the largest?

5. Express each of the following in exact form without
using absolute value.

(a) U3 2
22
7 U (b) _ Ï8 2 3 _ (c) _ 0.36 2 0.36 _

6. Express as a fraction of two integers in lowest terms.
(a) 1.36 (b) 1.36 (c) 0.45 2 0.45

7. Enter one of the symbols , , . , or 5 in the blank so
that the resulting statement is true.
(a) 25 27 (b) Ï3 2 1 0.732
(c) _ Ï2 2 Ï8 _ Ï2

8. Subsets of real numbers are given in interval notation.
Show each on a number line.
(a) ~21, 4! (b) @21, 0# < @2, 4#
(c) @23, 1! > ~0, 3# (d) ~2`, 22# < @2, `!

9. Show the subset of real numbers on a number line.
(a) A is the set of all prime numbers less than 8.
(b) B is the set of all real numbers greater than 2 and

less than 5.
(c) C is the set of all integers greater than 23 and less

than 4.

10. For what values of x is _ x 1 3 _ 5 x 1 3?

11. For what values of x is _ x 2 3 _ 5 3 2 x?

12. How many real numbers are in the set
$x _ x 2 2 2 5 0%?
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Exercises 13–24 Solution Set for Equation Find the
solution set.

13. 3x 2 5 5 3 14. 2x 2 2 3x 5 0

15. _ x 1 1 _ 2 1 5 0 16. 2_ x 1 1 _ 2 3 5 0

17. 2x 2 2 4x 2 5 5 0 18. Ï3x 5 x 1 1

19. 3 2 2x 2 x 2 5 0 20. Ï2x 2 3 5 3

21. x 2 3 5
4
x

22. ~3 2 2x!~x 2 2 5x! 5 0

23. Ïx 2 2 2_ x _ 1 3 5 0 24. Ï~x 1 3!2 5 4

Exercises 25–28 Complex Number Arithmetic Express
in a 1 bi form where a and b are real numbers.

25.
5 1 10i

2 2 i
26. i 2 2 i 3 1 i 4

27. Ï23 Ï28 28. ~1 1 i!2 1 3i 2

Exercises 29–40 Solving Open Sentences Determine
the solution set.

29. 3x 2 4 , 5 30. 4x 2 3 # x 1 7

31. 2x 2 . 2 2 3x 32.
x 2 2 1
x 1 2

$ 0

33. 2x 2 3 .
5
x

34. x ,
1
x

35. _ x 1 1 _ 2 2 # 0 36. _ x 2 2 1 _ , 2

37. (a) _ x _ 2 x 5 2 (b) _ x _ 2 x , 2

38. (a) x 2 2 5
8
x

(b) x 2 2 $
8
x

39. (a) _ x _ 5 x (b) _ x _ . x

40. (a) x 2 2 1 5 x 1 1 (b) x 2 2 1 , x 1 1

41. For what values of x is Ï5 2 4x 2 x 2 a real number?

42. For what values of x is Ïx 2 4
x

a nonreal complex
number?

43. Find an equation for the circle with center at ~23, 2!
and radius 1.

44. Find the center and radius of the circle given by
x 2 1 y 2 2 2x 1 4y 1 1 5 0.

Exercises 45–50 Graphs and Intercepts (a) Draw a
graph. Give the coordinates of any (b) x-intercept points,
(c) y-intercept points.

45. 3x 2 2y 5 6 46. 4x 1 3y 1 6 5 0

47. ~x 2 3!2 1 ~y 1 1!2 5 4

48. x 2 1 y 2 1 2x 1 4y 1 1 5 0

49. Ï3x 1 y 5 3 50. x 2 1 y 2 5 4x

Exercises 51–54 Points of Intersection of a Half Circle
and a Line
(a) Draw graphs of the half circle and the line L on the
same screen. Determine dimensions of a window so that the
circular graph appears to be a half circle (not an ellipse).
(b) Give formulas that you are using for the half circle and
the line.
(c) In what quadrant do the graphs intersect?

51. Upper half of x 2 1 y 2 5 9, L: 2x 2 y 5 0

52. Upper half of x 2 1 y 2 2 4x 1 6y 2 3 5 0,
L: 2x 2 y 5 7

53. Lower half of x 2 1 y 2 2 4x 1 6y 2 3 5 0,
L: 2x 2 y 5 12

54. Lower half of x 2 1 y 2 5 9, L: 2x 1 y 5 0

55. (a) Draw a graph of the circle ~x 2 3!2 1
~y 2 2!2 5 4.

(b) For points A~5, 1!, B~2, 3!, and C~3, 0!, determine
which are inside the circle, outside the circle, or on
the circle.

56. A ball is dropped from the top of a building 256 feet
high. Its position at t seconds after being dropped is
given by s 5 256 2 16t 2, where s is its distance from
the ground.
(a) How long will the ball take to drop halfway to the

ground?
(b) What values of t are meaningful in the given for-

mula?

57. You mix 2 quarts of antifreeze with 3 quarts of water.
(a) What percentage antifreeze is the mixture?
(b) How much more antifreeze should be added to get

a mixture that is 60 percent antifreeze?

58. The campus bookstore is having a 25 percent off sale.
Hilary purchases a book and, after a 5 percent sales tax
is added, she pays a total of $28.98. What is the original
price of the book?

59. A car and truck are traveling along a highway in the
same direction. The car is 20 feet long and is traveling
at a speed of 60 mph (88 feet per second), while the
truck is 46 feet long and its speed is 45 mph (66 feet per
second). How many seconds will elapse from the in-
stant the car reaches the truck until the car is completely
past the truck?

60. Suppose in Exercise 59 we are not given the speed of
the truck, but we know that it takes 4 seconds for the car
to pass it. How fast is the truck traveling?

61. An equilateral triangle is inscribed in a circle with a
radius of length 8. Find the area of the region inside the
circle and outside the triangle.

62. If u 1 v 5 10 and uv 5 7, find u 2 1 v2, u 3 1 v3,
u 4 1 v4. (Hint: See Example 6 of Section 1.6.)
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63. In an equilateral triangle ABC, where each side has
length 16, let D be the foot of the perpendicular from A
to BC, and let M denote the midpoint of AD. See the
diagram. What is the length of BM?

64. A ladder is resting vertically against a wall. When the
bottom of the ladder is pulled horizontally out from the
wall a distance of 15 feet, the top of the ladder slides
down the wall a distance equal to 2

5 of the length of the
ladder. What is the length of the ladder?

65. In the diagram, ABCD is a square and point P is located
on side AB so that _PB _ 5 2 ft. and _PC _ 5 4 ft.
(a) What is the perimeter of the square?
(b) What is the area of the square?



22
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A COMMON THREAD RUNNING THROUGH MATHEMATICS is the notion of function.
This chapter introduces the basic ideas, notation, and terminology for functions in
general, and for some key classes of functions. Historically, functions have devel-
oped in different contexts. Each context has contributed a definition, and each
definition can deepen understanding. In the first two sections of the chapter we give
definitions and show how to visualize functions by means of graphs. Graphs will
then become central to every aspect of our study, for both theoretical understand-
ing and problem solving.

Lines are graphs of linear functions (Section 2.4) and parabolas are graphs of
quadratic functions (Section 2.5). We use these two types of functions and their
graphs to solve problems in Section 2.5. Section 2.6 shows how we combine func-
tions in analysis, particularly composition, which is central to the study of calculus.
Also vital for calculus (and for much of this book) is the study of inverse functions
(Section 2.7). Section 2.8 gives just a taste of the incredible variety of ways math-
ematicians use functions to describe the world.

FUNCTIONS
2.1 The World of Functions

2.2 Graphs of Functions

2.3 Transformations of Graphs

2.4 Linear Functions and Lines

2.5 Quadratic Functions, Parabolas, and Problem Solving

2.6 Combining Functions

2.7 Inverse Functions and Parametric Equations

2.8 Functions and Mathematical Models

61
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2.1 T H E W O R L D O F F U N C T I O N S

This is a very common situation in mathematics; a required quantity is
unknown to us, but we do know certain relationships in which it stands to
other quantities. From these relationships we may be able to find out the
value of the unknown quantity.

Rózsa Péter

Definition of Function

We all make daily use of the idea of correspondences. We assign a number to a
person, or a street address to a house, or a number to another number (as, 11 is the
fifth prime). The area of a square depends on (is a function of ) the side length. In
words, the area is the square of the length of a side; in symbols, A 5 s 2.

The most common rules of mathematical correspondence are given by equa-
tions. For example, if y 5 x 2 2 1, for each selected x value, we get the correspond-
ing y value by squaring the x value and then subtracting 1. If, however, for each x
value we subtract 1 and then square the result, we have a very different correspon-
dence, given by the equation y 5 ~x 2 1!2.

Computer (or calculator) terminology provides rich language to describe func-
tions. We think of x values as input values for the function, each with a correspond-
ing output. For the square root function, y 5 Ïx, when we enter 4, the output is
2. For the input 3, the display is something like 1.732050808; 22 is not an
acceptable input and the calculator gives an error message. For any given function,
the set of acceptable inputs is the domain of the function, and the set of outputs is
the range.

Definition: function, domain, and range

A function f is a correspondence between the elements of two non-empty
sets D and R, established by a rule that assigns to each element of D exactly
one element of R.

The set D is called the domain of f; the set R is called the range of f.
On a graph of y 5 f ~x!, the domain is the set of x-values of the points

of the graph; the range is the set of y-values of the points of the graph.

Functional Notation

For any element x in the domain of function f , the element that corresponds to x
is denoted f ~x!, which is read “ f of x ” or “the value of f at x.” If the rule of corres-
pondence is given by an equation such as y 5 x 2 2 1, then we may say “the
function f ~x! 5 x 2 2 1,” or “the function f given by f ~x! 5 x 2 2 1.” Other letters
can designate functions and variables, as for example,

g~u! 5 Ïu 2 2 2u 2 3 or h~x! 5
3x 2 2

4x
.

When we use notation such as y 5 x 2 2 1, we say that y depends on x, so y
is a dependent variable, and in this case x is the independent variable. In general,
the independent variable comes from the domain and the dependent variable comes
from the range. In the equation defining the area of a square, A 5 s 2, the dependent
variable is A and the side length s is the independent variable.
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Many functions that mathematicians need frequently have standard names, in-
cluding exponential, logarithmic, and trigonometric functions. Calculator keys
often use these names as labels, as 57log , 57Ï , or 57sin .

The rule of correspondence for a given function may be specified by an
equation, or it may be stated in words or presented graphically, or as a table of data.
Since a function pairs a range element to each domain element, the function may
be described as a set of ordered pairs.

cEXAMPLE 1 Domain and range Suppose the domain D of function f is
$21, 3, 5% and f assigns to each number in D its square. Evaluate f ~x! for each x in
D and find the range of f.

Solution

f ~21! 5 ~21!2 5 1 f ~3! 5 32 5 9 f ~5! 5 52 5 25

The range of f consists of the outputs, so R 5 $1, 9, 25%. b

Domain Convention

The definition of a function must include its domain. The domain can be given
explicitly (as in Example 1), or it may be clear from context, as in the function for
the area of a square where only positive side lengths have meaning. Whenever the
domain of a function is not explicitly stated, the following domain convention
applies.

Domain convention

If the domain D of a function f is not explicitly stated, assume D is the set of
all real numbers x for which f ~x! is also a real number.

To determine the domain of a function f , begin by weeding out all unacceptable
input numbers for f. The easiest things to look for are division by zero and square
roots of negative numbers.

cEXAMPLE 2 Domain and range from a graph Use a calculator graph to
determine the domain and range of the function given by f ~x! 5 Ï3 2 x 2. Find
the domain and range exactly and compare.

Solution

Graphical If we start with a window such as @210, 10# 3 @210, 10#, we see a small oval
centered near the origin. To get a better view, try a decimal window (which is an
equal scale window). The graph now appears to be most of the top half of a circle.
In Section 1.5, we observed that, because of pixel coordinate limitations, it isn’t
always possible to get a calculator graph that shows all of the picture we might like
to see. We can trace to see that the graph is defined for all x-values from about 21.7
to 1.7, with y-values from near 0 to about 1.73. If we zoom in on the right end of
the semicircle, we can get closer to the right end-point, which, to two decimal
places, appears to be 1.73, giving us a domain of @21.73, 1.73# and a range of
@0, 1.73# (although, of course, we cannot read the graph accurately enough to tell
whether either is a closed interval).

I think I always had a
fascination for numbers.
When [my grandfather]
drove along in a car, he
would factorize every car
number [three-digit license
plate] coming along. He
once actually drove into a
brick wall while multiplying
out car numbers in his
head. When I was a
teenager, I used to sing in
our church choir and the
sermons used to go on a
bit, so I used to do things
like multiply the numbers
on the hymn board, or
square all the numbers up
to a hundred. I enjoyed
playing with numbers and
puzzles.

Robin Wilson

Strategy: What kinds of
numbers have (real) square
roots? Exclude all values of
x that make 3 2 x 2 nega-
tive.
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Algebraic We know that the function is defined whenever 3 2 x 2 $ 0, and that
the maximum value occurs when x 5 0. Solving the inequality, we find 2Ï3 #

x # Ï3. The domain is the interval @2Ï3, Ï3#. Since f ~0! 5 3 and f ~6Ï3! 5
0, the range is the interval @0, Ï3#. Note that the algebraic approach clarifies what
we were seeing on our graphs; the decimal approximation for Ï3 begins 1.73. b

Functions of Algebraic Expressions

We have so far applied function rules to input numbers to get output numbers. We
often need to allow algebraic expressions as input, as well. If f ~x! 5 2x 1 4, then
f doubles the input and adds 4, whether the input is a number or an algebraic
expression.

f ~23! 5 2~23! 1 4 5 22 and f ~x 2 1! 5 2~x 2 1! 1 4 5 2x 1 2.

In calculus the definition of a derivative involves a difference quotient expressed in
terms of a function of an expression, as illustrated in the next example.

cEXAMPLE 3 Function evaluation If f ~x! 5 x 2 2 2x, then evaluate or
simplify:

(a) f ~2! (b) f ~0! (c) f ~a 1 1! (d)
f ~x 1 h! 2 f ~x!

h
.

Solution

(a) f ~2! 5 22 2 2 · 2 5 0.
(b) f ~0! 5 02 2 2 · 0 5 0.
(c) f ~a 1 1! 5 ~a 1 1!2 2 2~a 1 1! 5 ~a2 1 2a 1 1! 2 2a 2 2

5 a2 2 1

(d)
f ~x 1 h! 2 f ~x!

h
5

@~x 1 h!2 2 2~x 1 h!# 2 @x 2 2 2x#

h

5
2xh 1 h 2 2 2h

h
5 2x 1 h 2 2. b

In many cases, the rule for a function cannot be expressed by a single equation.
When different equations apply for different portions of the domain, as in Exam-
ple 4, the function is defined piecewise ~in pieces!. Other function rules are best
given verbally, as in Example 5.

cEXAMPLE 4 Piecewise-defined functions For the function

f ~x! 5 Hx 2

2 2 x
if x # 1
if x . 1

evaluate (a) f ~23!, (b) f ~1!, and (c) f ~Ï3!.

Solution

(a) and (b) Since 23 , 1 and 1 # 1, the top piece of the function definition
applies:

f ~23! 5 ~23!2 5 9 and f ~1! 5 12 5 1.

(c) Ï3 . 1, so the bottom part of the definition gives f ~Ï3! 5 2 2 Ï3. b
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Piecewise-defined functions occur in many different kinds of applications and
are used throughout calculus. While we should be able to graph such functions by
considering each piece separately, graphing calculators give us another convenient
tool to get a good picture of what is happening. The following Technology Tip
describes the process for the specific function in Example 4.

TECHNOLOGY TIP r Graphing piecewise-defined functions

The parts of the function in Example 4 are defined on limited domains, and
then the pieces are added or two functions are graphed.

TI: The function is entered as

Y1 5 (x2)(x # 1) 1 (2 2 x)(x . 1),

where the inequality signs come from the TEST menu. We have one function,
y 5 x 2, on the limited domain where x # 1, added to another function,
y 5 2 2 x, on another limited domain.

Casio: Each function is entered separately with its limited domain. The
second is added by overwriting or by putting in a Return ( 57SHIFT 57ENT ) at the
end of the first line (both end-points of intervals are needed):

Graph Y 5 X2, @25, 1#

Graph Y 5 2 2 X, @1, 5#

HP: The function is entered as an algebraic expression using the abbrevi-
ation IFTE (for IF, THEN, ELSE):

‘IFTE (X # 1, X^2, 2 2 X)’.

cEXAMPLE 5 Function defined verbally Function f is stated “ f ~x! is
the number of prime numbers less than x.” The domain of f is the set of positive
numbers. Evaluate

(a) f ~2!, (b) f ~12!, and (c) f ~5Ï2!.

Solution

(a) The value of f ~2! is the number of prime numbers less than 2. Since there are
no primes less than 2, f ~2! 5 0.

(b) There are five primes less than 12, namely 2, 3, 5, 7, and 11, so f ~12! 5 5.
(c) 5Ï2 < 7.071, so there are four primes less than 5Ï2; f ~5Ï2! 5 4.

The function f is well-defined for every positive number, but to evaluate
something like f ~14,732!, we would need an extensive table of prime numbers.
For the curious reader, f ~14,732! 5 1,724. b

The next function introduces some useful notation. First, min(a, b) denotes
the minimum of the two numbers a and b. Similarly, max(a, b) is the maximum
of a and b. If a 5 b, then min(a, b) 5 max(a, b).

cEXAMPLE 6 “Max” and “min” functions g~x! 5 min~x 1 2, 6 2 x!

(a) Evaluate g~21!, g~2!, and g~Ï5!.
(b) Write a formula for g in piecewise form and draw a graph.

Strategy: Follow the rule
for the function and count
the number of primes less
than x.



g(x) =
x + 2 if x # 2

6 – x if x . 2

(– 1, 1) (6, 0)
(0, 2)

y

x

(2, 4)
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Solution

g~21! 5 min@21 1 2, 6 2 ~21!# 5 min~1, 7! 5 1(a)
g~2! 5 min@~2 1 2, 6 2 2!# 5 min~4, 4! 5 4

g~Ï5! 5 min@Ï5 1 2, 6 2 Ï5# 5 6 2 Ï5,

because 6 2 Ï5 < 3.8 and Ï5 1 2 < 4.2.

(b) Because g~x! is always the smaller of x 1 2 and 6 2 x, we know that g~x! 5
x 1 2 when x 1 2 # 6 2 x, and g~x! 5 6 2 x otherwise. Solving the in-
equality x 1 2 # 6 2 x, we find that x # 2. Therefore,

g~x! 5 Hx 1 2 if x # 2
6 2 x if x . 2

.

Because x 1 2 5 6 2 x when x 5 2, we could have the equality with either
piece of the definition of g. The graph is shown in Figure 1. b

EXERCISES 2.1

Check Your Understanding

Exercises 1–5 True or False. Give reasons.

1. There is no function with domain $0, 1% and range $3%.

2. There is no function with domain $1, 2% and range
$3, 4, 5%.

3. If f ~x! 5 x 1 1, then f ~Ï2 1 Ï3! 5 f ~Ï2! 1
f ~Ï3!.

4. In interval notation, the domain of f ~x! 5
x

Ï1 2 x
is

(2`, 1).

5. If f ~u! 5
1 1 u
1 2 u

then f ~2u! 5
1

f ~u!
.

Exercises 6–10 Fill in the blank so that the resulting
statement is true, where f ~x! 5 2x 1 3.

6. The largest prime number less than f ~11! is .

7. The number of primes between f ~6! and f ~10! is
.

8. The smallest even number greater than f ~7! is .

9. f ~3! 1 f ~23! 5 .

10. The domain of f is .

Develop Mastery

Exercises 1–4 Write the range (in set notation) of the
function f, where D is the domain.

1. f ~x! 5 4x 2. f ~x! 5 x 2 1 1
D 5 $21, 0, 1% D 5 $21, 0, 1, 2%

3. f ~x! 5
x 2

x 2 1 2
4. f ~x! 5 Ïx 2 1 4x

D 5 $23, 22, 2, 3% D 5 $24, 0, 4%

FIGURE 1

Exercises 5–12 (a) Evaluate f as indicated. (b) Write the
domain of f in set notation using the domain convention.
(c) Find the zero(s) of f.

5. f ~x! 5 3x 1 4; f ~21!

6. f ~x! 5
x

x 2 2
; f ~22!

7. f ~x! 5
x 1 1
x 2 1 1

; f ~4!

8. f ~x! 5 x 1 Ïx 1 1; f ~3!

9. f ~x! 5
Ï1 2 x

x 1 2
; f ~23!

10. f ~x! 5
Ïx 1 1

Ï4 2 x
; f ~1!

11. f ~x! 5 Ïx 2 1 3x 2 4 ; f ~25!

12. f ~x! 5 Ï4 2 3x 2 x 2 ; f ~24!

Exercises 13–16 Evaluate the indicated expression.

13. f ~x! 5
x 1 1

x 2 2 2x 1 1
; f ~x 1 1!

14. f ~x! 5 1 1 Ï2x; f ~24x 2!

15. g~x! 5
x

Ïx 2 1 4
; g~2x!

16. g~x! 5 x 2 1 x; g~x 1 1! 2 g~x!

Exercises 17–20 Evaluate f at the indicated numbers. If
the result is a rational number, leave it in exact form;
otherwise approximate it to two decimal places.

17. f ~x! 5 5x 1 Ï3; f ~24!, fS2Ï3
5 D
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18. f ~x! 5 Ïx 2 1 4; f ~Ï3!, f ~p!

19. g~x! 5 Ï25 2 x 2; g~24!, g~1.3!

20. g~x! 5
x

x 1 1
; g~23!, g~Ï3!

Exercises 21–26 Difference Quotient Express the dif-

ference quotient,
f ~x 1 h! 2 f ~x!

h
, in simplest form.

21. f ~x! 5 3x 2 4 22. f ~x! 5 2 2 3x

23. f ~x! 5 x 2 2 2x 24. f ~x! 5 2x 2 1 x 1 3

25. f ~x! 5 1
x 26. f ~x! 5 1 2 3

x

Exercises 27–30 Describe Verbally Express the rule of
correspondence for f as a verbal statement, that is, translate
the rule into English.

27. f ~x! 5 3x 1 4 28. g~x! 5 9 2 x 2

29. f ~x! 5 4 2 Ïx 30. f ~x! 5 Ï4 1 x 2

Exercises 31–33 Piecewise Function Evaluate the
function as indicated in exact form.

31. f ~x! 5 H x 2

2x
if x $ 0
if x , 0

f ~3!, f ~24!, f ~2 2 Ï5!

32. g~x! 5 H 1
2x 2

if x $ 0
if x , 0

g~2Ï2!, g~3!, g~Ï17 2 4!

33. f ~x! 5 H 1
21

if x is an integer
if x is not an integer

f ~23!, f ~3
5!, f ~Ï7!

Exercises 34–37 Domain Use a graph to help you find
the domain of f. Give results to one decimal place when
needed. (Hint: Draw a graph of the expression under the
square root and see for what values it is non-negative.)

34. f ~x! 5 Ïx 2 2 2x 2 10

35. f ~x! 5 Ï10 1 2x 2 x 2

36. f ~x! 5 Ï4 2 x 2 2_ x _

37. f ~x! 5 Ï4 1 x 2 2_ x _

Exercises 38–42 Verbal Rule Evaluate as indicated.

38. The function f ~x! is the greatest integer that is less
than x.
(a) f ~3! (b) f ~4.3! (c) f ~21.5!

(d) f ~2 2 Ï5!

39. When f is applied to any quantity, it squares that quan-
tity and then subtracts 4 from the result.
(a) f ~3! (b) f ~2Ï3! (c) f ~x 2!
(d) f ~1 2 x!

40. When g is applied to any quantity, it subtracts the
square root of that quantity from 4 and then divides the
result by 3.
(a) g~16! (b) g~3! (c) g~1.69! (d) g~x 2!

41. The rule for the function f is: f ~x! is equal to the smallest
prime number greater than or equal to x.
(a) f ~0! (b) f ~3.4! (c) f ~2 1 Ï7!
(d) f ~43!

42. The domain of f is the set of positive integers; f ~x! is the
remainder when x is divided by 3.
(a) f ~21! (b) f ~2! (c) f ~5!
(d) f ~4736! (e) What is the range of f ?

43. Find all values of x (if any) for which f ~x! 5 4.

(a) f ~x! 5 3x 1 2 (b) f ~x! 5
1

2x 2 1
(c) f ~x! 5 Ïx 1 4 (d) f ~x! 5 2x 2 2 x 2 1

44. If f is a function and f ~2x 2 1! 5 4x 2 2 2x 2 6, find
(a) f ~2! (b) f ~23! (c) a formula for f ~u!.

45. If f is a function and f ~x 1 1! 5 2x 2 1 3x 2 2, find
(a) a formula for f ~u! (b) what are the zeros of f ?

Exercises 46–47 Evaluate. Then write the equation for g
in piecewise form.

46. g~x! 5 min~2x 2 3, 6 2 x!
(a) g~22! (b) g~0! (c) g~3! (d) g~5!

47. g~x! 5 max~1 2 2x, 2x 1 3!
(a) g~23! (b) g~21! (c) g~0! (d) g~Ï2!

Exercises 48–52 Write an equation that expresses the de-
pendent variable as a function of the independent variable.

48. The radius r of a circle depends upon its
(a) diameter d (b) circumference C.

49. The perimeter P of a square depends upon its side
length s.

50. The hypotenuse of a right triangle is 4 and one leg has
length x. The area A of the triangle depends upon x.
What is the domain of the area function?

51. The area of a square depends upon its perimeter P.

52. The area A of a circle depends upon its circumfer-
ence C.

53. A rectangle having one side of length x is inscribed in a
circle of radius 5.
(a) Draw diagrams for x 5 1, 5, 9. In each case com-

pute the area of the rectangle.
(b) Find a formula that gives the area A of the rectangle

as a function of x.

54. Point P~x, 0! is on the x-axis, and point A~0, 1! is on the
y-axis.
(a) Draw a diagram showing point A and points P when

x is 1, when x is 23, and for an arbitrary x.
(b) What is the distance from A to P when x is 2?
(c) Determine an equation giving the distance d from A

to P as a function of x. What is the domain of this
function?

(d) Evaluate d when x is 0, 2, 24.



x

x

x
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(Length of
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x
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55. (a) Give an equation that describes the distance d be-
tween points A~0, 1! and Q~x, 1! as a function of x.

(b) Evaluate the distance function when x is 1, 23.
(c) What is the domain of the distance function?

56. Two cars leave at noon from the same point, one travel-
ing east at 50 mph, the other traveling due north at
60 mph.
(a) How far apart are they at 1 PM? at 1:30 PM?
(b) If t is the number of hours after noon, find an equa-

tion expressing the distance between the cars as a
function of t.

57. Overtime An auto mechanic is paid $18 per hour
when he works no more than 40 hours a week. When he
works more than 40 hours a week, he earns time-and-a-
half for each additional hour.
(a) How much does he earn in a 32-hour week? a 48-

hour week?
(b) Find an equation expressing his wages W as a func-

tion of the number of hours x in a work week.

58. A window has the shape indicated in the diagram. The
perimeter of the window (total distance around) is fixed
at 16 feet. Let x denote the radius of the semicircle and
h the height of the rectangle.

(a) Find an equation giving h as a function of x. What
is the domain of the function?

(b) Express the area A of the window as a function of x.

59. Length of Shadow A man 6 feet tall is walking away
from a streetlight 16 feet high so that his shadow is
directly in front of him. Let x denote his distance from
the base of the light as shown in the diagram.

(a) Express the length L of his shadow as a function
of x.

(b) How far away from the lamp must he be to cast a
shadow 6 feet long?

60. A square is inscribed in an isosceles right triangle as
shown in the diagram. Let x denote the length of each
leg of the triangle. Express as a function of x:

(a) The perimeter P of the triangle.
(b) The area A of the triangle.
(c) The area K of the square.

61. A rectangle is inscribed in a right triangle ABC as
shown in the diagram, where _ AC _ 5 15, _ BC _ 5 8,
and x is the length of one side of the rectangle. Express
the area A of the rectangle as a function of x. What is
the domain of this function?

62. A square is inscribed in an isosceles triangle of base 12
as shown in the diagram. Let h denote the length of the
altitude drawn to the base of the triangle. Express as a
function of h:
(a) The perimeter P of the triangle.
(b) The perimeter S of the square.
(c) The area A of the square.
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2.2 G R A P H S O F F U N C T I O N S

One can envisage that mathematical theory will go on being elaborated and
extended indefinitely. How strange that the results of just the first few
centuries of mathematical endeavor are enough to achieve such enormously
impressive results in physics.

P.W.C. Davies

Graph of a Function

A function f assigns a range element to each domain element, so it is often useful
to think of the function as pairing numbers (if the domain and range are sets of
numbers). The function is completely determined by these ordered pairs. In math-
ematical notation,

f 5 $~x, f ~x!! _ x [ D%, where D is the domain of f.

When the function is defined by an equation, y 5 f ~x!, then

f 5 $~x, y! _ y 5 f ~x!, x [ D%.

The ordered pairs that define f look like coordinates of points in the plane, and we
can use this feature to define the graph of a function.

Definition: graph of a function

If f is a function with domain D, then the graph of f is the set of points with
coordinates ~x, y! such that x [ D and y 5 f ~x!.

An accurate graph of a function makes both the domain and the range of the
function apparent. The domain is the set of x values of points on the graph, and the
range is the set of y values.

Function Properties and Graphs

It is natural to think of drawing a graph by plotting points and connecting them in
an appropriate way to get a curve. This is precisely how a computer or graphing
calculator shows graphs on a screen. Without the capability to compute hundreds
of function values quickly, however, pencil and paper techniques are time consum-
ing and tedious. With or without access to the tools of technology, some additional
tools can help us draw graphs and understand the properties of functions.

In this section, we examine symmetry properties of graphs and introduce the
notion of even and odd functions. Also, certain core graphs are given. Knowing a
single core graph and how it is affected by simple changes, we can draw graphs of
a whole family of related functions.

Core Graphs

There are a few graphs that should be familiar to every precalculus student. We will
do lots of graphing with calculators and the aid of technology, but you should be
able to sketch each of the following core graphs without any help. Knowing the
properties of these simple functions and some of their key features will make
discussions of all kinds of functional behavior more meaningful. Use your graphing
calculator as needed to help absorb the ideas, but make yourself confident that you
know the graphs of the functions in Figure 2.

I think that starting
mathematics early had
given me a certain
self-reliance. I felt you
didn’t learn anything in
class, you just figured it out
yourself.

Paul Cohen
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Intercepts, Symmetry, Even and Odd Functions

We are always interested in the points where a graph meets the coordinate axes. If
0 is in the domain of f , then f ~0! is called the y-intercept and the point ~0, f ~0!! is
the y-intercept point. A graph need not meet the x-axis, but if it does, any points
where it does are called x-intercept points, and if f ~c! 5 0, then the number c is
called an x-intercept.

Given a point A~a, b!, three symmetrically located points can help in graphing.
We can reflect A in the y-axis to the point C~2a, b!, in the x-axis to the point
D~a, 2b! or in the origin to the point E~2a, 2b!. Figure 3a shows a first-quadrant
point A and its reflections.

The graph of a function may have all sorts of symmetry properties (or none).
Suppose that for every arbitrary point ~a, b! on the graph of a function, the graph
also contains the reflection of ~a, b! in the y-axis. That is, whenever ~a, b! is on the
graph, ~2a, b! is also on the graph. Then we say that the graph is symmetric about
the y -axis and that the function is an even function. In functional notation, since
to say that ~a, b! is on the graph means that f ~a! 5 b, a function is even when
f ~2x! 5 f ~x!. See Figure 3b.

If, whenever ~a, b! is on the graph of f , ~2a, 2b! is also on the graph, then
the graph is symmetric about the origin and the function is an odd function.
In functional notation, a function is odd if f ~2x! 5 2 f ~x! for every x in D. See
Figure 3c.

FIGURE 2
Catalog of core graphs
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The catalog of core graphs in Figure 2 has examples that should help you
remember the distinction between even and odd functions. The parabola y 5 x 2

and the absolute value function y 5 _ x _ are even; the graphs are clearly symmetric
about the y-axis. The line y 5 x, the cubic y 5 x 3, and the reciprocal y 5 1

x are all
symmetric about the origin; the functions are odd. The square root function
y 5 Ïx is neither odd nor even. We sum up in the following.

Definition: even and odd functions, symmetry properties

Suppose f is a function with domain D. If, for every x in D, we have

f ~2x! 5 f ~x!, then f is an even function;
f ~2x! 5 2 f ~x!, then f is an odd function.

The graph of an even function is symmetric about the y-axis.
The graph of an odd function is symmetric about the origin.

In addition to just looking at a single graph, graphing calculators can be used
to see whether or not f ~2x! 5 f ~x! or f ~2x! 5 2 f ~x!; compare the graph of
y 1 5 f ~x! with the graph of y 2 5 f (2x), where we replace each x in f ~x!
by 2x.

cEXAMPLE 1 Even and odd functions Sketch the graph and determine,
both graphically and algebraically, whether the function is odd or even.

(a) f (x! 5 x 2 1 1 (b) g(x! 5 x 3 2 x

Solution

(a) Algebraic f ~2x! 5 ~2x!2 1 1 5 x 2 1 1, so f ~2x! 5 f ~x!, and by
definition, f is an even function.

Graphical The graph, shown in Figure 4(a), is symmetric about the y-axis
and is clearly the graph of an even function.

(b) Algebraic For the function g, we have g~2x! 5 ~2x!3 2 ~2x! 52x 3 1
x 5 2~x 3 2 x! 5 2g~x!, and so from the definition, g is an odd function.

Graphical The calculator confirms that the graph is symmetric about the
origin, and hence the graph of an odd function. See Figure 4b. b

FIGURE 3
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A function may be neither even nor odd, as the next example shows.

cEXAMPLE 2 Neither even nor odd Show that the function is neither even
nor odd, and sketch its graph

(a) F~x! 5 2x 2 4 (b) G~x! 5 Ïx

Solution
Apply the definitions for even and odd functions.

F~2x! 5 2~2x! 2 4 5 22x 2 4 2F~x! 5 22x 1 4

G~2x! 5 Ï2x 2G~x! 5 2Ïx

Since F~2x! 5/ F~x! and F~2x! 5/ 2F~x!, F is neither even nor odd, and simi-
larly, G is neither even nor odd.

To graph the two functions, plot points as in Figure 5. b

FIGURE 4

F~x! 5 2x 2 4 is neither even
nor odd.

G~x! 5 Ïx is neither even nor
odd.

FIGURE 5
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Piecewise, Step Functions, and Calculator Graphs

We have already seen some examples of an important class of functions called
piecewise functions because they are defined in pieces (with different rules for
different portions of their domains). The first example we encountered is the
absolute value function, even though we did not recognize it when we first intro-
duced absolute values. Among the properties of absolute values in Section 1.3 we
listed the equality _ x _ 5 Ïx 2, which can be justified by considering values, but it
may also be helpful to get calculator reinforcement. Graph both Y 5 ABS(X) and Y 5 ÏX2

and see that the graphs are identical. The function can also be written in pieces:

y 5 _ x _ 5 Ïx 2 5 H x if x $ 0
2x if x , 0

The graph consists of part of the line y 5 2x and part of the line y 5 x.
You may want to refer again to the Technology Tip in Section 2.1 to make sure

that you know how to graph piecewise-defined functions on your calculator.

cEXAMPLE 3 Calculator graphs of piecewise functions Draw a calcula-
tor graph of the piecewise function from Example 4 of Section 2.1,

f ~x! 5 H x 2

2 2 x
if x # 1
if x . 1

Solution
The graph is shown in Figure 6. You may wish to experiment with different win-
dows to see how changing the view alters the shape of the pieces we see. Whatever
the window, however, the graph of f consists of two pieces that meet at the point
(1, 1). b

Greatest Integer Function

Another piecewise-defined function that is useful in many different contexts is the
greatest integer function, which is programmed into most graphing calculators,
defined as the largest integer that is less than or equal to x. Any real number x is
either an integer or it lies between two integers. If n # x , n 1 1, the largest
integer less than or equal to x is n, so for such an x, Int~x! 5 n. The function is
denoted by Int~x! on graphing calculators, or sometimes Floor~x!, or, in older
books, by @x#.

Definition: The greatest integer function

The greatest integer function of x, denoted by Int~x!, is the largest integer
that is less than or equal to x.

As examples,

Int~1! 5 1, and for any integer n, Int~n! 5 n,

Int~0.3! 5 0, and for any number x between 0 and 1, Int~x! 5 0,

Int~p! 5 3 because 3 is the largest integer less than p ,

Int~2p! 5 24 because 2p is between 24 and 23.

Postal rates are examples of functions defined piecewise, where the definition
can make use of Int~x!. Mailing cost is a function of the weight of a letter. It remains
constant for a while and then suddenly jumps to a new value.

FIGURE 6
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cEXAMPLE 4 The postage function In 1995, postal rates for first class
letters delivered within the United States were set as follows: the cost is 32 cents
for anything less than 1 ounce; for each additional ounce (up to 11 ounces) the cost
increases in increments of 23 cents. Express the cost C (in cents) of first-class
postage as a function of the weight W (ounces) and draw a graph.

Solution
In mathematical language, we can express the cost C as a function of the weight
W either piecewise, or by using the greatest integer function.

C 5 32 1 23 Int~W!, 0 , W , 11.

The graph of the cost function is shown in Figure 7. b

TECHNOLOGY TIP r Graphing in dot mode

In connected mode, a calculator graph of a piecewise-defined function can
make it appear as if there is a vertical piece of the graph connecting pieces
that should not be connected. Don’t be fooled.

There can be a “jump” from one piece to another between pixels. When
y-values differ in adjacent pixel columns, the calculator connects pixels in
vertical columns joining separated points.

It is often helpful to change to a non-connected format to see jumps in
graphs of piecewise functions. In calculator graphs, remember that unless the
calculator is in dot mode, the calculator connects separated pixels in
adjacent columns.

Not all equations define functions, and some familiar graphs are not graphs of
functions. A function assigns to each domain element exactly one element of the
range. This implies that for any function f and any given domain number c, there
is exactly one point, ~c, f ~c!!, on the graph of f. A vertical line can meet the graph
of f in at most one point, which is the basis for the following handy test.

Vertical line test

For a given graph, if at each number c of the domain, the vertical line x 5 c
intersects the graph in exactly one point, then the graph represents the graph
of a function. If some vertical line meets a graph in more than a single point,
then the graph is not the graph of a function.

cEXAMPLE 5 Vertical line test Use a calculator to sketch a graph of all
points that satisfy the equation y 2 5 x. Use the vertical line test to verify that the
graph is not that of a function.

Solution
In function mode, we cannot enter equations except in the form of Y 5 . . . , so when
we solve the given equation for y, we get y 5 6Ïx. On the same screen we graph
Y1 5 ÏX and Y2 5 ÏX. The two graphs together form a parabola opening to the right,
as shown in Figure 8. Since any vertical line through the positive x-axis meets the
graph twice, the vertical line test tells us that the graph is not the graph of a
function. b

FIGURE 7
C~W ! 5 32 1 23 Int ~W !

FIGURE 8
Vertical line meets graph in

two places.
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EXERCISES 2.2

Check Your Understanding

Exercises 1–6 True or False. Give reasons.

1. The graph of a function cannot have more than one y-
intercept point.

2. The graph of y 5
x

_ x _
is identical to the graph of

y 5
_ x _

x
.

3. For the greatest integer function f ~x! 5 Int~x!,
(a) f ~22.5! 5 2 f ~2.5! (b) f ~23! 5 2 f ~3!.

4. The distance between the x- and y-intercept points of
the graph of y 5 1 2 x is Ï2.

5. For any function f , the function g~x! 5 f ~x 2! is an even
function.

6. For any even function f , if (22, 4) is on the graph of f ,
then (22, 24) must also be on the graph of f.

Exercises 7–10 Fill in the blank so that the following
statement is true. “If you draw a graph of function f using
[210, 10] 3 [210, 10], then the number of x-intercept
points shown in the display is .”

7. f ~x! 5 0.3x 2 2 4x 2 5

8. f ~x! 5 0.5x 2 1 4x 1 4

9. f ~x! 5 2_ x _ 2 3_ x 2 3 _

10. f ~x! 5 3_ x 2 6 _ 2 2_ x 2 1 _

Develop Mastery

Exercises 1–4 Isolated Points A function is given along
with its domain. Draw a graph of the function. The graph
consists of isolated points. State the range of the function.

1. f ~x! 5 2x 2 1; D 5 $21, 2, 3%

2. f ~x! 5 4 2 x 2; D 5 $21, 0, 1, 2%

3. f ~x! 5 x 3 2 x; D 5 $22, 21, 0, 1, 2%

4. f ~x! 5 Ïx; D 5 $1, 2, 4%

Exercises 5–8 Make a table of several ~x, y! ordered pairs
that satisfy the equation. Plot the points in your table and
draw a graph.

5. y 5 2x 2 4 6. y 5 4 2 2x

7. y 5 x 2 2 x 8. y 5 2x 2 1 4x

Exercises 9–12 Find the value of x or y so that point P is
on the graph of f.

9. f ~x! 5 x 2 2 4x 2 3; P~2, y!

10. f ~x! 5 Ï1 2 4x; P~23, y!

11. f ~x! 5 3x 2 2; P~x, 4!

12. f ~x! 5 x 2 2 2x 2 8; P~x,25!

Exercises 13–16 Odd, Even Determine whether func-
tion f is odd, even, or neither. Do the same for g. First draw
a graph then use algebra to support your conclusion.

13. f ~x! 5 x 4 2 3x 2, g~x! 5 Ïx 2 1

14. f ~x! 5 x 2 x 3, g~x! 5 x 2 1 2_ x _ 23

15. f ~x! 5 x 3 2 1, g~x! 5 x 3 2 2x

16. f ~x! 5 ~x 1 1!~x 2 1!, g~x! 5 3 2 _ x _

Exercises 17–28 Graphs Draw a graph of f. Give the
coordinates of the x- and y-intercept points.

17. f ~x! 5 ~x 1 2!2 18. f ~x! 5 x 3 2 2

19. g~x! 5 Ïx 1 2 20. g~x! 5
3Ï2x

21. f ~x! 5 _ x 2 1 _ 2 1 22. g~x! 5
1
2

Ï16 2 x 2

23. g~x! 5 ~x 1 1!2 2 2 24. g~x! 5 22Ï4 2 x 2

25. f ~x! 5 2~x 1 2!2 26. g~x! 5 Ïx 1 2 1 1

27. g~x! 5 2_ x _ 1 2

28. f ~x! 5 Ï8 1 2x 2 x 2

Exercises 29–30 Calculator Graph Suppose you are in-
terested in using a graph to help you get information about
the zeros of f. Which of the given windows would you use?

29. f ~x! 5 2x 2 1 47x 2 75

(i) @210, 10# 3 @210, 10#

(ii) @220, 10# 3 @2100, 100#

(iii) @240, 10# 3 @2400, 200#

30. f ~x! 5 x 2 5 _ x _ 1 100

(i) @210, 10# 3 @210, 10#

(ii) @216, 20# 3 @25, 30#

(iii) @220, 30# 3 @25, 100#

Exercises 31–34 Window Dimensions The graph of f
has two x-intercept points and either a highest or lowest
point. Give the dimensions of a window for which the graph
of f will show this information. (Answers may vary.)

31. f ~x! 5 x 2 2 25x 1 150

32. f ~x! 5 40 2 18x 2 x 2

33. f ~x! 5 x 2 4_ x _ 1 45

34. f ~x! 5 2_ x 1 8 _ 2 x 2 40

Exercises 35–38 Limited Domain (a) Draw a graph
of f, with the indicated domain. (b) Find the range of f.

35. D 5 $x _ x $ 0%; f ~x! 5 2x 2 3

36. D 5 $x _ x , 0%; f ~x! 5 1 2 x

37. D 5 $x _ x . 1%; f ~x! 5 x 2

38. D 5 $x _ x # 2%; f ~x! 5 x 2
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Exercises 39–41 Piecewise Graph Draw a graph of the
given function and determine the range.

39. f ~x! 5 Hx 2,
2 2 x,

if x $ 0
if x , 0

40. f ~x! 5 Hx
1 1 x

if x # 0
if x . 0

41. f ~x! 5 Hx 2 1 2x
4 2 x

if x , 1
if x $ 1

Exercises 42–48 Refer to the function f whose graph is
shown in the diagram with domain @22, 6#.

42. From the graph, give f ~22!, f ~0!, and f ~4!.

43. Order the following numbers from smallest to largest:
f ~21!, f ~1

2!, f ~3!, f ~9
2!.

44. (a) What is the maximum value (the largest value) of
f ~x!?

(b) What is the minimum value (the smallest value) of
f ~x!?

(c) What is the range of f ?

45. Give the coordinates of the highest and the lowest point
on the graph.

46. Give the coordinates of the y-intercept point and the
x-intercept points.

47. (a) For what values of x is f ~x! negative?
(b) For what values of x is f ~x! positive?

48. True or false. Explain.
(a) f ~22! is less than f ~3!.
(b) f ~4.3! is a negative number.
(c) f ~21! 2 f ~Ï3! is a negative number.
(d) There are three x-intercept points for the graph

of f.

49. Use the vertical line test to determine which of these
graphs are graphs of functions that have x as the inde-
pendent variable.

Exercises 50–51 Interesting Functions
(a) Give the domain for f and for g. Evaluate f at x 5 0,

4,10, 20, 40, 56.
(b) Draw graphs of f and g on separate screens.
(c) Look at the graphs and describe any interesting

features.
(d) Are functions f and g identical? Explain.
(e) What is the solution set for f ~x! 5 3? f ~x! 5 4?

50. f ~x! 5
1
2

~Ïx 1 Ïx 1 64 2 16Ïx!

g~x! 5
1
2

~Ïx 1 _ Ïx 2 8 _ !

51. f ~x! 5
1
5

~Ïx 1 200 1 Ïx 1 600 2 40Ïx 1 200!

g~x! 5
1
5

~Ïx 1 200 1 _ Ïx 1 200 2 20 _ !

Exercises 52–53 Functions Involving Abs
(a) Draw a graph of f. Use a decimal window.
(b) Use the graph to find the solution set for f ~x! # 0.

52. f ~x! 5 x 2 _ x 1 3 _ 1 _ x 2 4 _ 2 1

53. f ~x! 5 _ x 1 4 _ 2 _ x 2 3 _ 2 x 2 1

Exercises 54–55 (a) Evaluate f at x 5 25, 22, 0, 3.5.
(b) Give a formula for f in piecewise form. (c) Use part (b)
to draw a graph of f.

54. f ~x! 5 min~2x 2 3, 6 2 x!

55. f ~x! 5 max~x 2 2, 22x 1 7!
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Exercises 56–59 Graphs Involving Int Draw a graph
of f. Use dot mode and a decimal window. (a) What is the
range of f? (b) What is the solution set for f ~x! 5 5?

56. f ~x! 5 Int~x 2 2!

57. f ~x! 5 Int~x 1 2! 2 3

58. f ~x! 5 Int~0.5x! 1 3

59. f ~x! 5 Int~2x! 2 Int~x!

Exercises 60–63 Equation Involving [x] Draw a graph
of f. Use dot mode and a decimal window. Find the solution
set for the given equation. Note: [x] is the same as Int (x).

60. f ~x! 5 @x# 2 1; f ~x! 5 2

61. f ~x! 5 @x 2 1#; f ~x! 5 2

62. f ~x! 5 ~21!@x#; f ~x! 5 21

63. f ~x! 5 0.5x 2 @0.5x#; f ~x! 5 0

Exercises 64–67 Solution Set Find the solution set for
the open sentence.

64. 2~Int~x!!2 2 5Int~x! 2 12 5 0. (Hint: Factor.)

65. 3@x# 2 1 5 0

66. Int~Ïp! 5 4 where p is a prime.

67. Int~x! 2 3 # 0

68. Postage Costs This section discussed postage charges.
When a parcel or letter exceeds 11 ounces, a different
rule applies for determining mailing cost as a function
of weight. The rule depends upon mailing zones as well
as weight and is given in tabular form. For example,
when mailing from Zone 1 to Zone 8, the table below
lists charges where w is the weight (not exceeding the
number of pounds) and c is the cost in dollars.

(a) Draw a graph of c as a function of w.
(b) What is the cost of mailing a package that weighs

2 pounds 5 ounces? 4 pounds 3 ounces?
(c) If the cost of mailing a package is $6.00, what do

we know about its weight?

w c

Pounds Dollars

1 3.00

2 3.00

3 4.00

4 5.00

5 6.00

6 8.00

7 9.80

8 11.60

69. Bug on a Ladder A bug starts at point (1, 0) and
travels along the line segment AB toward point (0, 2) as
shown in the diagram. If P~x, y! denotes the location of
the bug when it has traveled a distance d from (1, 0),
express the coordinates x and y as functions of the
distance d.

Exercises 70–71 Parking Costs

70. A parking garage charges $2.00 for parking up to one
hour and $0.50 for each additional hour (or fraction
thereof ), with a maximum of $8.00 if you park 12 hours
or longer. Suppose x denotes the number of hours you
park and y (dollars) the corresponding cost. Then y is a
function of x given in piecewise form:

y 5 H2 1 0.50 · Int~x!

8
if x , 12
if x $ 12

(a) Draw a graph of this function. Use dot mode.
(b) If you have only $5.00, how long can you park?

71. A parking garage charges $3.00 for parking up to one
hour and $0.30 for each additional fifteen minutes (or
fraction thereof ), with a maximum of $10. Suppose x
denotes the number of hours you park and y (dollars) the
corresponding cost. Then y is a function of x given in
piecewise form:

y 5 53
2.10 1 0.30 · Int~4x!

10

if x , 1
if 1 # x , 6.75
if x $ 6.75

(a) Use several values of x to check this formula.
(b) What is the cost for 4 hours and 20 minutes?
(c) For what values of x is the cost $4.50? Check using

the graph. Use dot mode and a decimal window.
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72. Overtime Pay A carpenter earns $20 per hour when
he works 40 hours or fewer per week, and time-and-a-
half for the number of hours he works above 40. Let x
denote the number of hours he works in a given week
and y (dollars) the corresponding pay.
(a) Write a piecewise formula giving y as a function of

x where 0 # x # 168.
(b) If his pay for the week is $1070, how many hours

did he work?

2.3 T R A N S F O R M A T I O N S O F G R A P H S

Formal logic is an impoverished way of describing human thought, and the
practice of mathematics goes far beyond a set of algorithmic rules....
Mathematics may indeed reflect the operations of the brain, but both brain
and mind are far richer in their nature than is suggested by any structure of
algorithms and logical operations.

F. David Peat

[At thirteen] it was hard Relationships among graphs will be used throughout precalculus and calculus.
for me to imagine original

Whole families of graphs can be related to each other through a few transforma-mathematics, thinking of
tions. When we understand the properties of the graph of one particular functionsomething that no one else
f , we can immediately get information about domain and range, about interceptshad thought of before.

When I went to college...I and symmetry, for any function whose graph is the graph of f shifted up or down,
thought I might become a right or left, reflected, squeezed or stretched.
biologist. I was interested

Sometimes we work with a family related to one of the core graphs shown inin many different things. I
the catalog in Figure 2, but more generally we simply ask how the graphs of twostudied psychology and
functions are related to each other.philosophy, for instance.

We didn’t have grades, but
we did have written Vertical Shifts
evaluations. And I kept
getting the message that All of the transformations we consider can be justified algebraically. For example,
my true talents didn’t lie in the graph of a function y 5 f ~x! consists of all the points ~x, y! whose coordinates
subject X but in

satisfy the equation. If ~x, y! is on the graph of y 5 f ~x!, then the coordinatesmathematics.
~x, y 2 1! satisfy the equation y 5 f ~x! 2 1. Each point ~x, y 2 1! is one unitWilliam Thurston
below the point ~x, y!, so we have an observation that applies to any graph. The
graph of y 5 f ~x! 2 1 is obtained by shifting the graph of y 5 f ~x! down 1 unit.

The same argument applies for any positive number c.

Vertical shifts, c . 0
From the graph of y 5 f ~x!, the graph of

y 5 f ~x! 1 c is shifted up c units,

y 5 f ~x! 2 c is shifted down c units.

Although we can give an argument to explain the effect of each transformation, we
are more concerned with having you do enough examples to see for yourself what

73. Telephone Call Cost Suppose a telephone company
charges 60 cents for a call up to one minute, and 50
cents for each additional minute (or fraction thereof ).
Let x denote the number of minutes you talk and y
(dollars) the corresponding cost. Then y is a function of
x given by

y 5 0.60 1 0.50Int~x!.

(a) Check several values of x to see that this formula
gives what you would expect.

(b) Suppose you do not want to spend more than $5.00
for a call. How long can you talk?
Use a graph in dot mode with a decimal window.
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happens for each kind of transformation we examine. Accordingly, we will show
lots of graphs, but for your benefit, we strongly encourage you to use your graphing
calculator to draw each graph yourself.

The first example asks for graphs of vertical shifts of two core graphs. While
it is good practice to graph such graphs on your calculator, you should be able to
draw these graphs without technology. Look at the equation, recognize the graph
as a vertical shift, and make a rough sketch.

cEXAMPLE 1 Vertical shifts Identify the function as a vertical shift of a
core graph (Figure 2 in Section 2.2) and sketch.

(a) y 5 x 2 1 1, y 5 x 2 2 2, y 5 x 2 1 1
2

(b) y 5 _ x _ 2 2, y 5 _ x _ 1 1, y 5 _ x _ 2 2
3

Solution

(a) Each graph is a vertical translation of the core parabola of Figure 2b. The first
is shifted 1 unit up, the second 2 units down, and the third is 1

2 up. The three
graphs are labeled in Figure 9.

(b) Each is a vertical shift of the core absolute value graph of Figure 2d. The
absolute value graphs are shown in Figure 10. b

FIGURE 9
Vertical shifts of f ~x! 5 x 2

FIGURE 10
Vertical shifts of f ~x! 5 _ x _
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Horizontal Shifts

Some operations are applied to the “outside” of a function. For example,

y 5 f ~x! 1 3, y 5 2 f ~x!, y 5 _ f ~x! _ .

The effect of such operations is to change the graph vertically. Other operations
apply to the “inside” of the function, as

y 5 f ~x 1 3!, y 5 f ~2x!, y 5 f ~_ x _ !.

In the equation y 5 f ~u!, u is called the argument of the function. In contrast to
operations that affect a graph vertically, we have the following useful observation.

“Outside-inside operations”

Operations applied to the “outside” of a function affect the vertical aspects
of the graph.

Operations applied to the “inside” (argument) of a function affect the
horizontal aspects of the graph.

cEXAMPLE 2 Horizontal shifts Sketch graphs of

(a) y 5 ~x 2 2!2, y 5 ~x 1 1
2!

2, y 5 x 2 2 2x 1 1

(b) y 5 Ïx 1 1, y 5 Ïx 2 2
3 , y 5 Ïx 1 3

Solution

(a) The first two are obviously horizontal shifts of the core parabola y 5 x 2, 2
units right and 1

2
unit left, respectively. For the third function, we must recog-

nize that x 2 2 2x 1 1 5 ~x 2 1!2, and so shift the graph of y 5 x 2 right 1
unit. We have the three graphs labeled in Figure 11. We should note that the
calculator will provide the same graph, whether written y 5 x 2 2 2x 1 1 or
y 5 ~x 2 1!2, and we might recognize the graph as a shifted parabola only
after seeing the graph.

(b) Be careful with parentheses; note the difference between Y 5 ÏX 1 1 (a vertical
shift), and Y 5 Ï(X 1 1) (a horizontal shift). Each graph in this part is a horizontal
shift of the core square root function y 5 Ïx. See Figure 12. b

FIGURE 11
Horizontal shifts of f ~x! 5 x 2
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There are some important observations we must make in looking at the hori-
zontal shifts in Example 2. While the graph of y 5 x 2 2 2 shifts down from
the graph of y 5 x 2, the graph of y 5 ~x 2 2!2 is shifted to the right, the oppo-
site direction from what some people expect. It may help to remember that the
low point on the parabola y 5 x 2 occurs when x 5 0, and on the parabola
y 5 ~x 2 2!2, y 5 0 when x 5 2. However you choose to remember the relation-
ships, we have the following.

Horizontal shifts, c . 0
From the graph of y 5 f ~x!, the graph of

y 5 f ~x 1 c! is shifted left c units,
y 5 f ~x 2 c! is shifted right c units.

Reflections

Comparing the graphs of y 5 f ~x! and y 5 2 f ~x!, it is clear that for any point
~x, y! on the graph of y 5 f ~x!, the point ~x, 2y! belongs to the graph of
y 5 2 f ~x!. That is, the graph of y 5 2 f ~x! is obtained from the graph of
y 5 f ~x! by “tipping it upside down,” or, in more mathematical terms, “reflecting
in the x-axis.” Since multiplying a function by 21 reflects the graph vertically, we
would expect multiplication of the argument by 21 to reflect the graph horizon-
tally, as the next example shows.

cEXAMPLE 3 Horizontal and vertical reflections Sketch graphs of

y 5 Ïx, y 5 2Ïx, y 5 Ï2x.

Solution
With a graphing calculator we see essentially the graphs shown in Figure 13. The
graph of y 5 Ïx is the top half of a parabola. More important at the moment are
the relations with the other graphs. From the graph y 5 Ïx, the graph of y 5

2Ïx is a reflection in the x-axis, while the graph of y 5 Ï2x is a reflection in the
y-axis, as expected. b

FIGURE 12
Horizontal shifts of f ~x! 5 Ïx

FIGURE 13
Reflections of f ~x! 5 Ïx
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Horizontal and vertical reflections

From the graph of y 5 f ~x!, the graph of

y 5 2 f ~x! is a vertical reflection (in the x-axis),
y 5 f ~2x! is a horizontal reflection (in the y-axis).

Dilations: Stretching and Compressing Graphs

Multiplying a function by a constant greater than 1 has the effect of stretching the
graph vertically: if the point ~x, y! belongs to the graph of y 5 f ~x!, then the point
~x, cy! is on the graph of y 5 cf ~x!. If the positive constant c is smaller than 1, then
the number cy is smaller than y, so the graph of y 5 cf ~x! is a vertical compression
toward the x-axis. In a similar fashion, it can be seen that multiplying the argument
has the effect of compressing or stretching the graph horizontally, toward the
y-axis. A stretching or compression is called a dilation of the graph.

cEXAMPLE 4 Vertical dilations For the function f ~x! 5 x 3 2 4x, describe
how the graphs of y 5 2 f ~x! and y 5 0.3 f ~x! are related to the graph of y 5 f ~x!.

Solution
Using a graphing calculator for y 5 x 3 2 4x, we get the graph shown in Figure
14(a), with x-intercept points where x 5 22, 0, 2. Tracing along the curve, we see
that the left “hump” is just a little higher than 3, where x < 21.2, and the low point
is located symmetrically through the origin (the graph is clearly the graph of an odd
function). For the graphs of the other two, the shape is similar, and the x-intercept
points are the same, but the graph of y 5 2~x 3 2 4x! rises to a left hump well
above 6, and the low point is below 26, twice as far away from the x-axis as the
graph of y 5 f ~x!. The graph of y 5 0.3~x 3 2 4x! is “squashed” vertically toward
the x-axis, and the high and low points we see are less than 1 unit away from the
axis. b

cEXAMPLE 5 Horizontal dilations For the function f ~x! 5 x 3 2 4x,
sketch graphs of y 5 f ~x!, y 5 f ~2x!, and y 5 f ~0.5x!.

Solution
The graph of y 5 f ~x! is the one from the previous example, and is shown again in
Figure 15(a). For the graph of y 5 f ~2x!, we must replace each x by 2x, so we enter
Y 5 (2X)^3 2 4(2X), and similarly for y 5 f ~0.5x!.

FIGURE 14
Vertical dilations of f ~x! 5 x 3 2 4x
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The graph of y 5 f ~2x! has the same vertical rise and fall to the turning
points, but the x-intercepts have been squeezed together; each is twice as close to
the origin as for y 5 f ~x!. The graph of y 5 f ~0.5x! is stretched horizontally. The
x-intercept point that was at (2, 0) has been moved outward to where
x 5 2y0.5 5 4; the x-intercept points are (64, 0). b

Dilations, c . 0
From the graph of y 5 f ~x!, the graph of

y 5 cf ~x! is a vertical stretch if c . 1 (by a factor of c), vertical
compression if c , 1 (by a factor of c);

y 5 f ~cx! is a horizontal compression if c . 1, horizontal stretch if c , 1.

Combining Transformations

All the transformations we have considered can be combined, and if we are careful,
we can predict the effect of several transformations on a graph of a function. In
most instances, we take the operations “from the inside out,” looking first at
anything that affects the argument of the function.

cEXAMPLE 6 Vertical and horizontal shifts Predict the effect on the
graph of the function f ~x! 5 x 2 in graphing

(a) y 5 f ~x 2 1! 2 2 (b) y 5 2 f ~x 1 2!.

Then check your prediction with a calculator graph.

Solution

(a) y 5 f ~x 2 1! 2 2 5 ~x 2 1!2 2 2. From a parabola y 5 x 2, the graph of
y 5 ~x 2 1!2 is a shift 1 unit right. Then for y 5 ~x 2 1!2 2 2, shift the graph
down 2 units. The result is a parabola whose low point is at (1, 22). A
calculator graph shows the solid parabola in Figure 16.

(b) The graph of y 5 ~x 1 2!2 is a parabola shifted 2 units left. Then multiplying
by 21 reflects the graph in the x-axis, tipping it upside down. We have the solid
parabola opening downward in Figure 17. b

FIGURE 15
Horizontal dilations of f ~x! 5 x 3 2 4x

FIGURE 16
Translation of f ~x! 5 x 2

FIGURE 17
Translation and reflection of

f ~x! 5 x 2
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cEXAMPLE 7 Identifying transformed graphs The graph of a function f
is given, together with three transformed graphs. Describe the transformations
needed to get the given graph and write an equation for the function whose graph
is shown. Check by graphing your function.

(a) f ~x! 5 _ x _ 5 abs~x! (Figure 18) (b) f ~x! 5 Ïx (Figure 19)

Solution

(a) The graph in Figure 18(i) is a vertical stretch by a factor of 3, since (1, 1) is
sent to (1, 3), so an equation for the transformed graph is y 5 3_ x _ . If we use
a decimal window, we can trace on the graph of y 5 3_ x _ to see that (1, 3) is
on our graph, as desired. We note that in this instance, we could just as easily
have obtained the transformed graph by compressing toward the y-axis, for
which an equation would be y 5 _ 3x _ . Since 3_ x _ 5 _ 3x _ , the function can
be described either way.

For the graph in Figure 18(ii), the absolute value graph is shifted 1 unit
right (replace the argument x by x 2 1), and 1 unit down. An equation is
y 5 _ x 2 1 _ 2 1, which we graph to check.

In Figure 18(iii) the graph is tipped upside down (reflected in the x-axis)
and shifted up 1 unit. An equation is y 5 2_ x _ 1 1.

FIGURE 18
Graphs for Example 7a
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(b) For panel (i) in Figure 19, shift the graph of y 5 Ïx left 1 unit and down
1 unit, so an equation is y 5 Ïx 1 1 2 1. We trace on the graph to verify the
location of the given points.

For the graph in panel (ii), reflect the graph of y 5 Ïx in the y-axis,
(replace x by 2x), and shift up 1 unit. An equation is y 5 Ï2x 1 1.

For the third panel, reflect the graph of y 5 Ïx in the x-axis and shift up
1 unit, so an equation is y 5 2Ïx 1 1. Verify by graphing this equation. b

Summary of Basic Transformations

We list here the basic transformations we have introduced in this section.

Basic transformations of the graph of y 5 f~x!, c . 0
The transformations that affect a graph vertically are applied “outside” the
function; transformations that change horizontal aspects are applied “inside”
the function (to the argument).

Vertical Horizontal

y 5 f ~x! 1 c, shift up y 5 f ~x 1 c!, shift left
y 5 f ~x! 2 c, shift down y 5 f ~x 2 c!, shift right
y 5 2 f ~x!, reflect in x-axis y 5 f ~2x!, reflect in y-axis
y 5 cf ~x!, dilate vertically y 5 f ~cx!, dilate horizontally

FIGURE 19
Graphs for Example 7b
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EXERCISES 2.3

Check Your Understanding

Exercises 1–5 True or False. Give reasons.

1. If the function f has a positive zero and g~x! 5
f ~x 2 2!, then g must have a positive zero.

2. If the function f has a zero between 1 and 2 and g~x! 5
f ~x 1 2!, then g must have a negative zero.

3. If the graphs of y 5 f ~x! and y 5 g~x! intersect in
Quadrants I and III, then the graphs of y 5 f ~2x! and
y 5 g~2x! must intersect in Quadrants II and IV.

4. If the graphs of y 5 f ~x! and y 5 g~x! intersect in
Quadrants II and IV, then the graphs of y 5 2 f ~x! and
y 5 2g~x! must intersect in Quadrants I and III.

5. If the graph of y 5 f ~x! contains points in Quadrants
III and IV, then the graph of y 5 f ~x! 2 2 must also
contain points in Quadrants III and IV.

Exercises 6–10 Fill in the blank so that the resulting
statement is true. If calculator graphs of f and g are drawn
using @210, 10# 3 @210, 10#, then the display will show the
graphs intersecting in Quadrant(s) .

6. f ~x! 5 x 2 2 2x 2 7, g~x! 5 2 f ~x! 2 5

7. f ~x! 5 x 2 2 4x 2 4, g~x! 5 f ~x 2 4!

8. f ~x! 5 x 2 2 2_ x _ 2 3, g~x! 5 2 f ~x! 1 3

9. f ~x! 5 2x 2 5, g~x! 5 f ~2x! 1 15

10. f ~x! 5 _ x _ 22, g~x! 5 2 f ~x! 1 3

Develop Mastery

Exercises 1–6 Related Graphs The graph of a function
f contains the points P~22, 4! and Q~4, 25!. Give the
coordinates of two points on the graph of the function (a) g,
(b) h.

1. g~x! 5 f ~x 2 1!; h~x! 5 f ~x 1 2!

2. g~x! 5 f ~x!23; h~x! 5 f ~x! 1 4

3. g~x! 5 f ~2x!; h~x! 5 f ~0.5x!

4. g~x! 5 2 f ~x!; h~x! 5 f ~2x!

5. g~x! 5 f ~x 2 2! 1 3; h~x! 5 4 2 f ~x!

6. g~x! 5 2 f ~2x!; h~x! 5 1 1 f ~2x!

Exercises 7–12 Related Graphs For the function f ~x! 5
x 2 2 x 2 2
(a) Determine a formula for g and simplify.
(b) Draw calculator graphs of f and g on the same screen.
(c) Write a brief statement describing how the graphs of f

and g are related.

7. g~x! 5 f ~x 1 2! 8. g~x! 5 f ~2x!

9. g~x! 5 f ~x 2 3! 10. g~x! 5 f ~x! 1 2

11. g~x! 5 f ~2x! 1 2 12. g~x! 5 2 f ~x 1 3!

Exercises 13–14 Related Line Graphs The graph of f is
a line through points P and Q. Draw graphs of the given
function. It is not necessary to find an equation for any of
the functions before drawing a graph.
(a) y 5 f ~x! (b) y 5 f ~x 2 2! (c) y 5 f ~2x!.

13. P~1,23! and Q~3, 1! 14. P~23, 4! and Q~1,22!

Exercises 15–16 Line Segment Graphs The graph of f
is a line segment joining P and Q. Draw a graph and give the
domain and range of
(a) y 5 f ~x! (b) y 5 f ~x 2 3! (c) y 5 2 f ~x!.
15. P~2, 22! and Q~4, 2!

16. P~22, 3! and Q~0, 23!

Exercises 17–18 Line Segment Graphs The graph of f
is two line segments PQ and QR. Draw a graph and give the
domain and range of (a) y 5 f ~x 1 2! (b) y 5 f ~2x!
(c) y 5 2 f ~x!.

17. P~23, 21!, Q~22, 2!, and R~3, 0!

18. P~24, 22!, Q~21, 3!, and R~4, 21!

Exercises 19–22 Verbal Description Give a verbal de-
scription of how you would draw a graph of g from the
graph of f. Check by drawing the graphs.

19. f ~x! 5 x 2 1 1, g~x! 5 ~x 1 2!2 2 1

20. f ~x! 5 Ïx, g~x! 5 2Ïx 1 1

21. f ~x! 5 x 2 2 3x, g~x! 5 2~3x 2 x 2! 1 1

22. f ~x! 5 _ x _ , g~x! 5 _ 0.5x _ 1 2

Exercises 23–26 Verbal to Formula A verbal descrip-
tion of transformations of the graph of y 5 f ~x! is given,
resulting in a graph of function g. Give a formula that
describes the function g. Confirm by drawing graphs of f
and g on the same screen.

23. f ~x! 5 x 2 2 2x. Translate the graph of f to the left
2 units and then reflect about the x-axis.

24. f ~x! 5 2x 2 4. Translate the graph of f to the left
3 units and then reflect about the y-axis.

25. f ~x! 5 x 2 1 1. Stretch the graph of f vertically upward
by a factor of 2, then translate downward 3 units.

26. f ~x! 5 x 2 1 1. Compress the graph of f vertically
downward by a factor of 0.5, then reflect about the
y-axis.

Exercises 27–30 Graph to Verbal and Formula The
graph of function f is shown along with graphs of trans-
formed functions g and h. (a) Give a verbal description of
the transformations that will give the graphs of g and h from
the graph of f. (b) Give a formula for g. Do the same for h.
(c) As a check, draw graphs of your formulas in part (b)
and see if they agree with the given graphs.
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27.

28.

29.

30.



y

x
(1, 0)

(3, 0)

(0, 3)

y = g(x)



y

x
(– 1, 0) (3, 0)

(0, – 3)

y = h(x)

y

x

(– 2, 4)
(2, 3)

(1, 0)



(0, 2)

y = f(x)

y

x

(– 1, 2)

(3, 0)



(– 2, 0)

y = f(x)

(1, – 3)

pg088 [V] G2 5-36058 / HCG / Cannon & Elich jb 11-27-95 MP2

88 Chapter 2 Functions

Exercises 31–34 Domain and Range The domain D
and range R of function f are given in interval notation.
Give the domain and range of the function (a) g, (b) h.

31. D 5 @22, 6#, R 5 @4, 8#;
g~x! 5 f ~x 2 1!, h~x! 5 f ~x 1 2!

32. D 5 ~24, 5!, R 5 @23, 5#;
g~x! 5 f ~x! 1 2, h~x! 5 f ~x! 2 3

33. D 5 ~2`, 4#, R 5 @24, 6#;
g~x! 5 2 f ~x!, h~x! 5 f ~2x!

34. D 5 @22, `!, R 5 ~24, 8!;
g~x! 5 2 f ~x!, h~x! 5 f ~2x!

Exercises 35–38 Related Domain and Range The do-
main D and range R of function g are given. Find the do-
main and range of function f.

35. g~x! 5 f ~x 1 2!; D 5 @22, 4#, R 5 @23, 5#

36. g~x! 5 f ~x 2 1! 1 3; D 5 ~2`, 4#, R 5 @22, `!

37. g~x! 5 f ~2x!; D 5 @3, 6#, R 5 @21, 4#

38. g~x! 5 f ~2x!; D 5 @22, 8#, R 5 @4, `#

Exercises 39–42 Related Intercept Points (a) Deter-
mine the coordinates of the x-intercept points of the graph
of function f. (b) Find the x-intercept point(s) of the graph
of function g. (c) What is the y-intercept point for g?
(d) Draw graphs as a check.

39. f ~x! 5 x 2 2 3x 2 4; g~x! 5 f ~x 2 3!

40. f ~x! 5 4 1 3x 2 x 2; g~x! 5 f ~x 1 2!

41. f ~x! 5 x 2 2 4; g~x! 5 f ~2x!

42. f ~x! 5 x 2 2 3x 2 4; g~x! 5 f ~2x!

43. Explore For each number k draw a calculator graph of
y 5 k Ï4 2 x 2 on the same screen. From what you
observe write a brief paragraph comparing the graphs
for different values of k.
(a) k 5 1 (b) k 5 2 (c) k 5 0.5

44. Follow instructions of Exercise 43 for y 5 k Ï16 2 x 2.

45. Use the graph of f shown to sketch the graph of
y 5 2 f ~x 2 1!. Label the coordinates of four points
that must be on your graph.

46. Use the graph of f shown to sketch the graph of
y 5 f ~2x! 1 1. Label the coordinates of four points
that must be on your graph.

47. Points on Related Graphs Points P~24, 3! and
Q~2.4, 5.6! are on the graph of y 5 f ~x 2 1!. Give the
coordinates of two points that must be on the graph of
(a) y 5 f ~x! (b) y 5 f ~x! 1 3.



y

x

(b)    Lines with negative slope

– 1

– 2

– 2 – 1

– 3

– 4

– 3

1

3

4

2

3 41 2

y

x

(a)    Lines with nonnegative slope

Zero slope

1–2 –1

–2

–1

1

2

3

4

5

2 3 4 5 6

6

g089 [R] G1 5-36058 / HCG / Cannon & Elich jn 11-22-95 MP1

2.4 Linear Functions and Lines 89

2.4 L I N E A R F U N C T I O N S A N D L I N E S

The concept of linearity has played a central role in the development of
models in all the sciences.

B. J. West
And then @my father#
showed me a proof of the Definition: linear function
Pythagorean theorem. He

A linear function is a function with an equation equivalent toalso taught me about
Cartesian coordinates and f ~x! 5 ax 1 b, (1)
showed me how to solve
two linear equations by where a and b are real numbers.
seeing where the lines
intersect. And this seemed

Unless there is some restriction, the domain of a linear function is R, the set of allto me the most beautiful
real numbers. For a linear function we may write y 5 ax 1 b, or ax 2 y 1thing in the world.

Lipman Bers b 5 0. This is an equation that in Section 1.4 we called a linear equation. Recall
from Section 1.4 that the graph of a linear equation is a line, so it follows that the
graph of a linear function is a line as well. Further, since f ~0! 5 b and
f ~1! 5 a 1 b, the y-intercept point of a linear function is ~0, b!, and the line
contains the point ~1, a 1 b!. We can use these two points to determine the slope
m of the line:

m 5
y2 2 y1

x2 2 x1

5
~a 1 b! 2 b

1 2 0
5 a.

Thus we immediately have considerable information about the graph of Equa-
tion (1).

Graph of a linear function

The graph of the linear function f ~x! 5 ax 1 b is a line with slope a and
y-intercept b.

If a line has positive slope, then the function value increases with x and the
graph slants upward as it moves to the right (see Figure 20a). The graph of a
constant function, f ~x! 5 b 5 0x 1 b, has slope 0; it consists of all points of the
form ~x, b! and hence is a horizontal line. A line with negative slope slants
downward as it moves to the right, as in Figure 20b. A vertical line consists of all
points that have the same x-coordinate, and hence can be described by an equation
of the form x 5 c. The slope of a vertical line is undefined. By the vertical line test,
a vertical line is not the graph of a function.

FIGURE 20
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cEXAMPLE 1 Points to graphs For the point P~21, 1!, sketch the line
through P and the given point. Find the slope.

(a) A~2, 23! (b) B~4, 1! (c) C~0, 2! (d) D~21, 3!

Solution
The lines are drawn in Figure 21. By the slope formula,

(a) m1 5
23 2 1
2 1 1

5 2
4
3

(b) m2 5
1 2 1
4 1 1

5 0

(c) m3 5
2 2 1
0 1 1

5 1 (d) m4 5
3 2 1

21 1 1
5

2
0

(undefined slope)

The figure illustrates lines with negative, positive, and zero slope, and a vertical
line, for which no slope can be defined. b

Equations of a Line

We can easily draw the graph of a linear function by plotting two points, but we
want to be able to find the linear function associated with a given line as well. There
are several convenient forms for equations of lines.

Equation ~1! identifies the slope and y-intercept for the line, and hence is
called the slope-intercept equation for the line. A line is determined by either (a)
a pair of points, or (b) a point and the slope. From the coordinates of two points that
do not lie on a vertical line, we can immediately get the slope m:

m 5
y2 2 y1

x2 2 x1

,

so in either case (a) or case (b), we can assume that we have the coordinates of a
point on the line and its slope.

Let l be the line that contains the point P~x0, y0 ! with slope m. Any other point
Q~x, y! belongs to line l if and only if the slope determined by P and Q is the number
m (see Figure 22):

y 2 y0

x 2 x0

5 m, or, multiplying by x 2 x0,

y 2 y0 5 m~x 2 x0!. (2)

Equation (2) is called the point-slope equation for the line l.

FIGURE 21

FIGURE 22
Q is on line l if and only if

y 2 y0

x 2 x0
5 m.
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A vertical line cannot be described by either the slope-intercept equation form
or the point-slope form because a vertical line has an undefined slope. As we noted
above, however, x 5 x0 is an equation for the vertical line through the point
P~x0, y0!.

Each of the equations above is equivalent to an equation of the form

Ax 1 By 5 C, (3)

which is called a standard equation for a line. The box gives a summary.

Equations of a line

A nonvertical line l has an equation in any of the following forms:

1. Slope-intercept: y 5 mx 1 b, l has slope m and y-intercept b.
2. Point-slope: y 2 y0 5 m~x 2 x0!, l has slope m and contains the point

~x0, y0!.
3. Standard: Ax 1 By 5 C, B 5/ 0.

A vertical line has an equation of the form x 5 c.

Strategy: First determine cEXAMPLE 2 Equation from two points Find an equation for the line l
the slope of the line through that contains points P~21, 2!, and Q~3, 4!.
P and Q, then use the point-
slope form, taking either P Solution
or Q for ~x0, y0!. Following the strategy,

m 5
4 2 2

3 2 ~21!
5

1
2

.

Using the point-slope form with point P, l has equation

y 2 2 5
1
2

@x 2 ~21!# or y 5
1
2

x 1
5
2

.

The last equation is in slope-intercept form, and we can obtain a standard form
equation for l by multiplying by 2 and rearranging terms: x 2 2y 5 25. b

cEXAMPLE 3 Finding slope and intercepts An equation for line l is
3x 1 2y 5 6. Find (a) the slope of l, (b) the intercept points.

Solution

(a) To write the equation for l in slope-intercept form, solve for y:

y 5 2
3
2

x 1 3

This indicates that l has slope 2 3
2 and y-intercept point (0, 3).

(b) To find the x-intercept point, substitute 0 for y and solve for x. This gives x as
2, so the x-intercept point is (2, 0). b

Parallel Lines

Lines that do not intersect are parallel. Given a nonvertical line l, any vertical
translation of l is parallel to l, and conversely, every line parallel to l can be
obtained from l by vertical translation, up or down.

Strategy: (a) First find the
slope-intercept form.
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A line with slope m is a graph of a linear function

f ~x! 5 mx 1 b,

and any vertical translation of f has the form

f ~x! 1 k 5 ~mx 1 b! 1 k 5 mx 1 ~b 1 k!,

which is still an equation of a line with slope m (see Figure 23). It is also true that
all vertical lines are parallel to each other.

Parallel lines

Two lines are parallel if and only if their slopes are equal, or both lines are
vertical.

Perpendicular Lines

Slopes give a convenient way to tell when lines are perpendicular (intersect at right
angles). To make the relationship easier to see, we use two lines that intersect at the
origin, L1: y 5 m1x, and L2 : y 5 m2x. The same argument could be applied at the
intersection point of any two lines.

Moving 1 unit right from the origin O, we have points A~1, m1! and B~1, m2! on
the two lines (see Figure 24). The two lines are perpendicular to each other if and
only if nOAB is a right triangle, or, by the Pythagorean theorem, if and only if
a2 1 b 2 5 c 2, where a, b and c are as labeled in the diagram. By the distance
formula,

a2 1 b 2 5 1 1 m1
2 1 1 1 m2

2 5 2 1 m1
2 1 m2

2, and

c 2 5 ~m1 2 m2!
2 5 m1

2 2 2m1m2 1 m2
2.

Setting these values equal and simplifying, lines L1 and L2 are perpendicular if and
only if

2 1 m1
2 1 m2

2 5 m1
2 2 2m1m2 1 m2

2 , or m1m2 5 21.

If either l1 or l2 has no slope, then one must be vertical; lines that are perpendicular
to vertical lines are horizontal.

Perpendicular lines

Two lines are perpendicular if and only if the product of their slopes is 21,
or one line is vertical and the other is horizontal.

cEXAMPLE 4 Parallel lines Find an equation for the line L that passes
through the point ~1, 23! and is parallel to the line 3x 2 y 5 5.

Solution
To find the slope of the given line, solve for y to get y 5 3x 2 5. The slope of the
given line is 3, the coefficient of x. Since L is parallel to the given line, its slope is
also 3. Hence L has slope 3 and passes through ~1, 23!. Substituting into the point
slope form gives

y 2 ~23! 5 3~x 2 1!.

Solving for y and simplifying gives the slope-intercept form for L:

y 5 3x 2 6. b

FIGURE 24
Perpendicular lines have

slopes whose product is 21.

FIGURE 23
A vertical translation of a

nonvertical line gives a
parallel line.
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cEXAMPLE 5 Perpendicular bisector Find an equation for the line L that
is the perpendicular bisector of the line segment AB, for the points A~21, 4!, and
B~3, 2!.

Solution
Strategy: First find the co- Follow the strategy. The coordinates of the midpoint M of AB are given by
ordinates of the midpoint M
or AB and the slope m of the

x 5
21 1 3

2
5 1 and y 5

4 1 2
2

5 3.line through A and B. The
perpendicular bisector is the

Hence M is the point (1, 3). The slope of the line through A and B is given byline with slope 21
m that con-

tains M.

m 5
4 2 2

21 2 3
5 2

1
2

.

Therefore the slope of L is 2, the negative reciprocal of 2 1
2 . L is the line that passes

through (1, 3) with slope 2. Substituting into the point-slope form gives

y 2 3 5 2~x 2 1! or y 5 2x 1 1. b

Lines and Circles

In geometry some lines have significant relationships with certain circles. A line
that meets a circle in just one point is called a tangent line and the point of inter-
section is a tangent point. Recall also from geometry that the line that contains the
center of the circle and the tangent point is perpendicular to the tangent line, as
illustrated in the next example.

cEXAMPLE 6 Lines related to circles A circle with center C has the equa-
tion ~x 1 1!2 1 ~y 2 2!2 5 25.

(a) Show that point P~3, 5! is on the circle.
(b) Find the slope m1 and equation for the line l1 that contains points P and C.
(c) Find an equation for the line l2 that is perpendicular to l1 and contains P.
(d) Show that the line l2 intersects the circle at only one point.

Solution
Follow the strategy. It is always a good idea to draw a sketch to help visualize what
is needed. The center of the circle is at ~21, 2! and the radius is 5. See Figure 25.

(a) Substituting 3 for x and 5 for y, ~3 1 1!2 1 ~5 2 2!2 5 16 1 9 5 25, so P is
on the circle.

(b) m1 5 5 2 2
3 1 1 5 3

4 . Using P as the point and 3
4 as slope, l1 has the equation

y 2 5 5
3
4

~x 2 3! or y 5
3
4

x 1
11
4

.

(c) As in the strategy, m2 5 24
3 , so using P again, line l2 has equation

y 2 5 5 2
4
3

~x 2 3! or y 5 2
4
3

x 1 9.

(d) Substitute 24
3 x 1 9 for y in the equation of the circle, and simplify (check our

algebra).

~x 1 1!2 1 FS2
4
3

x 1 9D 2 2G2

5 25 or x 2 2 6x 1 9 5 0.

The only root of the last equation is 3, from which y is 5. The line l2 intersects
the circle only in the point P~3, 5!. b

Strategy: (a) Show that the
coordinates of P satisfy the
equation of the circle.
(c) The slope of l2. is 2 1

m 1
.

(d) Substitute the value of y
from the line into equation
of circle, and solve for x.

FIGURE 25
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When we use a graphing calculator to graph circles and perpendicular lines, as
in Figure 25, we need to keep in mind the limitations imposed by windows and pixel
coordinates. Repeating our observations from Section 1.5, without an equal scale
window, perpendicular lines do not appear perpendicular, and unless the window
has pixel columns with x-coordinates for the right- and left-most points of a circle,
the calculator graph of the circle will not close up.

Lines and circlesTECHNOLOGY TIP r

To graph a nonvertical line on a graphing calculator, we must solve the
equation for y, so that we graph Y 5 AX 1 B.

For a circle as in Example 6, solving for y yields two functions. If
~x 1 1!2 1 ~y 2 2!2 5 25, then ~y 2 2!2 5 25 2 ~x 1 1!2, and y 2 2 5

6Ï25 2 ~x 1 1!2. We graph Y1 5 2 1 Ï(25 2 (X 1 1)2), and
Y2 5 2 2 Ï(25 2 (X 1 1)2).

Linear Depreciation

Linear functions are useful models for many real-world phenomena. For instance,
the value of business equipment decreases over time. The loss in value is called
depreciation and is considered a tax-deductible business expense. A standard
model of depreciation considers it a linear function of time. Suppose that some
office furniture costs $1000 and the time allowed for complete depreciation is ten
years; each year it loses one-tenth of its original value. For tax purposes, the value
of the furniture four years after its purchase is

V~4! 5 1000 2 4S 1
10

· 1000D 5 600.

Linear depreciation formula

Let C denote the original value of a piece of equipment. If the equipment
depreciates linearly over a period of n years, its value V~t! after t years is
described by the equation

V~t! 5 C 2
t
n

C 5 CS1 2
t
nD .

cEXAMPLE 7 Linear depreciation The manager of a fish cannery has a
large processing machine installed that costs $180,000. Assuming the machine
depreciates linearly over 30 years, find its tax value after seven years.

Solution
Using the linear depreciation model with C 5 180,000 and n 5 30,
V~t! 5 180,000~1 2 t

30! . When t 5 7, the value is

V~7! 5 180,000S1 2
7

30D 5 138,000.

After seven years the machine is valued at $138,000 (for tax purposes only; the real
value to the cannery or for resale purposes may be quite different). b
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The kinds of lines we have used in our examples are usually defined by equa-
tions with integer coefficients or, at worst, fractions. When dealing with measure-
ments or real-world data, however, the numbers are seldom so “nice.” For example,
suppose that a small business has been assessed taxes as follows over a six year
period:

Year 1990 1991 1992 1993 1994 1995

Tax $3712 $4381 $5045 $5730 $6392 $7058

In addition to noting that taxes always increase, we may observe that there is a dis-
tressing regularity in the increase. The increases are as follows:

$669 $664 $685 $662 $666.
If the increase were always the same, say $670, then we could anticipate the change
by a linear function, T 5 3712 1 670x, where x is the number of years after 1990.
These data are not precisely linear, but the linear function that most nearly fits the
given data is approximately

T 5 3711.476 1 669.943x.

EXERCISES 2.4

Check Your Understanding

Exercises 1–4 True or False. Give reasons.

1. If f ~x! 5 2_ x _ 2 3, then f is a linear function in x.

2. The slope of the line 3x 2 6y 5 2 is 2.

3. The point (2, 24) is on both the lines 2x 1 y 5 0 and
3x 2 y 5 10.

4. There is no linear function whose graph contains points
in quadrants QI and QIII, but no points in QII or QIV.

Exercises 5–6 Fill in the blank so that the resulting state-
ment is true.

5. Any line that has negative slope must contain points in
Quadrant(s) .

6. Every line with a positive slope must contain points in
Quadrant(s) .

Exercises 7–10 Use your calculator to draw graphs of the
equations on the same screen. The graphs intersect in
Quadrant(s) .

7. 3x 2 4y 5 12, 4x 1 3y 5 7

8. x 2 y 1 3 5 0, 2x 1 y 1 2 5 0

9. 2x 2 y 2 1 5 0, 1.5x 1 y 5 6, 0.8x 1 y 5 4

10. 1.5x 2 y 1 8.5 5 0, 1.5x 1 y 1 0.5 5 0,
0.4x 1 y 1 5 5 0

Develop Mastery

Exercises 1–6 Find the slope of the line that contains the
two points.

1. P~22, 4!, Q~0, 1! 2. P~3, 5!, Q~24, 1!

3. A~24, 23!, B~5, 2! 4. A~2, 23!, B~4, 25!

5. C~1, 22!, D~4, 22! 6. C~23, 4!, D~23, 1!

Exercises 7–12 Find an equation in slope-intercept form
for the line with slope m that contains P.

7. P~23, 4!; m 5 22 8. P~1, 0!; m 5 21

9. P~0, 0!; m 5 2
2
3

10. PS2
1
2

,
5
4D; m 5 3

11. PS 3
4

, 2
3
2D; m 5 0 12. P~Ï3, 1!; m 5 Ï3

Exercises 13–18 Find the slope and intercept points.

13. 3x 1 2y 5 6 14. x 2 3y 5 3

15. 2x 1 y 5 4 16. 3x 2 3y 5 4

17. 6x 1 2y 5 12 18. 2x 2 2y 5 4

Exercises 19–24 (a) Draw a graph showing P and the line
l whose equation is given. (b) Find an equation for the line
l1 that contains P and is parallel to l. (c) Find an equation
for the line l2 that contains P and is perpendicular to l.

19. P~21, 3!; x 2 2y 5 4

20. P~0, 0!; 3x 2 4y 5 6

21. P~0, 22!; 2x 1 3y 2 5 5 0
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22. P~22, 4!; 3x 2 4y 5 8

23. P~21, 2!; y 1 4 5 0

24. P~2, 4!; x 1 3 5 0

Exercises 25–28 Collinear Points Determine whether
or not points A, B, and C are collinear (lie on the same line).
(Hint: Consider slopes.)

25. A~0, 0!, B~1, 2!, C~23, 25!

26. A~2, 22!, B~5, 2!, C~21, 26!

27. A~0, 24!, B~6, 0!, C~3, 22!

28. A~0, 2!, B~4, 0!, C~5, 21!

Exercises 29–32 Determine the quadrants through which
the line passes. (Hint: Draw a graph.)

29. 2x 2 3y 5 6 30. x 1 3y 5 4

31. 3x 1 2y 5 0 32. x 2 2y 5 0

Exercises 33–34 Your Choice

33. Draw a graph of a linear function that contains no
points in
(a) QII (b) QIII (c) QII or QIV.

34. Write an equation for a linear function whose graph
contains no points in (a) QII (b) QI or QIII.

Exercises 35–38 Midpoint (a) Draw a diagram show-
ing points P and Q, and find the midpoint M of line segment
PQ. (b) Find an equation for the perpendicular bisector of
segment PQ and draw it on your diagram.

35. P~22, 3!, Q~2, 5! 36. P~1, 4!, Q~23, 2!

37. P~3, 0!, Q~23, 4! 38. P~23, 21!, Q~1, 4!

Exercises 39–42 Let P~x, y! be any point that is equidis-
tant from points A and B. Find an equation that must be
satisfied by x and y. (Hint: Draw a diagram.)

39. A~1, 23!, B~3, 5! 40. A~22, 3!, B~4, 21!

41. A~0, 0!, B~22, 6! 42. A~1, 24!, B~1, 2!

Exercises 43–44 For the three given values of f ~x!, can f
possibly be a linear function? Explain.

43. f ~21! 5 22, f ~0! 5 0, f ~3! 5 6

44. f ~21! 5 25, f ~1
2! 5 22, f ~3! 5 2

Exercises 45–46 For the three given values of f(x), can the
graph of y 5 f(x) be a line? Explain.

45. f ~1! 5 1, f ~3! 5 5, f ~22! 5 24

46. f ~21! 5 5, f ~0! 5 3, f ~3! 5 23

47. If k is a positive number and the line x 1 y 5 k is
tangent to the circle x 2 1 y 2 5 k, then find k.

48. (a) Show that the three points A~8, 3!, B~4, 10!, and
C~2, 6! are the vertices of a right triangle.

(b) Find the equation of the circle that contains points
A, B, and C. (Hint: Use a theorem from geometry
concerning a right triangle inscribed in a circle.)

49. Repeat Exercise 48 for three points A~6, 6!, B~8, 8! and
C~0, 12!.

50. (a) Is point P~5, 6! inside, outside, or on the circle
x 2 1 y 2 2 2x 2 6y 2 15 5 0?

(b) If P is inside, find the distance between the x-
intercept points; if P is outside, find the distance
between the y-intercept points; if P is on the circle,
find an equation for the line passing through P that
is tangent to the circle.

51. Car Rental The cost of renting a car is $15 a day, plus
20¢ per mile.
(a) If you rent a car for four days and drive x miles,

express the total cost C as a function of x.
(b) If you cannot afford more than $100 for your four

days, how many miles can you drive?

52. Related Temperatures Assume that the Celsius and
Fahrenheit temperature scales have a linear relationship
and that C 5 0 when F 5 32 and C 5 100 when
F 5 212.
(a) Express C as a linear function of F. (Hint: Let

C 5 aF 1 b, and find values a and b.)
(b) Express F as a linear function of C.

53. Manufacturer Profit A firm that manufactures calcu-
lators has a fixed daily cost for salaries and plant oper-
ation of $1200; in addition, it costs $10 to produce each
calculator.
(a) Find an equation for the total daily cost C as a

function of the daily production of x calculators.
(b) If the wholesale price of a calculator is $16, ex-

press the total daily revenue R as a function
of x.

(c) If the daily profit P equals R 2 C, express P as a
function of x. For what values of x is P . 0?

54. Speeds You are traveling at a speed of 88 feet per
second (60 mph) along a highway that runs parallel to
railroad tracks on which a train is traveling in the same
direction at 73 feet per second ~<50 mph!.
(a) If your car is 20 feet long and the length of the train

is x feet, express the time T that it takes to pass the
train as a function of x.

(b) If the train is 400 feet long, how many seconds does
it take the car to pass it?

55. Find b such that the graphs of x 1 2y 5 3 and
bx 2 2y 1 5 5 0 intersect at right angles. Check
graphically using a decimal window.

56. Depreciation After being depreciated in a linear fash-
ion for four years of a 12 year depreciation schedule, a
car is valued at $5760. What was the initial cost?

57. Depreciation In starting a new business the manager
has the office equipped with new furniture that costs
$80,000. Assuming linear depreciation over a 20 year
period,
(a) what is the value of the furniture after 4 years?
(b) how much can the firm deduct for tax purposes at

the end of the first year?
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58. If f ~x! 5 2x 1 3 and the domain D of f is given by
D 5 $x _ x 2 1 x 2 2 # 0%, then
(a) draw a graph of f , and
(b) find the range of f. (Hint: What values of y occur on

the graph?)

59. The length L of a metal rod is a linear function of its
temperature T, where L is measured in centimeters and
T in degrees Celsius. The following measurements have
been made: L 5 124.91 when T 5 0, and L 5 125.11
when T 5 100.
(a) Find a formula that gives L as a function of T.
(b) What is the length of the rod when its temperature

is 208 Celsius?
(c) To what temperature should the rod be heated to

make it 125.17 cm long?

60. Store Prices The owner of a grocery store finds that,
on average, the store can sell 872 gallons of milk per
week when the price per gallon is $1.98. When the price
per gallon is $1.75, sales average 1125 gallons a week.
Assume that the number N of gallons sold per week is
a linear function of the price P per gallon.
(a) Find a formula that gives N as a function of P.
(b) If the price per gallon is $1.64, how many gallons

should the store owner expect to sell per week?
(c) To sell 1400 gallons per week, what price should

the store set per gallon?

61. Equilateral Triangle For what value(s) of m will the
triangle formed by the three lines y 5 22, y 5 mx 1 4,
and y 5 2mx 1 4 be equilateral?

62. Perimeter Find m such that the three lines y 5 mx 1 6,
y 5 2mx 1 6, and y 5 2 form a triangle with a
perimeter of 16.

2.5 Q U A D R A T I C F U N C T I O N S , P A R A B O L A S ,
A N D P R O B L E M S O L V I N G

It is only fairly recently that the importance of nonlinearities has intruded
itself into the world of the working scientist. Nonlinearity is one of those
strange concepts that is defined by what it is not. As one physicist put it,
“It is like having a zoo of nonelephants.”

B. J. West

Much of this course, and calculus courses to follow, deals with other inhabitants of
the “zoo” of nonlinear functions, including families of polynomial, exponential,
logarithmic, and trigonometric functions. All are important, but quadratic func-
tions are among the simplest nonlinear functions mathematicians use to model the
world.

63. Area Given the three lines y 5 m~x 1 4!,
y 5 2m~x 1 4!, and x 5 2, for what value of m will
the three lines form a triangle with an area of 24?

64. (a) Is the point ~21, 3! on the circle
x 2 1 y 2 2 4x 1 2y 2 20 5 0?

(b) If the answer is yes, find an equation for the line
that is tangent to the circle at (21, 3); if the answer
is no, find the distance between the x-intercept
points of the circle.

65. (a) Show that points A~1, Ï3! and B~2Ï3, 1! are on
the circle x 2 1 y 2 5 4.

(b) Find the area of the shaded region in the diagram.
(Hint: Show that segments OA and OB are perpen-
dicular to each other.

66. The horizontal line y 5 2 divides nABC into two re-
gions. Find the area of the two regions for the triangle
with these vertices:
(a) A~0, 0!, B~4, 0!, C~0, 4!
(b) A~0, 0!, B~4, 0!, C~8, 4!

67. The vertices of nABC are A~0, 0!, B~4, 0!, C~0, 4!. If
0 , k , 4, then the horizontal line y 5 k will divide
the triangle into two regions. Draw a diagram showing
these regions for a typical k. Find the value of k for
which the areas of the two regions are equal.
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Definition: quadratic functionI had mathematical
curiosity very early. My A quadratic function is a function with an equation equivalent to
father had in his library a

f ~x! 5 ax 2 1 bx 1 c, (1)wonderful series of
German paperback

where a, b, and c are real numbers and a is not zero.books . . . . One was Euler’s
Algebra. I discovered by
myself how to solve For example, g~x! 5 5 2 4x 2 and h~x! 5 ~2x 2 1!2 2 x 2 are quadratic func-
equations. I remember that tions, but F~x! 5 Ïx 2 1 x 1 1 and G~x! 5 ~x 2 3!2 2 x 2 are not. (In fact, G is
I did this by an incredible linear.)
concentration and almost
painful and not-quite Basic Transformations and Graphs of Quadratic Functions
conscious effort. What I did
amounted to completing The graphing techniques we introduced in Section 2.3 are collectively called basic
the square in my head transformations. The graph of any linear function is a line, and we will show thatwithout paper or pencil.

that graph of any quadratic function can be obtained from the core parabola,Stan Ulam
f ~x! 5 x 2, by applying basic transformations. We apply terminology from the core
parabola to parabolas in general. The point (0, 0) is called the vertex of the core
parabola, and the y-axis is the axis of symmetry. The axis of symmetry is a help
in making a hand-sketch of a parabola. Whenever we locate a point of the parabola
on one side of the axis of symmetry, we automatically have another point located
symmetrically on the other side.

We will derive a transformation form for a general quadratic function, an
equation that identifies the vertex and axis of symmetry of the graph, but to graph
any particular quadratic, you may not need all of the steps. Indeed, because a
graphing calculator graphs any quadratic function, we could ask why we need the
transformation form at all. Because a calculator graph is dependent on the window
we choose and the pixel coordinates, we need an algebraic form from which we can
read more exact information.

To begin, we factor out the coefficient a from the x-terms, and then add and
subtract the square of half the resulting x-coefficient to complete the square on x.

f ~x! 5 ax 2 1 bx 1 c 5 aSx 2 1
b
a

xD 1 c

5 aFSx 2 1
b
a

x 1
b 2

4a2D 2
b 2

4a2G 1 c

5 aSx 1
b
2aD

2

1 Sc 2
b 2

4aD.

The final equation has the form

f ~x! 5 a~x 2 h!2 1 k (2)

which we recognize as a core parabola shifted so that the vertex is at the point ~h, k!
and the axis of symmetry is the line x 5 h.

Parabola Features

Looking at the derivation of Equation (2), we can make some observations about
the graphs of quadratic functions.



y

x

Axis of
symmetry

x = – b
2a

x-intercept
points

y-intercept
point

Vertex

y

x

(1, – 4)

y = x2

(a) f(x) = x2 – 2x – 3
= (x – 1)2 – 4

1

1

– 1– 2– 3– 4

– 2

– 3

– 4

2

3

4

2 3 4– 1

y

x

(– 1, – 3)

y = x2

(b) f(x) = 2x2 + 4x – 1
= 2(x + 1)2 – 3

– 1

1

– 2 – 1– 3– 4

– 2

– 3

– 4

2

2 3 4

3

4

1
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Graphs of quadratic functions

For the quadratic function f ~x! 5 ax 2 1 bx 1 c: The graph is a parabola

with axis of symmetry x 5
2b
2a

.

The parabola opens upward if a . 0, downward if a , 0.

To find the coordinates of the vertex, set x 5
2b
2a

. Then the y-coordinate is

given by y 5 fS2b
2aD.

The graph of every quadratic function intersects the y-axis (where x 5 0), but it
need not have any x-intercept points. To find any x-intercepts, we solve the equation
f ~x! 5 0. By its nature, every quadratic function has a maximum or a minimum
(depending on whether the parabola opens down or up) that occurs at the vertex of
the parabola. See Figure 26.

cEXAMPLE 1 Locating the vertex of a parabola The graph of the quad-
ratic function is a parabola. Locate the vertex in two ways: (i) by writing the

function in the form of Equation (2) and (ii) by setting x 5 2
b
2a

. Sketch the

graph.
(a) f ~x! 5 x 2 2 2x 2 3 (b) f ~x! 5 2x 2 1 4x 2 1

Solution

(a) (i) Complete the square on the x-terms.

f ~x! 5 x 2 2 2x 2 3 5 ~x 2 2 2x 1 1! 2 1 2 3

5 ~x 2 1!2 2 4,

From this form, the graph is the core parabola shifted 1 unit right and 4
units down; the vertex is at (1, 24).

(ii) From f ~x! 5 x 2 2 2x 2 3, 2 b
2a 5 2 22

2 · 1 5 1. Substituting 1 for x,
f ~1! 5 1 2 2 · 1 2 3 5 24, so again the vertex is the point (1, 24). The
graph is shown in Figure 27(a).

(b) (i) Before completing the square, we factor out 2 from the x-terms:

f ~x! 5 2x 2 1 4x 2 1 5 2~x 2 1 2x! 2 1

5 2~x 2 1 2x 1 1 2 1! 2 1 5 2~x 1 1!2 2 3.

The graph is obtained by shifting the core parabola 1 unit left, stretching
by a factor of 2, and translating the stretched parabola down 3 units; the
vertex is at (21, 23).

(ii) From f ~x! 5 2x 2 1 4x 2 1, 2 b
2a 5 2 4

4 5 21, and f ~21! 5 2~21!2 1

4~21! 2 1 5 23, and the vertex is at (21, 23). The graph appears in
Figure 27(b). b

cEXAMPLE 2 Graph, maximum or minimum, and intercept points
Find the maximum or minimum value of f and the intercept points both from a
calculator graph and algebraically.

(a) f ~x! 5 x 2 2 2x 2 3 (b) f ~x! 5 2x 2 1 4x 2 1

FIGURE 26

FIGURE 27
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Solution

(a) From Example 1(a) and the graph in Figure 27(a), the minimum value of f is
the y-coordinate of the vertex, 24. For the y-intercept, f ~0! 5 23, so the
y-intercept point is (0, 23). Solving the equation x 2 2 2x 2 3 5 0, we have
~x 2 3!~x 1 1! 5 0, so the x-intercept points are (3, 0) and (21, 0). While a
calculator graph in any window shows that the x-intercept points are near
x 5 3 and x 5 21, in trace mode, we do not see the x-intercepts exactly
(where the y -coordinate equals 0) unless we have a decimal window. We can
zoom in as needed, though, to get as close to (3, 0) and (21, 0) as desired.

(b) From Example 1(b) and the graph in Figure 27(b), the function has a mini-
mum value of 23. Since f ~0! 5 21, the y-intercept point is (0, 21). Tracing
along a calculator graph, we find that the x-intercepts are near 0.2 and 22.2.
We can get closer approximations by zooming in, but the equation
2x 2 1 4x 2 1 5 0 does not factor with rational numbers, so we cannot read
exact coordinates of the x-intercept points on any calculator graph. We use the
quadratic formula to solve the equation and find the x-intercept points exactly:

S22 1 Ï6
2

, 0D and S22 2 Ï6
2

, 0D . b

Quadratic Functions with Limited DomainStrategy: (a) Draw a sepa-
rate diagram (Figure 28b) to

According to the domain convention the domain of any quadratic function is the setshow a right triangle formed
by altitude CD. nCDB is of all real numbers unless there is some restriction. Many applications place
similar to nFEB. Use ratios natural restrictions on domains, as illustrated in the next two examples.
of the sides to relate h and x.

cEXAMPLE 3 Limited domain A rectangle is inscribed in an isosceles tri-
angle ABC, as shown in Figure 28a, where _AB _ 5 6 and _ AC _ 5 _ BC _ 5 5. Let
x denote the width, h the height, and K the area of the rectangle. Find an equation
for (a) h as a function of x, (b) K as a function of x. (c) Find the domain of each.

Solution

(a) Following the strategy, the ratios
_ CD _

_ DB _
and

_ FE _

_ EB _
are equal. _ DB _ 5 3,

_ FE _ 5 h, and _ EB _ 5 3 2
x
2

. For _ CD _ we can apply the Pythagorean

theorem to nCDB: _ CD _ 5 Ï52 2 32 5 4. Therefore

_FE _

_ EB _
5

_ CD _

_DB _
or

h

3 2
x
2

5
4
3

or h 5 4 2
2x
3

.

(b) The area K is the product of x and h:

K 5 x · h 5 xS4 2
2x
3 D 5 4x 2

2
3

x 2.

(c) From the nature of the problem, there is no rectangle unless x is a positive
number less than 6. Hence the domain of both h and K is $x _ 0 , x , 6%. bFIGURE 28
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cEXAMPLE 4 Minimizing area Find the dimensions (x and h) for the
rectangle with the maximum area that can be inscribed in the isosceles triangle
ABC in Figure 28a.

SolutionStrategy: Graph K and
find the highest point on Follow the strategy. In Example 3, we found the area K as a quadratic function of x:
the graph (the vertex).

K~x! 5 2
2
3

x 2 1 4x, 0 , x , 6.

Graphing K as a function of x, we get part of a parabola that opens down. The graph
of K is shown in Figure 29. The maximum value of K occurs at the vertex of the
parabola, where

x 5 2
b
2a

5
24

2~22y3!
5 3.

When x 5 3, h 5 4 2 2x
3 5 4 2 ~2

3!3 5 2, and K~3! 5 6. Therefore the inscribed
rectangle with the largest area has sides of lengths 3 and 2, and area 6. b

Solving Quadratic Inequalities

In Section 1.5, we solved quadratic inequalities by factoring quadratic expressions.
Here we look at the more general situation of solving quadratic inequalities with
the use of graphs, as illustrated in the following example.

cEXAMPLE 5 Using a graph Find the domain of the function f ~x! 5

Ïx 2 2 2x 2 4.

Strategy: Use a graph of Solution
y 5 x 2 2 2x 2 4 to see Follow the strategy. Let y 5 x 2 2 2x 2 4 and draw a graph. This gives a parabola
where the y-values are non- that opens upward, with vertex at (1, 25). To find the x-intercept points, solve the
negative.

equation

x 2 2 2x 2 4 5 0

by the quadratic formula to get x 5 1 6 Ï5. Thus the intercept points are
A~1 2 Ï5, 0! and B~1 1 Ï5, 0!, as shown in Figure 30. Use the graph to read off
the solution set to the inequality that defines the domain of f:

D 5 $x _ x # 1 2 Ï5 or x $ 1 1 Ï5%

5 ~2`, 1 2 Ï5# < @1 1 Ï5, `!. b

FIGURE 29 FIGURE 30
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Maximum and Minimum Values of a Function

When we use mathematical models to answer questions about an applied problem,
we frequently need to determine the maximum or minimum values of a function.
The general problem can be very difficult, even using the tools of calculus, but
when quadratic functions are involved one can simply read off a maximum or
minimum value from a graph.

Definition: maximum or minimum value of a function

Suppose f is a function with domain D.

If there is a number k in D such that f ~k! $ f ~x! for every x in D, then f ~k!
is the maximum value of f.

If there is a number k in D such that f ~k! # f ~x! for every x in D, then f (k)
is the minimum value of f.

cEXAMPLE 6 A function with limited domain For the function f ~x! 5Strategy: First draw a
graph, being aware of the x 2 2 4x 1 2, with domain D 5 $x _ 0 # x # 5

2 % find (a) the maximum and min-
given domain. From the imum values of f , and (b) the set of values where f ~x! . 0.
graph, read off the minimum
or maximum values of y. Solution

(a) The graph of f is the part of the parabola y 5 x 2 2 4x 1 2 on the interval
@0, 5

2#. A calculator graph may not allow us to read all needed points in exact
form, so we first locate the vertex and then evaluate the function at the ends of
the domain.

Using x 5 2b
2a 5 4

2 5 2, we have f ~2! 5 22, so the point (2, 22) is the
vertex. At the endpoints of the domain, f ~0! 5 2, and f (5

2) 5 2 7
4 , so the graph

has endpoints (0, 2) and (5
2 , 2 7

4).
We get the graph shown in Figure 31. The maximum value of f is 2, which

occurs at the left end of the graph, and the minimum value is 22, at the vertex
of the parabola.

(b) To solve the inequality f ~x! . 0, we need the x-intercept point between 0 and
1. From the quadratic formula, f ~x! 5 0 when x 5 2 6 Ï2. Since the func-
tion is only defined on the interval @0, 5

2#, f ~x! . 0 on the interval
@0, 2 2 Ï2#. b

cEXAMPLE 7 Ranges of transformed functions For the function f ~x! 5
x 2 2 4x 1 2, with domain D 5 $x _ 0 # x # 5

2%, find the range of

(a) y 5 f ~x! 1 2 (b) y 5 2 f ~x! (c) y 5
3
2

f ~x!.

Solution

(a) The graph of y 5 f ~x! 1 2 is shifted 2 units up from the graph in Figure 31
and is shown in Figure 32a. The range of f is the interval @22, 2#, so the range
of y 5 f ~x! 1 2 is also shifted 2 units up, to @0, 4#.

(b) To get the graph of y 5 2 f ~x!, we reflect the graph of f in the x-axis, as in
Figure 32b. The range is still @22, 2#.

(c) Stretching the graph of f vertically by a factor of 3
2 , we get part of another

parabola, y 5 3
2 x 2 2 6x 1 3, as shown in Figure 32c. The range of y 5 3

2 f ~x!
is @23, 3#. b

FIGURE 31
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cEXAMPLE 8 Distance from a point to a line

(a) Find the minimum distance from the origin to the line L given by 2x 1 y 5 6.
(b) What are the coordinates of the point Q on L that is closest to the origin?

Solution
First draw a diagram that will help formulate the problem (Figure 33). Since
P~u, v! is on L, then 2u 1 v 5 6, or v 5 6 2 2u.

d 5 Ï~u 2 0!2 1 ~v 2 0!2 5 Ïu 2 1 v2 5 Ïu 2 1 ~6 2 2u!2

5 Ï5u 2 2 24u 1 36.

(a) The minimum value of d will occur when the expression under the radical is a
minimum. Determine the minimum of the function

z 5 5u 2 2 24u 1 36,

whose graph is shown in Figure 34. The lowest point on the parabola occurs
where

u 5 2
b
2a

5 2
224
10

5 2.4

When u 5 2.4, z 5 7.2. Therefore, the minimum value of z is 7.2, so the
minimum distance from the origin to the line L is Ï7.2 ~<2.68!.

(b) The point Q on L that is closest to the origin is given by u 5 2.4 and
v 5 6 2 2~2.4! 5 1.2. Thus, Q is point (2.4, 1.2). b

Looking Ahead to Calculus

Not all problems lead to quadratic functions. The applied problem in the next
example requires calculus techniques to find an exact solution. With a graphing
calculator, however, we can find an excellent approximation from a graph of a cost
function.

cEXAMPLE 9 Reading a solution from a graph A freshwater pipeline is
to be built from a source on shore to an island 4 miles offshore as located in the
diagram (Figure 35). The cost of running the pipeline along the shore is $7500 per
mile, but construction offshore costs $13,500 per mile.

FIGURE 33

FIGURE 34

FIGURE 35

FIGURE 32



[0, 10] by [140, 170]

(2.7, 157.4)

Cost: C(x) = 7.5(15 – x)

+ 13.5               x2 + 16
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(a) Express the construction cost C (in thousands of dollars) as a function of x.
(b) Select an appropriate window and graph y 5 C~x! to find the approximate

distance x that minimizes the cost of construction.

Solution

(a) If we begin the underwater construction x miles from the point nearest the
island, as in Figure 35, then we have ~15 2 x! miles along the coast, at a cost
of (7500)~15 2 x! dollars. The distance offshore is then Ïx 2 1 42, so the
offshore construction cost is (13,500)Ïx 2 1 16 dollars.
The total cost, in thousands of dollars, is given by

C~x! 5 7.5~15 2 x! 1 13.5Ïx 2 1 16.

(b) Because of the greater cost of offshore construction, it appears that x should be
less than 10, so we might try an x-range of @0, 10#. We can try a value for x to
evaluate C, say x 5 5 : C~5! < 161.4, just over $161,000. To safely bracket
that value, let’s try a y-range of @140, 170#. We get a graph as shown in
Figure 36. Tracing to find the low point on the graph, we get a minimum of
about 157.4 near x 5 2.67. Furthermore, we observe that the graph is quite flat
near the low point, that the cost differs only by a few dollars for x near 2.7. We
conclude that we should build along the coast for about 12.3 miles and then
head directly toward the island. The cost will be about $157,400. b

EXERCISES 2.5

Check Your Understanding

Exercises 1–5 True or False. Give reasons.

1. If we translate the graph of y 5 x 2 two units to the right
and one unit down, the result will be the graph of y 5
x 2 2 4x 1 3.

2. The y-intercept point for the graph of y 5 x 2 1 x 2 3
is above the x-axis.

3. The maximum value of f ~x! 5 15 2 2x 2 x 2 is 12.

4. The graphs of y 5 x 2 2 5x 2 4 and y 5 8 1
3x 2 x 2 intersect at points in Quadrants II and IV.

5. If we translate the graph of y 5 x 2 three units down it
will be the graph of y 5 2x 2 2 6.

Exercises 6–8 Fill in the blank so that the resulting state-
ment is true. The number of points at which the two graphs
intersect is .

6. f ~x! 5 x 2 2 5x 2 5, g~x! 5 8 1 3x 2 x 2

7. f ~x! 5 3 1 3x 2 x 2, g~x! 5 8 2 x

8. f ~x! 5 3 1 3x 2 x 2, g~x! 5 _ x 2 2 _ 2 2x

Exercises 9–10 Draw a graph of function f using a
@210, 10# by @210, 10# window. The number of x-intercept
points visible in this window is .

9. f ~x! 5 0.3x 2 2 4x 2 1

10. f ~x! 5 3 2 3x 2 0.3x 2

FIGURE 36

Develop Mastery

Exercises 1–12 Intercept, Vertex Find the coordinates
of the intercept points and vertex algebraically, and then
draw a graph as a check.

1. f ~x! 5 x 2 2 3 2. f ~x! 5 2x 2 1 3

3. g~x! 5 2~x 2 1!2 4. g~x! 5 2~x 1 1!2

5. f ~x! 5 ~x 1 1!2 2 3 6. f ~x! 5 ~x 2 3!2 1 1

7. f ~x! 5 2x 2 2 2x 1 2

8. f ~x! 5 x 2 1 4x 1 1

9. f ~x! 5 2x 2 2 4x 1 2

10. f ~x! 5 22x 2 1 8x 2 5

11. f ~x! 5
1
2

x 2 1 2x

12. f ~x! 5 2
1
2

x 2 2 2x 2 1

13. Explore For each real number b, the graph of f ~x! 5
x 2 2 bx 2 1 is a parabola. Choose several values of b
greater than or equal to 1 and in each case draw the
corresponding graph. Describe the role that b plays.
Where are the x and y-intercept points located? What
about the vertex?

14. Repeat Exercise 13 for f ~x! 5 x 2 1 bx 2 1.
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15. Explore Try several values of b, positive and nega-
tive, and in each case draw a graph of f ~x! 5 x 2 2
b _ x _ 1 4. What do you observe about the zeros of f ?

16. Explore For f ~x! 5 x 2 2 4x 1 c, choose several
values of c and in each case draw the corresponding
graph. Describe the role that c plays. How many x-inter-
cept points are there?

Exercises 17–20 Find the equation (in slope-intercept
form) for the line containing the vertex and the y-intercept
point of the graph of f. Draw a graph of f and the line as a
check.

17. f ~x! 5 x 2 2 4x 1 1 18. f ~x! 5 x 2 2 3x

19. f ~x! 5 22x 2 2 8x 1 3

20. f ~x! 5 23x 2 2 12x 2 8

Exercises 21–24 Graphs and Quadrants Draw a graph
and determine the quadrants through which the graph of the
function passes.

21. y 5 x 2 2 4x 1 3 22. y 5 2x 2 1 7x 1 3

23. y 5 x 2 1 4x 1 5 24. y 5 2x 2 2 2x 2 1

Exercises 25–28 Distance Between Intercepts Find the
distance between the x-intercept points for the graph of the
function. Solve algebraically and then check with a graph.

25. f ~x! 5 x 2 2 4x 2 3 26. f ~x! 5 x 2 1 2x 2 8

27. f ~x! 5 x 2 2 4x 1 1

28. f ~x! 5 22x 2 1 4x 1 3

Exercises 29–32 Inequalities Find the solution set for
the given inequality. (a) Draw a graph of the left side and
read off the answer. (b) Use algebra to justify your answer.

29. x 2 2 4x 1 3 . 0

30. x 2 1 5x 1 4 , 0

31. 2x 2 2 x 2 3 , 0

32. 2x 2 1 2x 1 4 # 0

Exercises 33–34 Intercepts to Vertex The intercept
points for the graph of a quadratic function f are specified.
Find the coordinates of the vertex.

33. ~21, 0!, ~3, 0! ~0, 23! 34. ~23, 0!, ~2, 0!, ~0, 6!

Exercises 35–38 Range Determine the range of the
function. State your answer using (a) set notation and (b)
interval notation. A graph will help.

35. f ~x! 5 x 2 1 3x 2 4

36. g~x! 5 22x 2 1 4x 1 1

37. f ~x! 5 ~4 2 x!~2 1 x!

38. f ~x! 5 2x 2 1 4 Ï3 x

Exercises 39–42 Verbal to Formula Give a formula for
a quadratic function f that satisfies the specified conditions.
The answer is not unique.

39. Both zeros of f are positive and f ~0! 5 22.

40. The graph of f does not cross the x-axis and f ~0! 5 23.

41. A zero of f is between 22 and 21, and the other zero
is 3.

42. A zero of f is greater than 1, the other zero is less than
21, and the graph contains the point (0, 2).

Exercises 43–46 Verbal to Formula Determine the
quadratic function whose graph satisfies the given condi-
tions.

43. The axis of symmetry is x 5 2, the point (21, 0) is on
the graph, and (0, 5) is the y-intercept point. (Hint: Use
symmetry to find the other x-intercept point, and then
express f ~x! in factored form.)

44. The vertex is (3, 24) and one of the x-intercept points
is (1, 0). (See the hint in Exercise 43.)

45. The graph is obtained by translating the core parabola
3 units left and 2 units down.

46. The graph is obtained by reflecting the core parabola
about the x-axis, then translating to the right 2 units.

Exercises 47–50 Area Let A be the y-intercept point
and B, C be the x-intercept points for the graph of the
function. Draw a diagram and then find the area of nABC.

47. f ~x! 5 2x 2 2 x 1 6 48. f ~x! 5 x 2 2 6x 1 8

49. f ~x! 5 2x 2 2 2x 1 8

50. f ~x! 5 2x 2 2 6x 1 8

Exercises 51–54 Graph to Verbal and Formula Each of
the graphs shown began with the core parabola ~y 5 x 2!
followed by one or more basic transformations. (a) Give a
verbal description of the transformation used. (b) Give an
equation for the function. Check by using a graph.

51.
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52.

53.

54.

Exercises 55–58 Range, Limited Domain A formula for
a function is given along with its domain, D. Find the range
of the function. Draw a graph.

55. f ~x! 5 x 2 1 2x 1 5; 56. f ~x! 5 x 2 1 2x 1 5;
D 5 $x _ 23 # x # 0% D 5 $x _ 0 # x # 2%

57. g~x! 5 2x 2 2 4x 1 4;
D 5 $x _ 23 , x , 1%

58. g~x! 5 2x 2 1 2x 1 4;
D 5 $x _ 0 # x # 3%

Exercises 59–64 Maximum, Minimum Find the maxi-
mum and/or minimum value(s) of the function. A graph will
be helpful.

59. f ~x! 5 x 2 2 3x 2 4

60. g~x! 5 2x 2 1 4x 1 3

61. g~x! 5 x 2 2 x, 21 # x # 4

62. g~x! 5 3x 2 x 2, 0 , x , 4

63. f ~x! 5 6x 2 x 2, x $ 0

64. f ~x! 5 12x 2 3x 2, x $ 0

Exercises 65–66 Translations Describe horizontal and
vertical translations of the graph of f so that the result will
be a graph of y 5 x 2. (Hint: Complete the square.)

65. f ~x! 5 x 2 2 4x 1 1 66. f ~x! 5 x 2 1 4x 1 5

Exercises 67–70 Maximum, Minimum Find the maxi-
mum and/or minimum value(s) of the function. Solve alge-
braically by considering the expression under the radical as
a quadratic function with restricted domain. Use a graph of
f as a check.

67. f ~x! 5 Ï3 1 2x 2 x 2

68. f ~x! 5 Ï5 1 4x 2 x 2

69. g~x! 5 Ï3 1 2x 1 x 2

70. g~x! 5 Ï4 2 2x 1 x 2

71. Explore At the beginning of this section we noted that
F~x! 5 Ïx 2 1 x 1 1 is not a quadratic function.
(a) In a decimal window, graph, in turn, each of the

following:

f ~x! 5 Ïx 2 1 x 2 1

F~x! 5 Ïx 2 1 x 1 1

G~x! 5 Ïx 2 1 2x 1 1

(b) Write a paragraph to describe some of the differ-
ences between the graphs of f , F, and G. Note any
symmetries and comment on domains and on ways
each graph differs from a parabola.

(c) The graph of G should look familiar. Explain.

72. Solve the problem in Exercise 71 where the functions
are

f ~x! 5 Ïx 2 2 x 2 1

F~x! 5 Ïx 2 2 x 1 1

G~x! 5 Ïx 2 2 2x 1 1

Exercises 73–74 Minimum Distance Find the minimum
distance from point P to the graph of y 5 x 2 1 4x 2 8.
(Hint: Let Q~u, v! be any point on the parabola. Determine
a formula that gives the distance d from point P as a
function of u (do not simplify). Draw a graph and use TRACE.)

73. P~0, 1! 74. P~0, 2!

75. Maximum Area Point P~u, v! is in the first quadrant
on the graph of the line x 1 y 5 4. A triangular region
is shown in the diagram.
(a) Express the area A of the shaded region as a func-

tion of u.
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(b) For what point P will the area of the region be a
maximum?

(c) What is the maximum area?

76. Repeat Exercise 75 for point P~u, v! on the line segment
joining (0, 3) and (4, 0).

77. (a) A wire 36 inches long is bent to form a rectangle. If
x is the length of one side, find an equation that
gives the area A of the rectangle as a function of x.

(b) For what values of x is the equation valid?

78. Maximum Area Of all the rectangles of perimeter
15 centimeters, find the dimensions (length and width)
of the one with greatest area.

79. Maximum Area A farmer has 800 feet of fencing left
over from an earlier job. He wants to use it to fence in
a rectangular plot of land except for a 20-foot strip that
will be used for a driveway (see the diagram, where x is
the width of the plot). Express the area A of the plot as
a function f of x. What is the domain of f ? For what x
is A a maximum?

80. In the diagram the smaller circle is tangent to the x-axis
at the origin and it is tangent to the larger circle, which
has a radius of 1 and center at (1, 1). What is the radius
of the smaller circle?

81. Maximum Revenue A travel agent is proposing a tour
in which a group will travel in a plane of capacity 150.
The fare will be $1400 per person if 120 or fewer people
go on the tour; the fare per person for the entire group
will be decreased by $10 for each person in excess of
120. For instance, if 125 go, the fare for each will be
$1400 2 $10~5! 5 $1350. Let x represent the number
of people who go on the tour and T the total revenue (in
dollars) collected by the agency. Express T as a function
of x. What value of x will give a maximum total rev-
enue? It will be helpful to draw a graph of the function.

82. Minimum Area A piece of wire 100 centimeters long
is to be cut into two pieces; one of length x centimeters,
to be formed into a circle of circumference x, and the
other to be formed into a square of perimeter 100 2 x
centimeters. Let A represent the sum of the areas of the
circle and the square.
(a) Find an equation that gives A as a function of x.
(b) For what value of x will A be the smallest? What is

the smallest area?

83. Solve the problem in Exercise 82 if the two pieces are
to be formed into a square and an equilateral triangle.

84. Solve the problem in Exercise 82 if the two pieces are
to be formed into a circle and an equilateral triangle.

85. Maximum Capacity A long, rectangular sheet of gal-
vanized tin, 10 inches wide, is to be made into a rain
gutter. The two long edges will be bent at right angles
to form a rectangular trough (see diagram, which shows
a cross section of the gutter with height x inches).

(a) Find a formula that gives the area A of the cross
section as a function of x. What is the domain of
this function?

(b) What value of x will give a gutter with maximum
cross sectional area? Solve algebraically and use a
graph as a check.

86. Minimum Time A forest ranger is in the forest 3 miles
from the nearest point P on a straight road. His car is
parked down the road 5 miles from P. He can walk in
the forest at a rate 2 mi/hr and along the road at 5 mi/hr.
(a) Toward what point Q on the road between P and his

car should he walk so that the total time T it takes
to reach the car is the least?

(b) How long will it take to reach the car? (Hint: Let
_ PQ _ 5 x, then use a graph to help you solve the
problem.)
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87. In Exercise 86, solve the problem if the ranger is 4 miles
from P.

88. Looking Ahead to Calculus A solid has as its base the
region in the xy-plane bounded by the circle x 2 1
y 2 5 4.
(a) If every vertical cross section perpendicular to the

x-axis is a semicircle, express the area K of the cross
section at a distance u from the origin as a function
of u.

2.6 C O M B I N I N G F U N C T I O N S

What is proved about numbers will be a fact in any universe.
Julia Robinson

Just as we combine numbers to get other numbers, so we may combine functions
to get other functions. The first four ways of combining functions give familiar
sums, differences, products, or quotients, as we would expect. Composition, less
familiar, is a key idea throughout much of what follows.

Definition: sum, difference, product, quotient functions

Suppose f and g are given functions. Functions denoted by f 1 g, f 2 g,
f · g, and f

g are given by:

Sum: ~ f 1 g!~x! 5 f ~x! 1 g~x!
Difference: ~ f 2 g!~x! 5 f ~x! 2 g~x!
Product: ~ f · g!~x! 5 f ~x! · g~x!

Quotient: S f
gD~x! 5

f ~x!

g~x!

The domain of each combined function is the set of all real numbers for which the
right side of the equation is meaningful as a real number. Use parentheses as
needed for clarity.

Neyman . . . interviewed The definitions stated here are not mere formal manipulations of symbols. For
me [for a job at Berkeley instance, the plus sign in f 1 g is part of the name of the function that assigns to
and] said he would let me each x the sum of two numbers, f ~x! 1 g~x!.
know. . . . I didn’t really
expect anything to happen.

cEXAMPLE 1 Combining functions If f ~x! 5 4x 2 6 and g~x! 5 2x 2 2I had already written 104
letters of application to 3x, write an equation for (a) f 2 g and (b) f

g , and give the domain of each.
black colleges. Eventually I

Solutiongot a letter from [Neyman]
saying something like “In

(a) ~ f 2 g!~x! 5 f ~x! 2 g~x! 5 ~4x 2 6! 2 ~2x 2 2 3x! 5 22x 2 1 7x 2 6.view of the war situation
and the draft possibilities, The domain is the set of real numbers.
they have decided to
appoint a woman to this (b) S f

gD~x! 5
f ~x!

g~x!
5

4x 2 6
2x 2 2 3x

5
2~2x 2 3!

x~2x 2 3!
,

position.” [My eventual
appointment here came 12
years later.] which simplifies to 2

x for x 5/ 3
2 . Therefore ~ f

g!~x! 5 2
x , where the domain is

David Blackwell $x _ x 5/ 0 and x 5/ 3
2%. b

(b) Repeat part (a) if each vertical cross section is an
isosceles triangle with an altitude half as long as its
base (not a semicircle).

(c) Repeat part (a) if each vertical cross section is an
equilateral triangle.

(d) Repeat part (a) if each vertical cross section is a
rectangle whose base is twice its vertical height.



(4, 0)

(0, 4)

y

x

( f   g)(x) = 4 – (   x )2

= 4 – x, x $ 0

(a)

(2, 0)(– 2, 0)

(0, 2)

y

x

(b)

(g  f )(x) = 4 – x2
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Composition of Functions

Another way to combine functions is used frequently and plays an important role
in both precalculus and calculus.

Definition: composition of functions

Suppose f and g are functions. The composition function, f 8 g, read “f of
g,” is the function whose value at x is given by

~ f 8 g!~x! 5 f ~g~x!!.

Thus to write a formula for ~ f 8 g!~x!, in the rule defining f ,

replace each x in f~x! by g (x).

The domain of f 8 g is the set of all real numbers x such that both g~x! is
defined, and f ~g~x!! is defined.

The reason for calling the composition f 8 g “ f of g” is that the value of the compo-
sition function at a given number c is “ f of g~c!.”

cEXAMPLE 2 Two compositions If f ~x! 5 4 2 x 2 and g~x! 5 Ïx,
(a) write an equation and (b) draw a calculator graph of (i) f 8 g (ii) g 8 f.

Solution

(a) For each composition, we follow the procedure given in the definition.
(i) ~ f 8 g!~x! 5 f ~g~x!! 5 4 2 ~g~x!!2 5 4 2 ~Ïx!2.

For Ïx to be a real number we must have x $ 0, and when x $ 0, we
can simplify the equation for f 8 g:

~ f 8 g!~x! 5 4 2 x, where x $ 0.

(ii) ~g 8 f !~x! 5 g~ f ~x!! 5 Ïf ~x! 5 Ï4 2 x 2.
Again, the domain is limited: for 4 2 x 2 $ 0, we have 22 # x # 2.

(b) With a graphing calculator we can always enter the compositions in the form
we wrote above, Y1 5 4 2 (ÏX)2 and Y2 5 Ï(4 2 X2).

If your calculator has a Y 5 menu where you can enter several functions,
there are other options. For example, having entered f and g as Y1 5 4 2 X2 and
Y2 5 ÏX, since f (g~x!! 5 4 2 ~g~x!!2, we can enter f 8 g as Y3 5 4 2 Y22 and g 8 f
as Y4 5 ÏY1. Observe that for f 8 g we follow the defining rule for composition
functions: replace each x in f ~x! by g~x!.

The calculator graphs are shown in Figure 37. Note that the limitations on
the domain are obvious from the graphs and that we can also read off the
ranges. The range of f 8 g is (2`, 4#, and the range of g 8 f is the closed
interval @0, 2#.

Alternate Solution Sometimes it is easier to verbalize the rules that define func-
tions. The rules for f and g state that, for any given input, f squares the input and
subtracts the result from 4, while g takes the square root of its input. Thus, suppose
Ïx is the input. The function f squares Ïx and subtracts the result from 4:
4 2 ~Ïx!2. Similarly, when g is applied to f ~x!, g takes the square root of f ~x!. The
output is: g~ f ~x!! 5 Ïf ~x! 5 Ï4 2 x 2. b

FIGURE 37



[– 5, 5] by [– 2.1, 4.1]
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Example 2 shows that f 8 g and g 8 f are not the same function. In general
f 8 g and g 8 f are different, although there are important exceptions, as the next
example demonstrates.

cEXAMPLE 3 Equal compositions If f ~x! 5 3x 2 8 and g~x! 5
x 1 8

3
,

write an equation that gives the rule of correspondence for (a) f 8 g (b) g 8 f.

Solution
Here the rule for f is “triple the input and then subtract 8;” for g it is “add 8 to the
input and then divide the sum by 3.”

~ f 8 g!~x! 5 f ~g~x!! 5 fSx 1 8
3 D 5 3Sx 1 8

3 D 2 8 5 x.(a)

~g 8 f !~x! 5 g~ f ~x!! 5 g~3x 2 8! 5
~3x 2 8! 1 8

3
5 x.(b)

Thus ~ f 8 g!~x! 5 ~g 8 f !~x! for every number x. We say that the two functions
f 8 g and g 8 f are equal, f 8 g 5 g 8 f. b

cEXAMPLE 4 Composition equations If f ~x! 5 x 2 2 2x and g~x! 5
3 2 x, solve the equations.

(a) ~ f 8 g!~x! 5 0 (b) ~g 8 f !~x! 1 x 2 1 5 5 0

SolutionStrategy: Write each equa-
tion in a more familiar form.

(a) ~ f 8 g!~x! 5 f ~g~x!! 5 f ~3 2 x! 5 ~3 2 x!2 2 2~3 2 x! 5 x 2 2 4x 1 3.
Thus the given equation becomes

x 2 2 4x 1 3 5 0 or ~x 2 1!~x 2 3! 5 0.

The solutions are 1 and 3.
(b) ~g 8 f !~x! 5 g~ f ~x!! 5 g~x 2 2 2x! 5 3 2 ~x 2 2 2x!52x 2 1 2x 1 3. Re-

placing ~g 8 f !~x! by 2x 2 1 2x 1 3, the given equation becomes

~2x 2 1 2x 1 3! 1 x 2 1 5 5 0 or 2x 1 8 5 0.

The solution is 24. b

cEXAMPLE 5 Maxima and minima from calculator graphs Let F denote
the composition g 8 f on the limited domain D 5 @25, 5#, where

f ~x! 5
2x 2 4

x 2 2 4x 1 5
and g~x! 5 x 2 1 3x.

(a) Draw a calculator graph of F~x! 5 g~ f ~x!!.
(b) From your graph, find the maximum and minimum values of F.
(c) Find the solution set for g~ f ~x!! . 0.

Solution

(a) Writing a formula for the composition g~ f ~x!! requires us to replace each x in
x 2 1 3x by the entire f ~x!. The process is messy, to say the least, but some
calculators are designed to make composition much easier. See the Technology
Tip following this example. Not knowing the range beforehand, we may set an
x-range of @25, 5# to match the domain and adjust as necessary. A calculator
graph is shown in Figure 38.

FIGURE 38
F~x! 5 g~ f ~x!!



(4, 0)
(1, 0)

(3, – 8)

(3, – 2)

(0, 4)

y

x

y = (2x – 5)2 – 9

y = x2 – 5x + 4
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(b) Using the TRACE function on the graph of y 5 F~x!, we find the low point near
~1, 22! and the high point near ~3, 4!. Shifting a decimal window, we confirm
that the the maximum value of F is 4 and the minimum value is 22.

(c) The graph crosses the x-axis at ~2, 0!, as is easily verified by evaluating F~2!,
and is above the x-axis for all values of x (from the domain of F) greater than
2. Thus the solution set for g~ f ~x!! . 0 is the interval ~2, 5#. b

Graphing compositions and defining functionsTECHNOLOGY TIP r

When composing functions, let the calculator do the hard work. In
Example 5, to enter g~ f ~x!! 5 ~ f ~x!!2 1 3 f ~x!, we need lots of parentheses:

Y 5 ((2X 2 4)y(X2 2 4X 1 5))2 1 3((2X 2 4)y(X2 2 4X 1 5)).

If your calculator allows you to enter a list of functions, Y1, Y2, . . . , (TI and Casio)
then you can enter the composition function much more simply. First enter f as
Y1 and then use Y1 to enter g~ f ~x!! as Y2 5 g~Y1! :

Y1 5 ~2X 2 4!y~X2 2 4X 1 5! Y2 5 Y12 1 3Y1.

HP–38 Having entered functions F1~X! 5 ~2 * X 2 4!y~X2 2 4 * X 1 5! and
F2~X! 5 X2 1 3 * X, write the composition as F3(X) 5 F2(F1(X)) and graph.

HP–48 On the home screen, enter each function as an equation,
9F(X) 5 ~2 * X 2 4!y~X2 2 4 * X 1 5!9. Then press the DEF key (above STO).
Similarly for 9G~X! 5 X2 1 3 * X9. Then on the PLOT screen enter the func-
tion as 9G(F(X))9 and graph.

cEXAMPLE 6 Composition inequality If f ~x! 5 x 2 2 9 and g~x! 5
2x 2 5, find the solution for f ~g~x!! , 0.

SolutionStrategy: Get simpler ex-
pressions for the composi- f ~g~x!! 5 f ~2x 2 5! 5 ~2x 2 5!2 2 9. Therefore the given inequality may be
tion function, substitute, and written as ~2x 2 5!2 2 9 , 0. This is equivalent to
solve.

~2x 2 5!2 , 9 or 23 , 2x 2 5 , 3 or 1 , x , 4.

The solution set is $x _ 1 , x , 4%.

Alternate Solution Graphical We have seen often that calculator graphs allow
us to read the solution set for an inequality such as ~2x 2 5!2 2 9 , 0 or 4x 2 2
20x 1 16 , 0. We can graph Y 5 ~2X 2 5!2 2 9 or we can simplify the inequality to
an equivalent form, by dividing through by 4, getting x 2 2 5x 1 4 , 0, and
graph Y 5 X2 2 5X 1 4. In either case we have a parabola that crosses the x-axis at
~1, 0! and ~4, 0!. See Figure 39. We read the solution set as $x _ 1 , x , 4%. b

cEXAMPLE 7 Applied composition An oil spill on a lake assumes a
circular shape with an expanding radius r given by r 5 Ït 1 1, where t is the
number of minutes after measurements are started and r is measured in meters.

(a) Find a formula that gives the area A of the circular region at any time t.
(b) What is the area at the beginning measurement ~t 5 0!? What is the area 3

minutes later?FIGURE 39



pg112 [V] G2 5-36058 / HCG / Cannon & Elich jn 11-22-95 MP1

112 Chapter 2 Functions

Solution

(a) Follow the strategy.

A 5 p~Ït 1 1!2 5 p~t 1 1!.

Thus A as a function of t is

A 5 pt 1 p .

When t is 0, A 5 p · 0 1 p 5 p square meters. When t is 3, A 5 3p 1 p 5 4p
square meters. b

Calculator Evaluations

Many function evaluations by calculator actually involve composition of functions,
especially with calculators that use “Reverse Polish” operations. With such a
calculator, to evaluate F~x! 5 Ïx 2 1 1 when x is 3, we enter 3, square it, and add
1, after which we take the square root. This amounts to treating F as a composition
f 8 g, where g~x! 5 x 2 1 1 and f ~x! 5 Ïx. We accomplish the same thing if we
have a graphing calculator using an Algebraic Operating System when we use the
ANS key. Using the same example, if we evaluate 32 1 1 and ENTER, the calculator
displays 10. If we then evaluate ✓ANS, we are taking the composition of the square
root function with the previously evaluated x 2 1 1 function.

cEXAMPLE 8 Function as a composition If F~x! 5
1

x 2 1 1
, express F as a

composition of two functions.

Solution
Let f ~x! 5 1

x and g~x! 5 x 2 1 1. Then

f ~g~x!! 5 f ~x 2 1 1! 5
1

x 2 1 1
.

Thus, F~x! is given by F~x! 5 ~ f 8 g!~x!. b

In problems of the type discussed in Example 8, be aware that there are many
different solutions. For example, we could have taken

f ~x! 5
1

x 1 1
and g~x! 5 x 2.

Then

f ~g~x!! 5 f ~x 2! 5
1

x 2 1 1
.

Composition with Absolute Value

Composition of functions with the absolute value function affects graphs in a
consistent fashion giving us two more useful basic transformations. It is easiest to
look at a specific example.

Strategy: (a) Since
r 5 Ït 1 1 is a function of
t and A 5 pr 2 is a function
of r, then by composing
functions we can express A
as a function of t.



(3, 0)

(– 1, – 4) (1, – 4)

(– 3, 0)

y

x
1 2 3 4

4

– 1– 1– 2– 3– 4

– 2

– 3

1

2

3

(a)

(– 1, 0)

y

x
(3, 0)

(1, 4)

(b)

(– 1, 0)

(1, – 2)

y

x

(3, 1)
(– 3, 0)

(2, 0)

(4, 0)

(– 2, 1)

y = f (x)

(0, – 1)
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cEXAMPLE 9 Composing absolute value with a quadratic function Let
f ~x! 5 x 2 2 2x 2 3 and g~x! 5 _ x _ . Write an equation and draw a calculator
graph of (a) f 8 g (b) g 8 f.

Solution

(a) ~ f 8 g!~x! 5 f ~_ x _! 5 ~_ x _!2 2 2_ x _ 2 3 5 x 2 2 2_ x _ 2 3, since _ x _2 5

x 2. For a calculator graph, we enter Y 5 X2 2 2 abs ~X! 2 3, and get a graph like that
in Figure 40a. We observe that x 2 2 2_ x _ 2 3 is an even function. The graph
in Figure 40a consists of the portion of the parabola y 5 x 2 2 2x 2 3 to the
right of the x-axis, together with its reflection through the y-axis.

(b) ~g 8 f !~x! 5 g~x 2 2 2x 2 3! 5 _ x 2 2 2x 2 3 _ . For the graph we enter
Y 5 abs~X2 2 2X 2 3!. The graph is shown in Figure 40b. Since the absolute value of
a number cannot be negative (recall that _ x _ 5 x when x $ 0 and _ x _ 5 2x
when x , 0), any portion of the graph of the parabola y 5 x 2 2 2x 2 3 below
the y-axis is reflected upward through the x-axis. b

The effects we observe in the graphs in Figure 40 are applicable in general. For
any function f ~x!, the function f ~_ x _! is an even function whose graph is symmetric
about the y-axis. Thus the graph of y 5 f ~_ x _! consists of the graph of y 5 f ~x!
for x $ 0, together with the horizontal reflection of this portion about the y-axis.

Similarly, since _ f ~x! _ $ 0, for the graph of y 5 _ f ~x! _ , any part of the graph
of y 5 f ~x! that lies above the x-axis is unchanged; whatever part of the graph lies
below the x-axis is reflected upward through the x-axis.

These transformations are consistent with the basic transformations of Sec-
tion 2.3. A transformation operation on the “outside,” _ f ~x! _ , affects the vertical
aspects of the graph; an operation on the argument, “inside,” f ~_ x _ !, affects the
graph horizontally.

Composition of a function with the absolute value function
From the graph of y 5 f ~x!, the graph of

y 5 f ~_ x _ !y 5 _ f ~x! _

is a vertical reflection: the part is a horizontal reflection: function
above the x-axis is unchanged; any is even; the portion to the right of
portion below the x-axis is reflected

the y-axis is unchanged and is also
up, through the x-axis.

reflected to the left, through the
y-axis.

cEXAMPLE 10 Composition with absolute value The graph of a func-
tion f is shown in Figure 41. If g~x! 5 _ x _ , draw a graph of (a) f 8 g (b) g 8 f ,
identifying the points corresponding to the labeled points in Figure 41. Explain the
thinking used to get each graph.

Solution

(a) ~ f 8 g!~x! 5 f ~g~x!! 5 f ~_ x _ !. From the box above, f ~_ x _! is an even func-
tion. Knowing the graph of the function for positive x-values, the rest of the
graph is obtained by taking the horizontal reflection in the y-axis. Each labeled
point ~a, b! is reflected to the point ~2a, b!. The resulting graph is shown in
Figure 42a.

FIGURE 40

FIGURE 41



(1, – 2)(– 1, – 2)

y

x

(3, 1)

(– 4, 0) (2, 0)

(– 2 , 0) (4, 0)
(– 3, 1)

y = f (u x u)

(a)

(0, – 1)

(– 1, 0)

y

x
(– 3, 0)

(2, 0)

(– 2, 1)

y = u f(x)u

(b)

(3, 1)

(4, 0)

(1, 2)

(0, 1)
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FIGURE 42

(b) ~g 8 f !~x! 5 g~ f ~x!! 5 _ f ~x! _ . Since _ f ~x! _ can never be negative, the graph
can contain no points below the x-axis. Whenever the graph of f dips below the
x-axis, the graph of _ f ~x! _ is reflected back up, above the axis. Any point
~a, 2b! on the graph of f below the x-axis is reflected to the point ~a, b!. The
graph is shown in Figure 42b. b

EXERCISES 2.6

Check Your Understanding

Exercises 1–5 True or False. Give reasons.

1. If f ~x! 5 x 2 and g~x! 5 x 2 2 1, then g 8 f is a
quadratic function in x.

2. If f ~x! 5 x 2 and g is any function for which the domain
of g 8 f is not the empty set, then the function g 8 f
must be an even function.

3. If f ~x! 5 2x 2 1, then f ~a 1 b! 5 f ~a! 1 f (b) for all
real numbers a and b.

4. If g~x! 5 3x, then g~c 1 d! 5 g~c! 1 g(d) for all real
numbers c and d.

5. If f ~x! 5 x 2 1 1 and g~x! 5 x 1 3, then the graph of
y 5 ~ f 8 g!~x! contains no points below the x- axis.

Exercises 6–10 Fill in the blank so that the resulting
statement is true.

6. If f ~x! 5 2x 1 5 and g~x! 5 Int~x!, then
~g 8 f !~Ï5! 5 .

7. If f ~x! 5 2x 1 5 and g~x! 5 Int~x!, then
~ f 8 g!~Ï5! 5 .

8. If f ~x! 5 2x 1 1 and g~x! 5 x 2, then ~ f 8 g!~21! 5
.

9. If f ~x! 5 2x 2 1 and g~x! 5 x 2 2 3x 2 4, then the
zeros of g 8 f are .

10. If f ~x! 5 x 2 2 5x 1 4 and g~x! 5 x 2, then the sum of
the roots of the equation ~ f 8 g!~x! 5 0 is equal to

.

Develop Mastery

Exercises 1–4 Evaluate (a) ~ f 2 g!~21! (b) ~ f · g!~0.5!.

1. f ~x! 5 2x, g~x! 5 1 2 2x

2. f ~x! 5 x 2 2 3, g~x! 5 Ïx 1 4

3. f ~x! 5 _ x 2 2 _ , g~x! 5 x 1 1

4. f ~x! 5 x 2 2 x, g~x! 5 3_ 1 2 x _

Exercises 5–8 Sum and Quotient Functions Find an
equation to describe the rule for (a) ~ f 1 g!~x! and (b)
~ f

g!~x!. In each case state the domain.

5. f ~x! 5 x 2
1
x

, g~x! 5 x

6. f ~x! 5 x 2 2 1, g~x! 5 1 2 x

7. f ~x! 5 Ïx 2 2, g~x! 5 1 2 Ïx

8. f ~x! 5 x 2 4, g~x! 5
1
x

Exercises 9–10 Composition Functions Use f ~x! 5
x 1 2 and g~x! 5 x 2 2 2x.

9. Evaluate (a) ~ f 8 g!~21! (b) ~g 8 f !~3!
(c) ~ f 8 f !~4!

10. Find an equation to describe
(a) ~ f 8 g! (b) ~g 8 f !.

11. Composition from Tables The domain of function f is
$23, 21, 0, 1, 3% and the domain of g is $21, 0, 1, 3, 5%.
The rules for f and g are given in tabular form:



y

(1, 0)

(0, – 2)(– 1, – 2)

(– 2, 0)

–4 –3 – 2 –1

1

2

3

4

5

–3

(– 3, 1)

(2, 3)

(3, 4)

(4, 5)

x



y = f (x)

1 2 3 4

y

(5, – 2)
(– 2 , – 3 )

(0, 0)

(3, 3)

y = g(x)



x

(1, 2)
1

–3 –2 –1 1 2 3 4 5

–3

2

3
4

5
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x 23 21 0 1 3

f ~x! 21 0 2 3 5

x 21 0 1 3 5

g~x! 22 21 2 3 4

(a) Complete the following table for g 8 f. If an entry
is undefined write U.

x 23 21 0 1 3

~g 8 f !~x!

What is the domain of
(b) g 8 f ? (c) f 8 g?

Exercises 12–13 Domain of Composition Use f ~x! 5

Ïx and g~x! 5 x 2 2 4.

12. Give an equation to describe f 8 g. State the domain.

13. Give an equation to describe g 8 f. State the domain.

Exercises 14–19 Solving Equations For functions f
and g,

f ~x! 5 x 2 2 2x 2 3 and g~x! 5 2x 2 3,

solve the equation.

14. ~ f 1 g!~x! 5 10 15. S f
gD~x! 5 x 1 1

16. ~ f · g!~x! 5 0 17. ~g 8 f !~x! 5 3x

18. ~ f 8 g!~x! 5 5 19. ~g 8 f !~x! 1 x 2 5 0

Exercises 20–25 Solving Inequalities For functions f
and g,

f ~x! 5 2x 2 2 x 1 1 and g~x! 5 3 2 x,

find the solution set.

20. ~ f 1 g!~x! , 1 21. ~ f 2 g!~x! $ 24

22. ~ f 8 g!~x! 1 x # 1 23. ~ f 8 g!~x! 1 x 2 $ 0

24. ~g 8 f !~x! 1 1 . 0 25. ~g 8 g!~x! $ x 2 1

Exercises 26–29 Graph of Compositions (a) Draw a
graph of the function y 5 ~ f 8 g!~x!. (b) Give the x and y
intercept points. (Solve graphically and then verify alge-
braically.)

26. f ~x! 5 x 2 2 3x, g~x! 5 Ïx

27. f ~x! 5 x 2 1 x, g~x! 5 x 2 2 2x

28. f ~x! 5 x 2 2 2x, g~x! 5 x 2 1 x

29. f ~x! 5 9 2 x 2, g~x! 5 x 2 2 4

The following graphs apply to Exercises 30–36.

30. Reading Graphs Graphs of the functions f and g are
shown. Complete the following tables.

x 23 0 1 2 4

~g 8 f !~x!

x 22 0 1 3 5

~ f 8 g!~x!

Exercises 31–32 Is the statement true or is it false?

31. (a) ~ f 8 g!~0.9! . 0 (b) 22 , ~ f 8 g!~4! , 2

32. (a) ~g 8 f !~0.75! . 0 (b) 2 , ~ f 8 g!~3.1! , 3

Exercises 33–36 Related Graphs Use the graphs in Ex-
ercise 30 to draw a graph of h. First give a verbal descrip-
tion of the strategy you plan to use. Label the coordinates of
five points that must be on the graph of h. Can a graph of h
be used as a check? Explain.

33. (a) h~x! 5 f ~2x! (b) h~x! 5 2g~x!

34. (a) h~x! 5 f ~_ x _ ! (b) h~x! 5 _ g~x! _

35. (a) h~x! 5 f ~x 2 2! (b) h~x! 5 g~x! 2 2

36. (a) h~x! 5 g~_ x _ ! (b) h~x! 5 _ f ~x! _
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Exercises 37–40 Given functions f and g, (a) find
equations that describe the composition functions f 8 g and
g 8 f. (b) Are the functions f 8 g and g 8 f equal? That is,
do they have the same domain D, and is ~ f 8 g!~x! 5
~g 8 f !~x! for every x in D?

37. f ~x! 5 3x 2 1, g~x! 5
x 1 1

3

38. f ~x! 5 4 2 3x, g~x! 5
4 2 x

3

39. f ~x! 5 x 2 1 1, g~x! 5 Ïx 2 1

40. f ~x! 5 x 2 1 1, g~x! 5 Ïx

Exercises 41–44 For the given function f, find a function
g such that f ~g~x!! 5 x for every value of x. (Hint: In
Exercise 41, f ~g~x!! 5 2g~x! 2 5; solve the equation
2g~x! 2 5 5 x for g~x!.)

41. f ~x! 5 2x 2 5 42. f ~x! 5 3 2 4x

43. f ~x! 5
2x

x 2 2
44. f ~x! 5

23x
2x 1 3

Exercises 45–48 Evaluating Combined Functions If
f ~x! 5 Ïx and g~x! 5 x

x 2 1 , evaluate the expression and
round off the result to two decimal places.

45. ~ f 1 g!~Ï3! 46. ~ f 8 g!~1.63!

47. ~g 8 f !~5! 48. S f
gD~0.37!

Exercises 49–52 Function as a Composition Function
F is given. Find two functions f and g so that F~x! 5
~ f 8 g!~x!. Solutions to these problems are not unique.

49. F~x! 5
1

x 2 1 5

50. F~x! 5 Ïx 2 2 3x 1 5

51. F~x! 5 _ 5x 1 3 _

52. F~x! 5
4
x 2 1 1

Exercises 53–56 Functions of Your Choice (a) Give for-
mulas for functions f (quadratic) and g (linear) of your
choice that satisfy the specified conditions. (b) Determine a
formula for f 8 g and draw its graph. (c) What are the
coordinates of the lowest or highest point on the graph of
f 8 g?

53. Function f has a positive and a negative zero; g has a
zero between 1 and 3.

54. The graph of f opens downward and has no x-intercept
points; the graph of g has a positive slope.

55. The graph of f contains points (0, 2) and (3, 0); the
graph of g passes through (0, 22) and has negative
slope.

56. Function f has no real zeros and its graph contains the
point (1, 22); function g has a zero at 23.

57. For functions f ~x! 5 2x 1 5 and g~x! 5 Int~x!, find
the solution set for (a) ~ f 8 g!~x! 5 0 and
(b) ~g 8 f !~x! 5 0

58. For functions f ~x! 5 Int~x! and g~x! 5 x 2 2 x 2 6,
find the minimum value of f 8 g.

Exercises 59–60 Graphing Composition Functions
Graph g 8 f where g~x! 5 x 2 2 4 and f is the given func-
tion. For Y1 enter the formula for f ~x!, for Y2 enter x2 2 4,
and for Y3 enter Y12 2 4 (that is, ~g 8 f !~x!). Before drawing
the graphs, make a prediction about how Y2 and Y3 are
related. Review material in Section 2.3 (Operating on the
“inside”) if necessary. Draw the graphs of Y2 and Y3 simul-
taneously and see if your prediction is correct.

59. (a) f ~x! 5 x 2 2 (b) f ~x! 5 2x
(c) f ~x! 5 0.5x

60. (a) f ~x! 5 x 1 4 (b) f ~x! 5 1.5x
(c) f ~x! 5 0.3x

Exercises 61–62 Replace g~x! in Exercises 59–60 with
g~x! 5 x 2 2 4x 2 2.

61. (a) f ~x! 5 x 2 2 (b) f ~x! 5 x 1 2
(c) f ~x! 5 2x

62. (a) f ~x! 5 x 2 3 (b) f ~x! 5 x 1 1
(c) f ~x! 5 2x 2 1

Exercises 63–64 Graphs Draw graphs of g~x! 5 x 2 2
4x 2 2 and f 8 g for the given function f. Before you draw
the graphs, predict how they are related. See Section 2.3.

63. (a) f ~x! 5 x 1 2 (b) f ~x! 5 _ x _

64. (a) f ~x! 5 x 2 2 (b) f ~x! 5 2x

Exercises 65–66 Highest and Lowest Points Draw a
calculator graph of g 8 f. Find the coordinates of the
(a) highest point and (b) the lowest point. See Example 5.
(Hint: Let Y1 5 f ~x! and Y2 5 g(Y1) and draw the graph of Y2.)

65. f ~x! 5
2x

x 2 1 1
g~x! 5 x 2 1 3x

66. f ~x! 5
2x

x 2 1 1
g~x! 5 x 2 1 3x 1 1

Exercises 67–70 Express the given function as a composi-
tion of two of these four functions

f ~x! 5 x 2 4 g~x! 5 x 2 1 1

h~x! 5
1
x

k~x! 5 _ x _ .

67. F~x! 5 _ x _ 2 4 68. G~x! 5
1

_ x _

69. H~x! 5
1
x 2 1 1 70. K~x! 5 x 2 2 3

71. If g~x! 5 2x 2 3 and f ~g~x!! 5 4x 2 2 x, find f ~25!.
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72. If g~x! 5 4 2 x 2 and f ~g~x!! 5
3 2 x 2

x 2 , find f ~3!.

73. If g~x! 5 x 2 5 and f ~g~x!! 5 Ïx 1 1, find f ~3!.

74. If g~x! 5 2x 1 5 and f ~g~x!! 5 x 2 1 4, find f ~21!.

Exercises 75–76 Iteration Evaluations A function f is
given. New functions are denoted f ~1!, f (2!, f ~3!, . . . , where
f ~1!~x! 5 f ~x!, f ~2!~x! 5 f ~ f ~x!!, f ~3!~x! 5 f ~ f ~ f ~x!!!, . . . .
Observe that the notation f ~n! indicates repeated composi-
tion of f, not multiplication; that is, f ~n!~x! is not the same as
~ f ~x!!n.

75. f ~x! 5
23x

2x 1 3
(a) Evaluate f ~1!~21!, f ~2!~21!, f ~3!~21!, f ~4!~21!.
(b) Based on your observations, what is f ~16!~21!?

f ~23!~21!?

76. f ~x! 5
2x

x 2 2
(a) Evaluate f ~1!~3!, f ~2!~3!, f ~3!~3!, f ~4!~3!.
(b) Based on your observations, what is f ~24!~3!?

f ~47!~3!?

77. Maximum Cost A manufacturer determines that the
cost C (in dollars) to build x graphing calculators is
described by the equation

C 5 80 1 48x 2 x 2 for 0 # x # 40.

Also, it is known that in t hours, the number x of calcu-
lators that can be produced is

x 5 4t, where 0 # t # 10.

(a) Express C as a function of t.
(b) What is the cost when the factory operates four

hours?
(c) For what time t is the cost the greatest?

78. A rock is thrown into a lake causing a ripple in the
shape of an expanding circle whose radius r is given by
r 5 Ït, where t is the number of seconds after the rock
hits the water and r is measured in feet.
(a) What are the radius, circumference, and area of the

circle when t 5 4?
(b) Express the circumference C and area A as func-

tions of t.
(c) At what time t is the circumference 8 feet?
(d) At what time t is the area 36 square feet?

79. A spherical balloon is being inflated in such a way that
the diameter d is given by d 5 t

2 , where t is measured
in seconds and d in centimeters.
(a) Express the volume V of the balloon as a function

of t.
(b) At what time t will the volume be 20 cubic centime-

ters?

80. Cost, Revenue, Profit A manufacturing company
sells toasters to a retail store for $25 each plus a fixed

handling charge of $15 on each order. The retailer ap-
plies a 30 percent markup to the total price paid to the
manufacturer.
(a) Suppose the order consists of 20 toasters. How

much does the retailer pay for the order? What is
the retailer’s total revenue from the sale of the 20
toasters? How much profit per toaster does the re-
tailer make?

(b) Suppose C is the cost to the retailer for an order of
x toasters, R is the total revenue from the sale of x
toasters, and P is the profit per toaster. Find formu-
las that give C, R, and P as functions of x.

81. A circle is shrinking in size in such a way that the radius
r (in feet) is a function of time t (in minutes), given by

the equation r 5 f ~t! 5
1

t 1 1
. The area of the circle

is given by A~r! 5 pr 2, so the area is also a function of
time, given by ~A 8 f !~t!.
(a) Write a formula for ~A 8 f !~t!.
(b) What is the area at the end of one minute? Two

minutes?

(c) For what value of t is the area
p

25
?

82. Number of Bacteria The number of bacteria in a cer-
tain food is a function of the food’s temperature. When
refrigerated, the number is N~T ! at a temperature T
degrees Celsius, described by the equation

N~T ! 5 10 T 2 2 60 T 1 800, for 3 # T # 13.

When the food is removed from the refrigerator the
temperature increases and t minutes later the tempera-
ture is T 5 2t 1 3, for 0 # t # 5.
(a) Determine an equation that describes the number

of bacteria t minutes after the food is removed from
the refrigerator.

(b) How many bacteria are in the food three minutes
after it is removed from the refrigerator?

(c) How many minutes after the food is taken out of the
refrigerator will it contain 2150 bacteria? Check
graphically.

83. Volume of Balloon A spherical weather balloon is
being inflated in such a way that the radius is
r 5 f ~t! 5 0.25t 1 3, where t is in seconds and r is in
feet. The volume V of the balloon is the function
V~r! 5 4pr 3y3 .
(a) What is the radius when the inflation process be-

gins?
(b) Write an equation to describe the composition V 8 f

that gives the volume at t seconds after inflation
begins.

(c) What is the volume of the balloon 10 seconds after
inflation begins?

(d) In how many seconds will the volume be 400 cubic
feet? Check graphically.
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2.7 I N V E R S E F U N C T I O N S A N D P A R A M E T R I C E Q U A T I O N S

Is it not a miracle that the universe is so constructed that such a simple
abstraction as a number is possible? To me this is one of the strongest
examples of the unreasonable effectiveness of mathematics. Indeed, I find
it both strange and unexplainable.

R. W. Hamming

In Section 2.2 we noted that a function can be considered as a set of ordered pairs
in which no two different pairs have the same first component. For each first
number, any ordered pair can have exactly one second number.

As an example, suppose function f is f ~x! 5 2x, where the domain is D 5
$22, 21, 0, 1, 2%. In terms of ordered pairs, f may be written as

f 5 $~22, 24!, ~21, 22!, ~0, 0!, ~1, 2!, ~2, 4!%.

The range R of f is given by R 5 $24, 22, 0, 2, 4%. Now suppose we interchange
the two entries in each of the ordered pairs of f and get a new set of ordered pairs
that we denote by g.

g 5 $~24, 22!, ~22, 21!, ~0, 0!, ~2, 1!, ~4, 2!%

We can make several observations concerning g:

1. Since no two pairs of g have the same first numbers, g is a function.
2. The domain of g is D9 5 $24, 22, 0, 2, 4% and the range is

R9 5 $22, 21, 0, 1, 2%.

3. Function g is g~x! 5
x
2

, where x [ D9.

4. The domains and ranges of f and g are interchanged; D9 5 R and
R9 5 D.

Let us consider the composition function g 8 f defined by ~g 8 f !~x! 5 g~ f ~x!!
[Before I zeroed in on for x in D. For instance,
math], I found the whole

when x is 22, g~ f ~22!! 5 g~24! 5 22university just fascinating.
There was that rare books when x is 21, g~ f ~21!! 5 g~22! 5 21
library that had everything

and so on. In general,in the world in it. I loved
the history courses. I loved
the English courses. I g~ f ~x!! 5 g~2x! 5

2x
2

5 x.
enjoyed physics very much.
Even in my senior year I We get a similar result for f 8 g:
took courses all over the
map—almost as much ~ f 8 g!~x! 5 f ~g~x!! 5 fSx

2D 5 2Sx
2D 5 x.

philosophy as mathematics,
almost as much history as

The functions f and g that we have been discussing are related in a specialmathematics, almost as
much English as way—one is the inverse of the other. Since f ~g~x!! 5 x and g~ f ~x!! 5 x, we may
mathematics, almost as say that each of the functions “undoes” or neutralizes the other. If we start with x,
much Spanish as apply f and get f ~x!, and then apply g to f ~x!, we get back to x.
mathematics.

Schematically, think of a function as a map that sends each element in theMary Ellen Rudin
domain to a corresponding range element. The inverse function sends each element
of the range to the original element of the domain. A diagram like Figure 43 may
help clarify the relationship. Observe that the diagram may be read in either
direction so that applying f and then g, or g and then f , always yields the initial
input.
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Definition: inverse functions

Suppose f and g are functions that satisfy two conditions: g~ f ~x!! 5 x for
every x in the domain of f , and f ~g~x!! 5 x for every x in the domain of g.
Then f and g are inverses of each other.

Characterization of Inverse Functions

Suppose f is a function described as a set of ordered pairs such that no two pairs
have the same second element, f 5 $~x, y! _ y5 f ~x!%.

Let g be the set of ordered pairs obtained by interchanging the elements of each
pair of f. If g is a function, then f and g are inverses of each other.

Notation for Inverse Functions

Suppose g is the inverse of function f. It is customary to denote g by f21. Note that
f 21 does not mean the reciprocal of f , which we would write as 1

f . Replacing g by
f21 in the above definition gives an important pair of identities.

Inverse function identities

f 21~ f ~x!! 5 x for each x in the domain of f.

f ~ f 21~x!! 5 x for each x in the domain of f 21.

cEXAMPLE 1 Verify inverse

(a) Verify that

f ~x! 5 2x 1 3 and f 21~x! 5
x 2 3

2
are inverses of each other.
(b) Draw graphs of y 5 f ~x! and y 5 f21~x!.

Solution

(a) Follow the strategy. For every real number x,

f 21~ f ~x!! 5 f 21~2x 1 3! 5
~2x 1 3! 2 3

2
5

2x
2

5 x.

f ~ f 21~x!! 5 fSx 2 3
2 D 5 2Sx 2 3

2 D 1 3 5 ~x 2 3! 1 3 5 x.

Therefore, the given functions are inverses of each other.
(b) The graphs of y 5 2x 1 3 and y 5

x 2 3

2
are the lines shown in

Figure 44. b

Strategy: Simply verify
that f ~ f 21~x!! 5 x and
f 1~ f ~x!! 5 x for every real
number x.

FIGURE 44

FIGURE 43
Inverse function: g~ f ~x!! 5 x

for every x in the domain of f.
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Graphs of Inverse Functions

The graphs of the functions y 5 f ~x! and y 5 f 21~x! in Figure 44 appear symmet-
ric with respect to the line y 5 x, that is, each graph is a reflection of the other
through that line. We want to show that for any pair of inverse functions, the graphs
of f and f 21 are symmetric about the line y 5 x.

Suppose that ~a, b! is any ordered pair in f. This implies that ~b, a! is an ordered
pair in f 21. If we denote the line y 5 x by L, then we must show that the points
P~a, b! and Q~b, a! are reflections of each other in L; that they are equidistant from
L and that the line through P and Q is perpendicular to L. The midpoint M of

segment PQ has coordinates Sa 1 b
2

,
a 1 b

2 D. Direct computation verifies that M

lies on line L and that P and Q are equidistant from L. Further, the line through P

and Q has slope given by m 5
b 2 a
a 2 b

5 21, and hence is perpendicular to L since

the slope of L is 1. See Figure 45.

Graphs of inverse functions

For each point ~a, b! on the graph of y 5 f ~x!, the point ~b, a! belongs to the
graph of y 5 f 21~x!; that is, coordinates of every point are
interchanged.

The graph of y 5 f 21~x! is a reflection through the line y 5 x of the graph
of y 5 f ~x!.

The domain of f becomes the range of f 21, and conversely; that is, the
domains and ranges are interchanged.

Finding Equations for Inverse Functions

It is not always easy to find an equation that describes the inverse of a particular
function. In many cases, however, the inverse function does have an equation that
can be found readily by a straightforward algorithm. The key is the observation that
finding f 21 from f requires interchanging x and y in each ordered pair ~x, y! of f to
obtain the ordered pairs in f 21.

Algorithm: finding an equation for an inverse function

Step 1. Write the equation defining f in the form y 5 f ~x!.
Step 2. Interchange y and x to get x 5 f ~y!.
Step 3. Solve the equation x 5 f ~y! for y, and adjust the domain as needed.
Step 4. The result is y 5 f 21~x!.

cEXAMPLE 2 Formula for inverse Find a formula for the inverse of
f ~x! 5 2x 2 1 and verify that f ~ f 21~x!! 5 x.

Solution
Follow the strategy.

Step 1 y 5 2x 2 1

Step 2 x 5 2y 2 1

Step 3 y 5
x 1 1

2
; therefore, f 21~x! 5

x 1 1
2

.

FIGURE 45

Strategy: First write
y 5 2x 2 1 and then follow
the steps of the algorithm.
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To verify that f ~ f 21~x!! 5 x,

f ~ f 21~x!! 5 fSx 1 1
2 D 5 2Sx 1 1

2 D 2 1 5 ~x 1 1! 2 1 5 x. b

cEXAMPLE 3 A function and its inverse Let g~x! 5 Ï3 2 x. Find the
domain and range of g, and find a formula for the inverse function g21, and state
its domain and range. Sketch a graph of both g and g21.

Solution
By the domain convention, g is defined when 3 2 x $ 0, so the domain of g is the
interval (2`, 3#, and since a square root is always nonnegative, the range is the
interval @0, `). To find a formula for g21, we follow the steps of the algorithm.

Steps 1 and 2. Write y 5 Ï3 2 x, and interchange variables,
x 5 Ï3 2 y.

Step 3. To solve for y, we begin by squaring, x 2 5 3 2 y. Then
y 5 3 2 x 2. For the inverse function, the domain and range of f are
interchanged, so the domain is the interval @0, `), and the range is
~2`, 3#.

Step 4. With the restricted domain, we have g21~x! 5 3 2 x 2, x $ 0.

The graph of g is the upper half of a parabola opening to the left; the graph of
g21 is the right half of a parabola opening downward. See Figure 46. b

FIGURE 46

Using Parametric Mode to Graph Inverses

Graphing calculators have a mode of graphing called parametric mode which
allows us to visualize directly what happens when we interchange the ordered pairs
in a function. In parametric mode we use separate equations for the x- and y-coor-
dinates, defining both coordinates as functions of a new variable. We study para-
metric equations in some detail later in the book, but we make use of the parametric
mode on graphing calculator whenever it can help us to understand ideas.

To illustrate, suppose we have a pair of equations, x 5 t, y 5 t 2. Then, for each
value of t, we get a pair of numbers ~x, y! with the property that y is the square of
x. For a given set of t-values, if we graph the pairs ~x, y! thus determined, we get
a set of points satisfying the equation y 5 x 2. That is, the two equations x 5 t,
y 5 t 2, together define part (or all) of the parabola we have previously defined by
the single equation y 5 x 2. The variable t is called a parameter, and the equations
x 5 t, y 5 t 2, are called parametric equations for the parabola y 5 x 2.
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HISTORICAL NOTE INVERSE FUNCTIONS AND CRYPTOGRAPHY

The set of points satisfying the equation x 5 y 2 cannot be graphed as a single
function on a graphing calculator, but we could graph two functions, y 5 Ïx and
y 5 2Ïx. Together, they form a parabola opening to the right, the graph of the
inverse relation of the function f ~x! 5 x 2. In parametric mode, however, it is just
as easy to use the equations y 5 t, x 5 t 2 for the parabola x 5 y 2 as it is to use
x 5 t, y 5 t 2 for the parabola y 5 x 2. In fact, for any function y 5 f ~x!, we can
use the parametric equations x 5 t, y 5 f ~t! for the function, and the parametric
equations y 5 t, x 5 f ~t! define the inverse relation (which may be a function, but
need not be). The fact that there can be different sets of parametric equations to
define the same curve will not concern us here; we have a method to allow us to
write a set of parametric equations for any given function and for its inverse.

Parametric equations for a function and its inverse

To graph a function y 5 f ~x! in parametric form, use equations

X 5 T, Y 5 f(T),

and to graph the inverse of f (which need not be a function), use equations

Y 5 T, X 5 f~T!.

Encoding and decoding secret
messages depends on functions and
their inverses. Each letter is assigned
a number (often, its place in the
alphabet) and a coding function is
applied to the number. A simple
Caesar cipher is given by
f ~n! 5 n 1 5 (mod 26), meaning
that n 1 5 is reduced by multiples
of 26 when necessary. S 5 19
becomes f ~19! 5 24 5 X. SEND
MONEY becomes XJSI RTSJD.
Decoding uses the inverse function
f 21~n! 5 n 2 5 (mod 26).

In a slightly more complex
function, F~n! 5 3n 1 5 (mod 26),
the letter S, which corresponds to 19,
becomes

F~19! 5 3 · 19 1 5 ~mod 26!

5 62 (mod 26) 5 10.

Therefore F (19) 5 10, and since J corresponds to
10, S becomes J. The inverse function to decode
JTUQ RXUTB is given by F21~n! 5 9n 1 7
(mod 26).

Even though the coding functions
have become extremely complex,
involving continual modifications,
until very recently all cryptology
algorithms required the same work
of the cryptographer and the
decrypter. Knowing how to encode
(which required the coding function)
meant knowing how to decode
(which required the inverse function).
All this has changed with the
invention of trapdoor codes, which
have efficient algorithms for both
functions and inverses, but for which
inverses are effectively impossible to
discover, so no one can break the
code.

The most impressive are the RST codes (named
for their discoverers). These depend on finding
large primes whose products cannot easily be
factored. A few minutes of computer time can
produce 100-digit primes, but factoring the
product of two such numbers would typically
require millions of years.

This Renaissance
crypt-analysis instrument

works by rotating the inner
disk against the stationary

outer disk.



y = g– 1(x)

y = g(x)

[– 4.5, 4.5] by [– 3.1, 3.1]
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We discuss below conditions that will allow us to tell when the inverse of f is
a function.

Parametric graphing and t-rangeTECHNOLOGY TIP r

When graphing in parametric mode, we must set a t-range as well as x-and
y-ranges. If we are using equations

X 5 T, Y 5 f(T),

we can see all of the graph that appears in the window if we set the t-range
to match the x-range. The tStep (or t-Pitch, or Step) determines how many points
will be plotted. Usually something around 0.1 gives a reasonable graph
without taking too long. Experiment with your calculator.

Limiting the t-range allows us to graph just a portion of f. For the simple
example x 5 t, y 5 t 2, setting a t-range from 21 to 1 gives the “tip” of the
parabola, from the point (21, 1) to the point (1, 1). Similarly, for the t-range
@0, 5# in the decimal window, we see only the part of the parabola in the first
quadrant. Again, experiment.

cEXAMPLE 4 Parametric graphs Let g~x! 5 Ï3 2 x. In parametric
mode sketch a calculator graph of both g and g21 on the same screen.

Solution
This is the same function as in Example 3.

With the calculator in parametric mode (make sure you know how to set the
proper mode on your calculator), enter

X 5 T, Y 5 Ï(3 2 T),

and to graph the inverse of g use equations

Y 5 T, X 5 Ï(3 2 T).

For the t-range, use the same interval as the x-range. If, for example you are
using a decimal window with Xmin 5 24.7, Xmax 5 4.7, use the same values for Tmin

and Tmax and set Tstep 5 .1. When you graph, both g and g21 should appear on the
same screen, as in Figure 47. Note that when you TRACE, you can read the coordi-
nates of all three variables, x, y, and t. b

Existence of Inverse Functions

Not every function has an inverse that is a function. For the function y5x 2, if we
interchange x and y to get x 5 y 2 and then solve for y, we have y 5 6Ïx. For each
x . 0 there are two corresponding values of y, so we do not have a function.

When we say that a function “has an inverse,” we mean that its inverse is a
function.

To determine whether or not a function f has an inverse, we look back at
ordered pairs ~x, y! of f , where y 5 f ~x!. We know that for every x in the domain
D of f , there is exactly one value of y. Now suppose we interchange x and y. The
set of ordered pairs ~y, x! will be a function only if for each y there is exactly one
x. Therefore, for y 5 f ~x! to have an inverse each x must correspond to exactly one
y ~so f is a function! and every y to exactly one x. We call such a function a
one–one function.

FIGURE 47
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Existence of an inverse function—Part I

A function has an inverse if and only if the function is one–one.

How can we tell when a function is one–one? The best way is to draw a graph.
Section 2.2 introduced the vertical line test to determine whether a graph repre-
sents a function. If we combine this test with the horizontal line test described
below, we can determine whether or not a graph is that of a one–one function.

Horizontal line test

If every horizontal line intersects the graph of a function in at most one
point, then that function is one–one. Therefore, it has an inverse.

Figure 48 shows graphs of three functions. The graphs in panels (a) and (b)
represent one–one functions while that in panel (c) does not. In panel (c) horizon-
tal lines like L1 intersect the graph at one point, but lines such as L2 intersect the
graph at more than one point.

A useful criterion for determining whether the inverse of a function is itself a
function comes from a property we can read from a graph. A function whose graph
rises as we move from left to right is called an increasing function. Similarly, if
the graph drops (goes down) as we move from left to right, the function is called
decreasing. We give a formal definition, but visualizing the distinction as in Fig-
ure 49 is at least as helpful.

FIGURE 49

FIGURE 48
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Definition: Increasing functions, decreasing functions

Suppose b and c are any numbers in the domain of a function f where b , c.
The function f is an increasing function if f ~b! , f ~c!, and it is a decreasing
function if f ~b! . f ~c!.

In terms of increasing and decreasing functions we can restate the condition for
the existence of an inverse function.

Existence of an inverse function—Part II

Function f has an inverse if f is either an increasing function or a
decreasing function.

cEXAMPLE 5 Existence of inverse Determine which functions have in-
verses:

(a) f ~x! 5 2x (b) g~x! 5 1
x (c) h~x! 5 x 2 2 2x.

Solution

(a) The graph of y 5 2x is a line as shown in Figure 50(a). Every horizontal line
intersects the graph at exactly one point, so f is a one–one function and it has
an inverse.

(b) The graph of y 5 1
x is shown in Figure 50(b). Every horizontal line except

y 5 0 (the x-axis) intersects the graph at one point and the line y 5 0 does not
intersect at any point. Thus g is a one–one function and it has an inverse.

(c) The graph of y 5 x 2 2 2x is a parabola, as shown in Figure 50(c). Clearly
there are horizontal lines that intersect the graph in more than one point, so h
does not have an inverse. b

cEXAMPLE 6 Increasing and decreasing functions Determine whether
the given function is increasing, decreasing, or neither.

(a) f ~x! 5 x 3 (b) g~x! 5 2x 2 (c) h~x! 5 2x 2, for x $ 0

Solution
Follow the strategy.

(a) The graph of y 5 x 3 is shown in Figure 51a. Clearly f is an increasing function.

Strategy: In each case
sketch a graph and then see
if every horizontal line in-
tersects the graph in at most
one point.

Strategy: In each case draw
a graph and determine
whether the function is in-
creasing, decreasing, or
neither.

FIGURE 50
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(b) The graph of y 5 2x 2 is a parabola as shown in Figure 51b. The graph shows
that g is neither increasing nor decreasing.

(c) The graph of y 5 2x 2, x $ 0, is the portion shown in Figure 51c. The graph
indicates that h is a decreasing function. b

Parametric equations are ideal for graphing functions that have limited domains, as
in the next example.

cEXAMPLE 7 Parametric graphs, functions, and inverses Sketch a cal-
culator graph of the function given parametrically and give the domain and range.
Then graph the inverse and determine if the inverse is a function.

(a) f : x 5 t, y 5 t 2 2 2t, 0 # t # 2.

(b) g : x 5 t, y 5 t 2 2 2t, 1 # t # 3.

Solution

(a) We put the calculator in parametric mode and enter X 5 T, Y 5 T2 2 2T, set the
t-range tMin 5 0, tMax 5 2, tStep 5 0.1, and graph. We get the portion of the parabola
y 5 x 2 2 2x lying below the x-axis, with domain and range given by D 5
@0, 2#, R 5 @21, 0#. See Figure 52a.

For the inverse of f , we interchange the x- and y-equations, X 5 T2 2 2T, Y 5 T,
keeping the same t-range, and graph. Again we have the tip of a parabola, this

FIGURE 51

FIGURE 52
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time opening to the right, shown in Figure 52b. We have labeled points on the
two graphs that correspond when we interchange coordinates. From the graph,
the domain and range of f 21 are given by D 5 @21, 0#, R 5 @0, 2#. By the
vertical line test, f 21 is not a function, as we could have foretold from the graph
of f.

(b) Following the same steps for the function g, we set the t-range tMin 5 1, tMax 5 3,
and the graph is shown in Figure 53a, part of the same parabola y 5 x 2 2 2x,
from the vertex ~1, 21! to the point ~3, 3!, so g is an increasing function.
Domain and range are given by D 5 @1, 3#, R 5 @21, 3#.

Interchanging coordinates, keeping the same t-range, the graph of g21 is the
reflection of the graph of g in the line y 5 x, as in Figure 53b. The domain and
range of g21 are obtained by interchanging the domain and range of g, and since
g is increasing, g21 is a function. b

TECHNOLOGY TIP r t-range for inverse functions

When graphing in parametric mode, remember the domain and range are
interchanged for a function and its inverse.

If you interchange defining equations, Y 5 T, X 5 2F(T), the t-range
remains the same because you are now are setting the range for the
y-variable.

In some situations, particularly in applications, we are accustomed to using
letters other than x and y to describe functions. Usually in such cases we want to
keep the original labels when finding formulas for inverse functions. Rather than
interchange variables, we simply solve for the variable we want, as illustrated in the
following example.

cEXAMPLE 8 Inverse function in application The area A of a circle is a
function f of its radius r, f ~r! 5 pr 2, or A 5 pr 2, where r . 0. Find an equation
for the inverse function.

Solution
The graph of A 5 pr 2, shown in Figure 54, indicates that f is an increasing func-
tion, so it has an inverse. To find a formula for the inverse, it would certainly be
confusing to switch the variables A and r. Therefore, simply solve the equation

A 5 pr 2 for r and get r 5 ÏA
p . Therefore, the inverse function is given by

f 21~A! 5 ÏA
p , or by r 5 ÏA

p , where A . 0. b

FIGURE 53

FIGURE 54
Area of a circle as a function

of the radius
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Often, in applications like Example 8, one can omit the formalism of introduc-
ing f and f 21. It is sufficient to say that the area A and the radius r are related and

that the equation A 5 pr 2 defines A as a function of r, while r 5 ÏA
p defines r as

a function of A. The two functions are inverses of each other.

TECHNOLOGY TIP r Built-in inverse graphs

The TI-82 and the TI-85 both have a built-in-routine for drawing the graph
of any inverse relation. If you have a calculator that draws inverses
automatically, you should learn how to use it, but don’t treat it as a magic
key that performs a function that is not understood. Learn what inverses are
and how to graph them; then take advantage of any technology that makes
your work more efficient. Begin by entering a function as, say, Y1.

TI-82: 2nd DRAW 8 (Drawlnv). This enters Drawlnv on the home screen, and you enter the
Y1 from the Y-VARS menu.

TI-85: GRAPH MORE DRAW MORE MORE Drawlnv. This enters Drawlnv on the home screen, and you
enter Y1.

EXERCISES 2.7

Check Your Understanding

Exercises 1–5 True or False. Give reasons. For these exer-
cises, assume that f is a function that has an inverse.

1. If the graph of f contains points in Quadrant III, then
the graph of f 21 must also contain points in Quadrant
III.

2. If (22, 23) is a point on the graph of f , then (2, 3) must
be a point on the graph of f 21.

3. If the graph of f is a line having negative slope, then the
graph of f 21 must be a line also with negative slope.

4. If the graph of f has a y-intercept point, then the graph
of f 21 must have an x-intercept point.

5. The graph of any function that has an inverse cannot
cross the x-axis at more than one point.

Exercises 6–10 Fill in the blank so that the resulting
statement is true.

6. If f ~22! 5 4, then f 21~4! 5 .

7. If the graph of f 21 contains points in Quadrants I and II,
then the graph of f must contain points in Quadrants

.

8. If the graph of f contains points in Quadrant II, then the
graph of f 21 must contain points in Quadrant .

9. If f ~2! 5 25, then a point on the graph of f 21 is
.

10. For f ~x! 5 x 3 1 x 2 1 x 2 4, if you draw graphs of
y 5 f ~x!, y 5 f 21~x!, and y 5 x on the same screen,
then the display will show that all three graphs intersect
at a point in Quadrant .

Develop Mastery

Exercises 1–4 Function f is given as a set of ordered pairs.
(a) Interchange the two entries in each ordered pair and get
a new set S of ordered pairs. (b) Is S a function?

1. f 5 $~0, 21!, ~1, 3!, ~2, 5!%

2. f 5 $~21, 1!, ~0, 3!, ~1, 1!%

3. f 5 $~23, 4!, ~21, 2!, ~1, 1!, ~3, 2!%

4. f 5 H(0, 0!, Sp

2
, 1D, S23p

2
, 21DJ

Exercises 5–8 Use the definition of inverse function to
determine whether or not functions f and g are inverses of
each other. That is, determine whether f ~g~x!! 5 x and
g~ f ~x!! 5 x.

5. f ~x! 5 21 2 2x, g~x! 5 2
x 1 1

2

6. f ~x! 5
x 1 1

2x
, g~x! 5

1
1 2 2x

7. f ~x! 5 2 1
1
x

, g~x! 5
1

2 2 x

8. f ~x! 5 4 2
1
x

, g~x! 5
1

4 2 x
Exercises 9–12 Parametric Equations Function f has
an inverse. (a) Using parametric equations draw graphs of
f and f 21. (b) If the graphs intersect, find the points of in-
tersection (1 decimal place).

9. f ~x! 5 x 2 1 x 2 2, x $ 0
10. f ~x! 5 3 1 2x 2 x 2, x # 0

11. f ~x! 5 Ï4 2 x 12. f ~x! 5 x 3 1 2x 2 3
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Exercises 13–14 Is the Inverse a Function? Use para-
metric equations to graph the inverse of f. Does the vertical
line test indicate that the inverse is a function?

13. (a) f ~x! 5 x 3 2 3x 2 1 3
(b) f ~x! 5 x 3 2 x 2 1 3x 2 2

14. (a) f ~x! 5 x 3 2 3x 1 3
(b) f ~x! 5 x 3 2 x 2 1 4x 2 2

Exercises 15–24 Inverse Function Formulas Function
f has an inverse. Apply the algorithm in this section to find
an equation that describes f 21.

15. f ~x! 5 2x 1 5 16. f ~x! 5 2 2 5x

17. f ~x! 5
1 1 x

x
18. f ~x! 5

2x
3 2 x

19. f ~x! 5
2 2 x

x
20. f ~x! 5 1 2

3
x

21. f ~x! 5 x 22. f ~x! 5 2Ï2x

23. f ~x! 5 x 2 2 2x 1 1, x $ 1

24. f ~x! 5 x 2 2 2x 2 3, x # 1

Exercises 25–30 Horizontal Line Test (a) Draw a
graph of y 5 f ~x!. (b) Use the horizontal line test to deter-
mine whether the function is one–one. (c) Does f have an
inverse?

25. f ~x! 5 2x 1 3 26. f ~x! 5 1 2 x 2

27. f ~x! 5 4 2 x 2 28. f ~x! 5 3 2 x

29. f ~x! 5 Ïx 30. f ~x! 5 x 3

Exercises 31–32 Inverse of Linear Function The graph
of function f is the line through points P and Q. Give a
formula for (a) f, (b) f 21. Draw a graph of each.

31. P~22, 3!, Q~2, 5! 32. P~2, 24!, Q~4, 2!

Exercises 33–34 Line Segment Function The graph of
f is the line segment having endpoints P and Q. Give a
formula for (a) f, (b) f 21, and give domain and range re-
strictions. Draw a graph of each.

33. P~21, 2!, Q~23, 4! 34. P~22, 21!, Q~2, 4!

Exercises 35–36 The graph of the inverse of function f is
a line through points P and Q. Give a formula for (a) f and
(b) f 21. Draw a graph of each.

35. P~22, 4!, Q~3, 1! 36. P~3, 22!, Q~4, 3!

Exercises 37–38 Related Functions The graph of func-
tion f is a line through points P and Q. Functions g and h are
given by g~x! 5 f 21~x!, h~x! 5 f 21~x 2 2!. Find a formula
for (a) g, (b) h. Give the coordinates of the intercept points
for the graph of g, and h.

37. P~21, 4!, Q~3, 2! 38. P~2, 24!, Q~4, 2!

Exercises 39–44 Formula for Inverse Function Func-
tion f has an inverse. (a) Find a formula for f 21. (b) Use the
function menu. Draw graphs of y 5 f ~x!, y 5 f 21~x! and
y 5 x on the same screen. Are the graphs of f and f 21

symmetric about the graph of y 5 x?

39. f ~x! 5 x 1 3 40. f ~x! 5 2x 2 4

41. f ~x! 5 x 2 2 4, D 5 @0, `!

42. f ~x! 5 x 2 2 1; D 5 ~2`, 0#

43. f ~x! 5 0.25x 2 1 1.5x 1 2; D 5 @22, `!

44. f ~x! 5 0.25x 2 1 0.5x 2 2; D 5 @2, `!

Exercises 45–48 Parametric Equations Given that func-
tion f has an inverse. Use parametric equations to draw a
graph of f 21. Trace to find f 21~c!. The answer should be a
root of f ~x! 5 c. Note that we do not use the same technique
as in Exercises 39–44 since these equations would be
difficult to solve for y in terms of x. (Hint: x 5 f ~t!, y 5 t.)

45. f ~x! 5 x 3 1 x 2 1; c 5 9

46. f ~x! 5 x 3 1 x 2 2; c 5 212

47. f ~x! 5 x 3 1 x 2 1 x 2 3; c 5 29

48. f ~x! 5 x 3 2 x 2 1 x 2 1; c 5 20

Exercises 49–54 Increasing–Decreasing (a) Draw a
graph of the function and determine whether it is increas-
ing, decreasing, or neither. (b) Does the function have an
inverse?

49. f ~x! 5 3 2 2x 50. g~x! 5 2 1 3x

51. f ~x! 5 2x 52. f ~x! 5 x 2 2 2x 1 1

53. g~x! 5 Ïx 54. f ~x! 5 2Ï2x

55. Verify that the two points A and B are symmetric with
respect to the line y 5 x. (Hint: You need to show that
the line y 5 x is the perpendicular bisector of AB.)
(a) A~22, 3!, B~3, 22!
(b) A~4, 7!, B~7, 4!
(c) A~23, 25!, B~25, 23!

56. Find an equation for line L such that A~24, 2! and
B~2, 6! are symmetric with respect to L. (Hint: L must
be the perpendicular bisector of the segment AB.)

57. Find an equation for line L such that A~2, 24! and
B~4, 22! are symmetric with respect to L. (Hint: See
Exercise 56.)

58. If function f has an inverse and if f ~2! 5 23 and
f ~21! 5 4, find f 21~23! and f 21~4!.

59. Solving Inequalities Given that f ~x! 5 x 3 1 4x 2 3
has an inverse. Use a graph of f 21 and trace to find the
solution set for 22 # f 21~x! # 3.

60. If f ~x! 5 2x 1 1 and g~x! 5 4x 1 c, then for what
value of c will f ~g~x!! be equal to g~ f ~x!!?
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61. (a) The function f ~x! 5
23x

2x 1 3
has an inverse. Show

that f 21~x! 5 f ~x!.

(b) If c is a constant and f ~x! 5
cx

x 2 2
, then find the

value of c such that f ~x! will have an inverse equal
to itself. That is, find c such that f ~ f ~x!! 5 x.

62. If f ~x! 5
2x 1 3
3x 2 2

, then show that f ~ f ~x!! 5 x for

every real number x (except 2
3).

63. If f ~x! 5
ax 1 b
cx 2 a

, then show that f ~ f ~x!! 5 x for ev-

ery real number x ~except a
c!.

Exercises 64–65 Line Segment Function and Inverse
The graph of function f consists of the line segment joining
the points A~23, 21! and B~6, 2!.

64. (a) Draw the graph of f and explain why f has an in-
verse.

(b) What are f 21~21! and f 21~2!? Draw a graph of f 21

and state its domain and range.

65. Draw a graph. On each graph label the intercept points.
(Hint: Use translations.)
(a) y 5 f ~x 2 1! (b) y 5 f 21~x 2 1!
(c) y 5 f ~x! 1 2 (d) y 5 f 21~x! 1 2

Exercises 66–68 Union of Two Line Segments The
graph of the function f is the union of the two line segments
AB and BC, with the points A~24, 2!, B~22, 22!, and
C~4, 25!.

66. (a) Draw a graph and explain why f must have an in-
verse.

(b) Give a piecewise formula for f.
(c) If ~23, b! and ~2, c! are on the graph of f , determine

b and c.

67. What are the domain and range of
(a) f ? (b) f 21?
(c) Evaluate f 21~2!, f 21~22!, f 21~25!.

68. (a) Give a piecewise formula for f 21.
(b) Find the coordinates of the x- and y-intercept

points for the graph of f 21.

Exercises 69–72 Evaluating Inverse Function Func-
tion f has an inverse. Draw a graph to support this claim.
Use algebraic techniques to find f 21~c!. (Hint: Solve
f ~x! 5 c. Square as needed.)

69. f ~x! 5 Ïx 1 2; c 5 5

70. f ~x! 5 Ïx 1 2; c 5 5

71. f ~x! 5 Ïx 3 1 17 2 x Ïx 1 5; c 5 6

72. f ~x! 5 x 1 4 2 Ïx 2 1 8; c 5 2

73. Volume of a Sphere The volume of a sphere of radius
r is given by the formula V 5 4

3 pr 3, defining V as a
function f of r.
(a) Solve for r in terms of V to get r 5 f 21~V!.
(b) Draw a graph of f 21 and use TRACE to find the value

of r when V is 3.47, 4.83, 5.72.
74. A ball is dropped from the top of a building that is 144

feet tall. The position of the ball at any time t seconds
after it is dropped is given by the formula s 5 16t 2,
where s is the distance in feet from the top of the build-
ing. This determines s as a function of t.
(a) What is the domain of this function?
(b) Solve for t in terms of s and then find the time (to

one decimal place) that the ball takes to reach dis-
tances of 20 feet, 40 feet, and 80 feet from the top
of the building.

75. Area of Inscribed Rectangle A rectangle DEFG is
inscribed in an isosceles triangle ABC as shown in the
diagram, where _AC _ 5 _BC _ 5 3 and _AB _ 5 2. Let
_DE _ 5 x.

(a) Find a formula that gives the area K of the rectangle
as a function f of x.

(b) Give the domain and range of f.
(c) Is f a one-one function?
(d) What value or values of x will give a rectangle of

area 0.5?

76. The function to convert from degrees Fahrenheit (8F) to
degrees Celsius (8C) is given by C 5 5

9 ~F 2 32!. Find
a formula for the inverse function.

77. Suppose a cone has a fixed height of 9 inches and vari-
able radius r. Its volume V is a function of r given by
V 5 3pr 2. Find an equation that describes the inverse
function.

78. Your Choice
(a) Give a formula for a linear function f of your choice

that is increasing and has a graph that contains the
point ~22, 0!.

(b) Give the coordinates of two points on the graph of
f 21.
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2.8 F U N C T I O N S A N D M A T H E M A T I C A L M O D E L S

At one time @Conway# would be making constant appeals to give him a year,
and he would immediately respond with the date of Easter, or to give him a
date, so that he could tell you the day of the week or the age of the moon.

Richard K. Guy

In this section our discussion will be limited to a few different types of problems
that involve familiar functions. Applications that require other kinds of functions
(such as exponential, logarithmic, or trigonometric functions) will be discussed in
later chapters.

First we consider a widely used mathematical model for motion due to gravita-
tional attraction. Theoretically our model applies to objects under the sole
influence of gravity, which really implies that the object is in a vacuum, and not
affected by air resistance. Although we do not live in a vacuum, for many practical
applications this model closely approximates what actually occurs when an object
falls. Unless we make an explicit exception, we will assume that all falling-body
problems are unaffected by air resistance.

This kind of analysis of motion dates back to the time of Isaac Newton and
before. We really need only two types of functions for motion due to gravity, one
function of time to give the location of the object at time t (the height, usually
measured from the earth’s surface), and one to give the velocity as a function of t.

Begin with some terminology. Speed indicates how fast an object is moving,
while velocity includes both speed and the direction of motion. Except for this
distinction, we use the words speed and velocity interchangeably. The problems in
this section will suppose an object moving vertically either upward or downward,
so its motion is one-dimensional. Positive speed means the body is moving upward,
while negative speed means the body is moving downward (toward the surface of
the earth).

Formulas for Objects Moving Under the Influence of Gravity

When an object is launched, thrown, or dropped vertically at an initial speed and
is then subject only to gravity, we speak of a freely falling body. The position of any
falling body is determined by its initial velocity and initial height. The same
formulas for velocity and height apply to any such body. These formulas are stated
in terms of feet and seconds.

Height and speed formulas for falling bodies

The height and velocity of a falling body with initial height s0 (feet) and
initial velocity v0 (feet per second) after t seconds are given by:

s~t! 5 s0 1 v0t 2 16t 2 (1)

v~t! 5 v0 2 32t (2)

cEXAMPLE 1 Ball thrown vertically A ball is thrown vertically upward
from the top of a 320-foot high building at a speed of 64 feet per second.

(a) How far above the ground is the ball at its highest point?
(b) What is the total distance traveled by the ball in the first 5 seconds?
(c) When does the ball hit the ground?
(d) What is the velocity of the ball when t is 1? When t is 4?



s

t

300

200

100

400

2 4 (2 + 2 6, 0)

(5, 240)

s(t) = 320 + 64t – 16t2

(4, 320)

(2, 384)(1, 368)

(0, 320)
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Solution
Follow the strategy.

s~t! 5 320 1 64t 2 16t 2.

(a) The graph (Figure 55) is part of a parabola that opens downward and has its
highest point (vertex) where

t 5
2b
2a

5
264

2~216!
5 2, s~2! 5 320 1 64~2! 2 16~22! 5 384.

Note that this partial parabola is not the path of the ball (which goes straight
up and down), but we can use it to easily read off the value of s for a given time
t. For instance, at the end of 1 second, the height of the ball is 368 feet above
the ground; in 2 seconds the ball is 384 feet above the ground, its maximum
height. At the end of 4 seconds, s 5 320, and so on.

Alternate Solution A physical consideration provides a different approach to
finding the time when the ball reaches its highest point. At the highest point, the
velocity must be zero since at that instant the ball is going neither up nor down. For
this problem, v 5 64 2 32t, so we want to find the value of t for which v is 0. Solve
the equation 64 2 32t 5 0, from which t is 2, as we found above.

(b) To find the total distance traveled during the first 5 seconds, note that the ball
travels upward a distance of 384 2 320 5 64 feet during the first 2 seconds
and then downward a distance of 384 2 240 5 144 feet during the next 3
seconds. (Look at the graph.) Therefore, the total distance traveled during the
first 5 seconds is 64 1 144, or 208 feet.

(c) When the ball hits the ground, the height is 0. Setting s~t! equal to 0 and solv-
ing for t gives the time when the ball reaches ground level. Solving
320 1 64t 2 16t 2 5 0 yields two values, one positive (2 1 2Ï6) and one
negative (2 2 2Ï6). Since only a positive time value has physical significance
in this problem, the ball must hit the ground when t is 2 1 2Ï6, or about 6.9
seconds after being thrown.

(d) Replacing v0 by 64 and substituting 1 for t in formula (2) gives

v1 5 64 2 32 · 1 5 32.

Hence when t is 1, the ball is moving upward at 32 feet per second. When t is 4,

v4 5 64 2 32 · 4 5 64 2 128 5 264.

The negative sign indicates that the ball is moving downward, so at the end of
4 seconds the ball is falling at a speed of 64 feet per second. b

In the next example we look at a slightly more involved problem.

cEXAMPLE 2 Computing distance A stone is dropped from the top of a
building and falls past an office window below. Watchers carefully time the stone
and determine that it takes 0.20 seconds to pass from the top to the bottom of the
window, which measures 10 feet high. From what distance above the top of the
window was the stone dropped? (That is, how far is it from the roof to the top of
the window?)

Strategy: (a) First get a
formula for s as a function
of t by substituting 320 for
s0 and 64 for v0 in Equa-
tion (1). Draw a graph of
the quadratic function and
find its maximum value. (c)
To find when the ball hits
the ground, set s 5 0 and
solve the equation
320 1 64t 2 16t 2 5 0.

FIGURE 55



s1s2 s0

Window

Ground

p

x

Price
per
unit

(0, 12)

(20, 2)

Number sold
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Solution
The diagram in Figure 56 identifies the distances s0, s1, and s2. Given that
s1 2 s2 5 10 (feet), let t1 be the time it takes for the stone to reach the top of the
window and t2 be the time to reach the bottom of the window. The problem states
that t2 2 t1 5 0.20, and we wish to find s0 2 s1.

Equation (1) applies, where v0 5 0, so

s 5 s0 2 16t 2

s1 5 s0 2 16t1
2

s2 5 s0 2 16t2
2 5 s0 2 16~t1 1 0.20!2.

Subtracting, and using the fact that s1 2 s2 5 10, gives

s1 2 s2 5 216t1
2 1 16~t1 1 0.20!2

10 5 6.4t1 1 0.64

t1 5
9.36
6.4

5 1.4625.

Substituting this value of t1 into s1 5 s0 2 16t1
2, we get

s0 2 s1 5 16t1
2 < 34.22.

Considering the precision of timing the fall past the window (two significant
digits), the distance from the top of the window to the top of the building is about
34 feet. To minimize rounding error, carry out all intermediate calculations with
full calculator accuracy and then round off the final result to be consistent with the
accuracy of the data. b

Revenue Functions

We now look at a problem from the field of economics and business. The revenue
R generated by selling x units of a product at p dollars per unit is given by the simple
formula, R 5 px. The price per unit, p, is determined by a demand function,
which is usually based on some sort of market analysis or, preferably, experience.
Generally the number of units sold increases when the price goes down, and
analysts often assume a linear demand function. We illustrate some of these con-
cepts in the next example.

cEXAMPLE 3 Revenue problem The demand function for a certain prod-
uct is given by

p 5 12 2 1
2 x for 0 # x # 20,

where x is the number of units sold. As Figure 57 shows, the price decreases as
more units are sold.

(a) Find a formula for the revenue R as a function of x.
(b) How many units should be sold to maximize revenue?
(c) What is the maximum revenue and what is the corresponding price per unit?

Solution

(a) R~x! 5 px 5 ~12 2 1
2 x!x 5 12x 2 1

2 x 2.

FIGURE 56

FIGURE 57



(a) Tall, skinny
cylinder

(b) Wide, flat
cylinder

(c) Cylinder with
height h

and radius r

r

h

(d) Cross section

2r

8 h

[0, 4] by [0, 160]

(3.3, 155)
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(b) The revenue function is a quadratic function whose graph is a parabola that
opens downward. To find the maximum value, locate the vertex of the parabola,
which occurs when x 5 2b

2a 5 2~12!

2~2
1

2!
5 12. Therefore the maximum revenue will

be produced when 12 units are sold.

(c) The maximum revenue, which corresponds to x 5 12, occurs when the unit
price is p~12! 5 12 2 1

2 ~12! 5 6 dollars per unit. The revenue is given by

R~12! 5 12~12! 2
1
2

~12!2 5 144 2 72 5 72 dollars b

In the next example we look at a common type of problem in calculus.

cEXAMPLE 4 Maximum volume of a cylinder What are the dimensions
of the cylinder with the greatest volume that can be contained in a sphere of
diameter 8?

Solution
First, get a feeling for the problem by trying to visualize various cylinders in the
sphere, as in Figure 58. A tall cylinder is too skinny to have a large volume; at the
other extreme, a wide flat cylinder also has a small volume. From one extreme to
the other the cylinder volume first increases and then decreases, so the one with
maximum volume must be somewhere in between.

Set up the problem mathematically by expressing the volume V of the cylinder
as a function of its radius r. The formula for the volume of a cylinder with radius
r and height h (see inside front cover) is V 5 pr 2h.

It may be easier to see in cross section, as in diagram (d). A right triangle has
a hypotenuse of 8 (the diameter of the sphere) and legs of h and 2r. By the
Pythagorean theorem,

h 2 1 ~2r!2 5 82 or h 5 2Ï16 2 r 2.

Substituting into the formula for the volume of the sphere,

V 5 pr 2h 5 2pr 2Ï16 2 r 2

This is another problem that requires calculus for an answer in exact form, but
where technology can give a very acceptable approximation. We graph the volume
as Y 5 2p X2Ï(16 2 X2) and look for the maximum value in an appropriate window.

From the diagram in Figure 58d, the radius must be a positive number less than
4, so we can take @0, 4# for an x-range. When r 5 3, the volume is nearly 150, so
we try a y-range of @0, 160#. The calculator graph is shown in Figure 59. Tracing
to find the maximum, we find a volume of 154.75 near r 5 3.28, h < 4.62. If we
zoom in a couple of times, we can locate the high point more precisely at about
(3.266, 154.778).

For comparison, calculus techniques show that the maximum volume is 256p

3Ï3

when r 5 4Ï6
3 , which to four decimal place accuracy corresponds to the point

(3.2660, 154.7775). b

FIGURE 58

FIGURE 59
y 5 2px 2Ï16 2 x 2
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y
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HISTORICAL NOTE MATHEMATICAL MODELS AND GRAVITY

Strategy: The longest mir- cEXAMPLE 5 Getting around a corner Plate glass mirrors must be re-
ror is the shortest segment L placed in a dance studio. Unfortunately, the only way into the studio is down a
touching the inside corner hallway 5 feet wide and then around a corner into a hallway 4 feet wide. See the
and both walls, forming two

diagram in Figure 60. The question is what length mirror can be carried (vertically)similar right triangles, with
around the corner. Can a 10-foot mirror be installed? 12-foot? 15-foot?sides 5 and y, x and 4, as in

the diagram. In the similar (a) Use the observation in the strategy to express L in terms of x and y, and from
triangles,

y
5

5
4
x

. the relation of x and y, write L as a function of x.
(b) Use a graph to find the minimum possible length of L.

When we write an equation or
function to describe a real-world
situation, we almost always need to
simplify. Einstein said this well:
“Everything should be made as
simple as possible, but not simpler.”
The test of a mathematical model is
its capacity to accurately describe
and predict real events.

Galileo measured falling bodies
and decided that the distance fallen
is proportional to the square of the
time (in modern terms, f ~t! 5 16t 2).
His timing instrument was his pulse!
We may wonder what his results
might have been if his pulse had been
less steady.

How good is his simple model?
For heavy bodies near the earth it
works beautifully. For objects like feathers or
paper airplanes, the model is too simple.

Another example occurs in
Newton’s account of his discovery
of the inverse square law of the
force of gravity. Newton, born in
1642, the year of Galileo’s death,
took refuge at age 24 on an isolated
farm to avoid the plague, which was
then ravaging London. He devoted
himself to study and within a year
he had his model for the
gravitational attraction between two

bodies, F 5 gSmM
r 2 D. To test it, he

“compared the force requisite to
keep the moon in her orb with the
force of gravity at the surface of the
earth, and found the answer fits
‘pretty nearly.’” Newton’s model

was good enough to analyze the motion of the
planets.

Galileo’s experiments with
falling objects led to a

mathematical model of the
force of gravity.

FIGURE 60



[0, 8] by [0, 50]

(4.3, 12.7)
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Solution

(a) Follow the strategy. L is the sum of the lengths of each hypotenuse:

L 5 Ï52 1 y 2 1 Ïx 2 1 42.

From the relation of x and y in the Strategy, we can solve for y : y 5 20
x , and

substitute into the expression for L to get a function of x alone.

L 5 Î25 1
400
x 2 1 Ïx 2 1 16

5 Î25~x 2 1 16!

x 2 1 Ïx 2 1 16

5 5
x Ïx 2 1 16 1 Ïx 2 1 16 5 S5

x 1 1DÏx 2 1 16.

(b) We want to graph Y 5 (5yX 1 1)Ï(X2 1 16) in an appropriate window. It seems as if
@0, 8# should be adequate for an x-range, and we sample a few values for y. In
a @0, 8# 3 @0, 30# window we get a graph like that in Figure 61. Tracing, we
find the low point near the point indicated in the figure. Thus the minimum
length is about 12.7 feet, when x < 4.3 and y < 4.7. Clearly the 10-foot
mirror and the 12-foot mirror can be carried around the corner (with room for
fingers) but the 15-foot mirror cannot. b

EXERCISES 2.8

Check Your Understanding

Exercises 1–10 True or False. Give reasons.

1. A ball dropped from a height of 256 feet takes 4 sec-
onds to hit the ground.

2. It takes twice as long for a ball to fall to the ground from
a height of 64 feet than from a height of 32 feet.

3. If a ball is dropped from a height of 256 feet and at the
same instant a second ball is thrown upward from
ground level at a speed of 128 feet per second, the two
balls will meet at a point 192 feet above the ground.

4. In Exercise 3, the two balls will meet in 2 seconds.

5. A ball rolls down a long inclined plane. It takes longer
to roll down the first 10 feet than it does to roll down the
next 10 feet.

6. It takes the same amount of time to travel 240 miles at
55 mph as it takes to travel the first 120 miles at 50 mph
and the final 120 miles at 60 mph.

7. If a square and an equilateral triangle are inscribed in
the same circle, then the square has greater area than
the triangle.

8. For any rectangle with a perimeter of 16, the length of
one side must be at least 4.

9. No triangle can have sides of lengths 3, 4, and 8.

10. If a sphere has diameter d, then its volume V is given by
pd 3

12
.

Develop Mastery
Exercises 1–23 Apply the formulas for motion due to
gravitational attraction.

1. A stone is dropped from the top of a cliff that is 160 feet
tall. How long will the stone take to hit the ground?

2. A stone is dropped from the top of a building and hits
the ground 3.5 seconds later. How tall is the building?

3. A helicopter is ascending vertically at a speed of 25 feet
per second. At a height of 480 feet, the pilot drops a
box.
(a) How long will it take for the box to reach the

ground?
(b) At what speed does the box hit the ground?

4. A helicopter is climbing vertically at a speed of 24 feet
per second when it drops a pump near a leaking boat.
The pump reaches the water 4 seconds after being
dropped.

FIGURE 61



A

B

|AB| = 30

S(t) = 8 2 t2

458
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(a) How high is the helicopter when the pump is
dropped?

(b) How high is the helicopter when the pump reaches
the water?

5. A baseball is thrown vertically upward. When it leaves
the player’s fingers it is 6 feet off the ground and travel-
ing at a speed of 48 feet per second.
(a) How high will it go?
(b) How many seconds after the ball is thrown will it

hit the ground?

6. A rock is dropped from the top of a cliff 360 feet di-
rectly above a lake.
(a) State a formula that gives the height s as a function

of t.
(b) What is the domain of this function?
(c) How far above the lake is the rock 2 seconds after

being dropped?
(d) How far does the rock fall during the third second?

7. A rock is blasted vertically upward from the ground at
a speed of 128 feet per second ~about 80 mph!.
(a) Find a formula that relates s and t.
(b) How far from the ground is the rock 2 seconds after

the blast?
(c) How high will the rock go?

8. A vertical cliff 160 feet tall stands at the edge of a lake.
A car is pushed over the edge. How many seconds will
it take to hear the sound of the splash at the top of the
cliff? Assume that sound travels at a speed of 1080 feet
per second.

9. A rock is dropped into a deep well. It takes 4.5 seconds
before the sound of the splash is heard. Assume that
sound travels at a speed of 1080 feet per second. Deter-
mine s0, the distance from the top of the well to the
water level. If you measure the height s above water
level, then the formula for motion due to gravity applies.

(a) Show that the rock takes t1 5
Ïs0

4
seconds to reach

the water.

(b) Show that the sound of the splash takes t2 5
s0

1080
seconds to be heard.

(c) Since the total time that elapses before hearing the
splash is 4.5 seconds, you have the equation

s0

1080
1

Ïs0

4
5 4.5.

Clear the fractions and simplify to get

s0 1 270Ïs0 2 4860 5 0,

which is a quadratic equation in Ïs0 . Use the
quadratic formula to solve for Ïs0 and then find s0.

10. A ball is released from rest at point A, the top of an
inclined plane 30 feet long ~see the diagram!. If S~t!
denotes the number of feet the ball rolls down the in-
cline in t seconds after its release, then S~t! 5 8Ï2t 2.

(a) How long does it take for the ball to reach the end
of the plane?

(b) How far does the ball roll during the first 1.5 sec-
onds?

(c) How long does it take for the ball to roll down the
final 12 feet of the plane?

11. A stone is dropped from the top of New York’s Empire
State Building, which is 1476 feet tall.
(a) How long does it take for the stone to reach the

ground?
(b) What is the speed of the stone when its hits the

ground?

12. If a kangaroo jumps 8 feet vertically, how long is it in
the air during the jump?

13. With what minimum vertical speed must a salmon leave
the water to jump to the top of a waterfall that is 2.4 feet
high?

14. A rock is thrown upward at an initial speed of 16 feet
per second from the edge of a cliff 160 feet above a
lake. One second later a second rock is dropped from
the edge of the cliff. Which rock will hit the water first?
By how many seconds?

15. What’s Wrong? Major league pitches are often clock-
ed at more than 90 miles per hour. How fast a ball can
a catcher be expected to handle? In 1946, a backup
catcher for the St. Louis Browns named Hank Helf
caught a ball dropped from 52 stories up (a 701-foot
drop to his glove). The speed of the ball was measured
at 138 mph.

Use Equations (1) and (2) from this section to find
(a) how long it takes for a ball to drop 701 feet, and (b)
the speed of the ball when it hits the glove (in feet per
second and in miles per hour). (c) Write a brief para-
graph to discuss why the measured speed is not the
same as the speed predicted by Equation (2). (Hint:
Read the Historical Note.)



r

l
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16. A diver in Acapulco leaps horizontally from a point 112
feet above the sea.
(a) How long does it take for the diver to reach the

water?
(b) At what speed does the diver enter the water?

17. A ball player catches a ball 5 seconds after throwing it
vertically upward.
(a) At what initial speed was the ball thrown?
(b) What was the speed of the ball when it was caught?

18. A stone is thrown vertically upward with a speed of 32
feet per second from the edge of a cliff that is 240 feet
high.
(a) How many seconds later will it reach the bottom of

the cliff?
(b) What is its speed when it hits the ground?
(c) What is its speed when it is 120 feet above the

bottom of the cliff?
(d) What is the total distance traveled by the stone?

19. Robin, a skydiver, leaves the plane at an altitude of 1000
feet above the ground and accidentally drops her binoc-
ulars. If she descends at a constant speed of 20 feet per
second, how much time elapses between the arrival of
the binoculars on the ground and the time when Robin
lands?

20. Frank is ballooning at an altitude of 480 feet when he
turns on the burner and accidentally knocks his lunch
out of the balloon. If he immediately starts to ascend at
a constant speed of 4.8 feet per second, how high will
he be when his lunch hits the ground?

21. A stone is dropped from the top of a building 240 feet
high. It is observed to take 0.20 seconds to go past an
office floor-to-ceiling window that is 12 feet high. How
far is it from the bottom of the window down to the
street? (Hint: See Example 2.)

22. A toy rocket is fired upward from ground level near an
office building. Its initial velocity is 80 feet per second.
An observer in one of the offices determines that the
rocket takes 0.32 seconds to pass by the office window,
which is 16 feet tall. How far is it from the ground to the
bottom of the window?

23. The acceleration of gravity on the moon is about one-
sixth of what it is on earth. The formula for a freely
falling object on the moon is given by s 5 s0 1 v0t 2
8
3 t 2. If an object is thrown upward on the moon, how
much higher will it go than it would have on the earth,
assuming the same initial velocity of 64 feet per sec-
ond?

24. Maximum Revenue The manager of a store estimates
that the demand function for calculators (see Example
3) is given by

p 5 36 2
1
3

x 0 # x # 96,

where x is the number of calculators sold and p is the
price of each calculator. The revenue R is given by
R 5 px.
(a) Express R as a function of x.
(b) How many calculators should be sold to get the

maximum revenue?

25. Answer the questions in Exercise 24 if the demand
function is given by

p 5 36 2 ~0.2!x 0 # x # 160.

26. A car rental agency rents 400 cars a day at a rate of $40
for each car. For every dollar increase in the rental rate,
it rents 8 fewer cars per day.
(a) What is the agency’s income if the rental rate is

$40? $42? $45?
(b) What rental rate will give the greatest income?

What is this maximum income?

27. A car rental agency rents 200 cars a day at a rate of $30
for each car. For every dollar increase in the rental rate,
it rents 4 fewer cars per day.
(a) What is the agency’s income if the rental rate is

$30? $35? $40?
(b) What rental rate will give the greatest income?

What is the maximum income?

28. Linear Depreciation A computer is purchased for
$2000. After 5 years its salvage value ~for tax purposes!
is estimated to be $400. Linear depreciation implies
that the tax value V of the computer is a linear function
of t, the number of years after purchase.
(a) Find a formula for the linear depreciation function.
(b) In how many years after purchase will the tax value

of the computer be zero?

29. Repeat Exercise 28 if the original cost of the computer
is $3000 and its tax value after 8 years is $500.

30. An indoor gymnastics arena is to be built with a rectan-
gular region and semicircular regions on each end (see
the diagram). Around the outside is a running track
whose inside length is to measure 220 yards (one-eighth
of a mile).

(a) What dimensions for the rectangle will maximize
the area of the rectangular region?

(b) For the dimensions in part (a), what is the area of
the entire region enclosed by the track?

31. A rancher has 240 feet of fencing to enclose two adja-
cent rectangular pens (see the diagram on the top of the
next page). What dimensions will give a maximum total
enclosed area?
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32. In Exercise 31 suppose that the rancher wants to make
three adjacent pens ~see the diagram!. What dimensions
will give a maximum total enclosed area?

33. A pan is full of water when it springs a leak at the
bottom. The volume V of water (in cubic inches) that
remains in the pan t seconds after the leak occurs is given
by

V 5 1000 2 30t 1 0.1t 2

(a) How much water is in the pan when the leak starts?
(b) In how many seconds will the pan be empty?
(c) What is the domain of the function?
(d) How many seconds will it take for half of the water

to leak out of the pan? How long for the final half ?

34. Looking Ahead to Calculus A right circular cylinder
is inscribed in a right circular cone that has a height of
24 inches and a radius of 8 inches ~see the diagram!. Let
x denote the radius of the cylinder and h denote its
height.
(a) Express h as a function of x.
(b) Express the volume V of the cylinder as a function

of x.
(c) Use a graph to find the value of x that gives the

largest volume.

35. A water tank in the shape of an inverted circular cone
is initially full of water (see the diagram for dimen-
sions). A control valve at the bottom of the tank allows
water to drain from the tank. At any depth d, the
water remaining in the tank is the shape of a cone with
radius r.

(a) Express r as a function of d and then express the
volume V of water remaining as a function of d.

(b) If the depth of the water t minutes after starting to
drain the tank is given by d 5 30 2 5Ït, then
express V as a function of t.

(c) What is the volume of water that remains at the end
of 16 minutes?

(d) How long will it take to empty the tank?

36. Looking Ahead to Calculus A right triangle has a
fixed hypotenuse of length 12, but legs whose lengths
can vary. The triangle is rotated about the vertical leg to
generate a cone of radius x and height h, where x and h
are the lengths of the legs of the triangle (see the dia-
gram).

(a) Express h as a function of x.
(b) Express the volume V of the cone as a function of x.
(c) Of all such possible cones, determine x and h for the

one with the largest volume. Use a graph.
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37. Looking Ahead to Calculus A freshwater pipeline is
to be constructed from the shore to an island located as
shown in the diagram. The cost of running the pipeline
along the shore is $8,000 per mile, but construction off-
shore costs $12,000 per mile.

(a) Express the construction cost C as a function of x.
(b) What is the cost when x is 3, 5, 6, 8, 10, and 15?
(c) Of all such possible pipelines, determine the value of

x that will minimize the construction cost. What is
the minimum cost? Use a graph.

38. Looking Ahead to Calculus A ladder of length L is
placed so that it rests on the top of a 4 foot wall and leans
against a building that is 8 feet from the wall. The ladder
touches the ground x feet from the wall (see the dia-
gram).

(a) Show that L can be written as a function of x as
follows:

L 5 ~x 1 8!Î1 1
16
x 2 .

(b) Evaluate L when x is 2, 3, 4, 5, 6, and 7.
(c) Of all such possible ladders, determine the value of

x that will require the shortest ladder. What is the
length of the shortest ladder? Use a graph.

39. Inscribed Rectangle
(a) Draw a graph of y 5 4x 2 x 2 and inscribe a

rectangle with base on the x axis and upper vertices
on the graph.

(b) Of all possible rectangles, find the dimensions of
the one that has a maximum area. What is the area?
(Hint: First get a formula giving the area A of any
rectangle as a function of its height. Then use a
graph.)

40. Maximum Light A so-called Norman window con-
sists of a rectangle surmounted by a semicircle as shown
in the diagram. The total perimeter of the window is to
be 24 feet. What are the dimensions of the window that
will admit the greatest amount of light? A graph will be
helpful.

41. Solve the problem in Exercise 40 if the semicircular
portion of the window is made of stained glass which
admits one-half as much light as the rectangular por-
tion.

42. Around a Corner Solve the problem in Example 5 if
the hallways are 4 feet and 6 feet wide.

43. Maximum Volume Solve the problem in Example 4 if
the diameter of the sphere is 12. Compare with the
exact answer from calculus: The maximum volume is
96p Ï3 when r 5 2Ï6.

44. Maximum Area An isosceles triangle is inscribed in a
circle of radius 8 cm. See diagrams where _AB _ 5

_AC _ , O is the center of the circle, h 5 _AD _ , and
b 5 _DC _ .
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CHAPTER 2 REVIEW

Test Your Understanding

True or False. Give reasons.

1. A line with slope 2 is perpendicular to any line that has
a slope of 22.

2. The solution set for _ x 2 1 _ 1 1 5 0 is the empty set.

3. The solution set for _ x 2 1 _ 1 1 $ 0 is the empty set.

4. The graph of 2x 1 y 1 1 5 0 does not pass through
the first quadrant.

5. There is no function with a domain of two numbers and
a range of three numbers.

6. There is no function with a domain of three numbers
and a range of two numbers.

7. A line with negative slope must pass through the third
quadrant.

8. A line with positive slope must pass through the third
quadrant.

9. The graph of any parabola that opens upward must
contain some points in the second quadrant.

10. The graph of every quadratic function must contain
points in at least two of the four quadrants.

11. The graph of y 5 x 2 1 x 1 1 is entirely above the
x-axis.

12. The graph of y 5 x 2 2 3x does not pass through the
origin.

13. If function f has an inverse, then f is a one–one func-
tion.

14. Every increasing function has an inverse.

15. The function f ~x! 5 x is one–one.

16. If f ~x! 5 Ïx and g~x! 5 x 2, then f ~g~x!! 5 x for ev-
ery x in R.

(a) Show that for both diagrams, b 5 Ï16h 2 h 2.
(b) Express the area K of the triangle as a function of h.
(c) Of all such possible triangles, find the height and

base ~_BC _ ! (1 decimal place) of the one with great-
est area. What is the maximum area?

45. Alternative Solution Solve the problem in Exercise
44 by expressing the area as a function of b. For maxi-
mum area it is not necessary to consider the second
figure in the diagram (why?).

17. The graph of the quadratic function f ~x! 5 x 2 2 x 1 2
does not cross the x-axis.

18. The graph of y 5 Ïx 2 1 1 has no y -intercept point.

19. If a function f has an inverse, then every horizontal line
must intersect the graph of y 5 f ~x! in exactly one
point.

20. Suppose f has an inverse. If (22, 3) is on the graph of
y 5 f ~x!, then (23, 2) must be on the graph of
y 5 f 21~x!.

21. Points (22, 4) and (4,22) are symmetric with respect
to the line y 5 x.

22. The graph of y 5 _ x _ 1 2 has no x-intercept point.

23. The graph of y 5 _ x _ 1 1 has no y -intercept point.

24. The two lines y 5 2x and y 5 22x are perpendicular
to each other.

25. There is no point that is on the graphs of both y 5 2x
and y 5 2x 2 1.

26. If f is any even function, then f cannot be one–one.

27. Every odd function has an inverse.

28. The function f ~x! 5 2_ x _ is an even function.

29. If f is an even function, then for every number k the
function given by g~x! 5 f ~x! 1 k must be even.

30. If f is an odd function, then g~x! 5 f ~x! 1 k is an odd
function for every number k.

31. The graph of y 5 _ x _ 2 1 can be obtained by translat-
ing the graph of y 5 _ x _ horizontally 1 unit to the right.

32. When the window @25, 15# by @25, 15# is used to draw
a graph of f ~x! 5 0.25x 2 2 4_ x _ 1 12, the display
shows a graph that crosses the x-axis at three points.
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33. When the window @210, 10# by @210, 10# is used to
draw a graph of f ~x! 5 x 2 2 8_ x _ 1 12, the display
shows a graph that crosses the x-axis at four points.

34. The function f ~x! 5 2x 2 has no maximum value.

35. The function f ~x! 5 _ 2x 1 3 _ is a linear function.

36. The function f ~x! 5 _ x 2 2 2x 2 3 _ is a quadratic
function.

37. The equation x 2 2 4_ x _ 1 3 5 0 has exactly two
roots.

38. The equation _ 2x 1 3 _ 5 1 has only one root.

39. The graph of every parabola that passes through the
origin must contain points in exactly three quadrants.

40. If the graph of an even function contains points in the
third quadrant, then it must also contain points in the
fourth quadrant.

41. If the graph of an odd function contains points in the
second quadrant, then it must also contain points in the
fourth quadrant.

Exercises 42–45 Assume that the function f has an in-
verse.

42. If the graph of f has an x-intercept point, then the graph
of f 21 must have a y-intercept point.

43. If (22, 0) is an x-intercept point for the graph of f , then
(0, 2) is not a y-intercept point for the graph of f 21.

44. If f 21~23! 5 4, then f ~3! must be equal to 24.

45. The graph of f cannot have more than one x-intercept
point.

46. The maximum value of the function
f ~x! 5 2x 2 2 2x 1 3 is 4.

47. The graph of f ~x! 5 x 2 3_ x 2 2 _ 1 _ x 1 1 _ has no
lowest point.

48. The graph of f ~x! 5 x 1 3_ x 1 2 _ 2 _ x 2 1 _ has no
lowest point.

49. If f ~x! 5
x

x 2 1 1
and g~x! 5 x 2 2 4x, then the graph

of the function g 8 f has no highest point.

50. If f ~x! 5
x

x 2 1 1
and g~x! 5 x 2 1 4x 1 1, then the

function g 8 f has no maximum value.

Review for Mastery

Exercises 1–2 Determine whether or not the set of ordered
pairs represents a function. If not, explain why. Otherwise,
state the domain and range.

1. $~21, 2!, ~0, 4!, ~1, 6!, ~2, 8!%

2. $~3, 21!, ~4, 2!, ~5, 23!, ~3, 2!%

Exercises 3–8 State the domain.

3. f ~x! 5 2 2 3x 2 4. f ~x! 5 Ïx 2 1 4

5. g~x! 5 Ï2 2 x 6. g~x! 5 Ï3 2 _ x _

7. h~x! 5
x

x 2 2 4
8. h~x! 5

Ïx
x 2 2

9. Find an equation for the line that passes through
(21, 3) and (2, 5).

10. Find an equation for the line that passes through the
point (2, 4) and is
(a) parallel to the line 2x 2 3y 1 4 5 0
(b) perpendicular to the line x 1 2y 2 3 5 0.

11. Point P is (21, 2) and line L is given by
2x 2 3y 1 8 5 0. If P is on L, then find an equation
for the line that passes through P and is perpendicular
to L. If P is not on L, then find an equation for the line
that passes through P and is parallel to L.

12. Find an equation for the line that is the perpendicular
bisector of the line segment joining (21, 4) and
(3, 22).

Exercises 13–18 Graph Sketch a graph. In each case
label the x- and y-intercept points.

13. 2x 2 y 5 4 14. 3x 1 2y 5 6

15. y 5 x 2 2 4x 1 3 16. y 5 x 2 2 2x 1 1

17. y 5 _ x 2 1 _ 1 1 18. y 5 1 2 _ x 1 1 _

Exercises 19–26 Solution Set Find the solution set for
the open sentence.

19. 2x 2 3 , 6 2 x 20. _ x _ 2 4 5 0

21. _ x 2 1 _ 2 1 . 0 22. x 2 2 3x 2 4 5 0

23. x 2 2 3x 2 4 # 0 24. Ïx 2 1 2 2 5 0

25. _ x _ 2 x 5 4 26. x~x 2 2 4! , 0

Exercises 27–32 Combining Functions Evaluate the
combination for functions f and g.

f ~x! 5 x 1 1 and g~x! 5 2x 2 x 2.

27. ~ f 1 g!~2! 28. S f
gD~21!

29. ~ f 8 g!~22! 30. ~g 8 f !~3!

31. ~ f 8 g!~2! 32. ~ f 2 g!~2!

Exercises 33–36 Equations with Combined Functions
Solve the equation, where f ~x! 5 2 2 3x and
g~x! 5 x 2 2 x.

33. ~ f 2 g!~x! 2 2 5 0 34. ~ f 8 g!~x! 2 3x 5 0

35. ~g 8 f !~x! 2 2 5 0 36. S f
gD~x! 5

5
2
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Exercises 37–40 Increasing, Decreasing Determine
whether the function is (a) increasing, decreasing, or
neither. (b) Is f one–one.

37. f ~x! 5 x 2 2 x 38. f ~x! 5 3 2 2x

39. f ~x! 5 Ïx 40. f ~x! 5 _ x 2 1 _ 1 1

Exercises 41–44 Find a formula for the inverse of f. Give
the domain and range of f21.

41. f ~x! 5 2x 2 4 42. f ~x! 5 3 2 x

43. f ~x! 5 Ïx 2 1 44. f ~x! 5 1 1
1
x

45. Piecewise Function Function f is described by the
equation

f ~x! 5 H Ïx
2_ x _

for x $ 0 and
for x , 0.

(a) Sketch a graph of y 5 f ~x!.
(b) Use the horizontal line test to determine whether or

not f is a one–one function.

46. Restricted Domain Function f is described by the
equation

f ~x! 5 x 2 2 4x

and the domain $x _ x # 2%.
(a) Sketch a graph of y 5 f ~x!.
(b) Is f an increasing function, decreasing function, or

neither?
(c) Does f have an inverse?

Exercises 47–50 Maximum, Minimum (a) Sketch a
graph of y 5 f ~x!. (b) Determine the maximum and mini-
mum values of f ~x!.

47. f ~x! 5 x 2 2 2x 1 2

48. f ~x! 5 x 2 2 2x 2 1, 0 # x # 3

49. f ~x! 5 1 1 Ïx

50. f ~x! 5 2x 2 2 2x, 23 # x # 0

51. If f ~x! 5
3x

x 2 3
show that f 21~x! 5 f ~x!.

52. Related Functions The graph of f is the line through
P~23, 2! and Q~1, 24!. Draw a graph of
(a) g~x! 5 f ~x 2 1!
(b) h~x! 5 2 f ~x 1 2!
(c) Find formulas for g and h.

53. The graph of f consists of the line segment joining
P~22, 3! and Q~2, 23!. Draw a graph of
(a) g~x! 5 f ~x 1 2!
(b) h~x! 5 f ~2x!
(c) Find formulas for g and h.

54. Graphing Inverse The graph of f is the line through
P~22, 4! and Q~2, 6!.

(a) Draw a graph of f 21.
(b) Give a formula for f 21.

55. The graph of f is the line segment PQ where P is
(21, 23) and Q is (2, 3).
(a) Draw a graph of f 21.
(b) Give a formula for f 21. Remember to state the re-

stricted domain.

Exercises 56–57 Maximum of Composition Find the
maximum value of f 8 g.

56. f ~x! 5 x 2 2 4x, g~x! 5
4x

x 2 1 2

57. f ~x! 5 x 1 1, g~x! 5 _ x 2 1 _ 22 _ x 1 2 _

Exercises 58–59 Restricted Domain and Inverse Func-
tion f and its domain D are given. (a) Draw a graph of f and
see that it is a 1–1 function. Give the range of f. (b) Find
a formula for f 21. Give the domain D and range R of f 21.

58. f ~x! 5 x 2 1 4x 1 3; D 5 @21, `!

59. f ~x! 5 x 2 2 4x 1 3; D 5 ~2`, 2#

60. Maximum Area A rectangle is inscribed in a circle of
radius 4. If x denotes the length of one side of the
rectangle, express the area A and the perimeter P as
functions of x. State the domain of each function.

61. Shortest Ladder A fence 6 feet tall stands 4 feet from
a tall building. What is the length of the shortest ladder
that will reach from the ground outside the fence to the
wall of the building?

62. Suppose a right triangle with hypotenuse of length 16 is
revolved about one of its legs of length x, resulting in a
cone.
(a) Draw a diagram. Give a formula for the volume V of

the cone as a function of x.
(b) What are the dimensions (height and radius) of the

cone having the greatest volume? What is the max-
imum volume?

63. Motion Due to Gravity A ball is thrown upward from
a point 160 feet above ground level at an initial speed of
48 feet per second.
(a) Give a formula for the distance s of the ball from

ground level as a function of time (in seconds) after
the ball is thrown.

(b) How many seconds will the ball take to hit the
ground?

(c) What is the highest point the ball will reach?

64. Discount The sale price of a graphing calculator after
a 25 percent discount is $60. What was the price before
the discount?

65. Hands of a Clock After 12 noon, when will the hour
and minute hands of a clock first point in opposite direc-
tions. Round off your answer to the nearest second.
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66. Population Increase From 1970 to 1980 the popula-
tion of Hazelton increased by 8 percent; from 1980 to
1990 it increased by 15 percent. What is the percentage
increase in population over the 20-year period, 1970 to
1990?

67. Self Inverse If c is a constant and f ~x! 5
x

2x 1 c
,

find the value of c such that f ~ f ~x!! 5 x. That is, find
c such that f 21~x! 5 f ~x!.

68. Regions of a Triangle If points A~0, 0!, B~2, 4!, and
C (6, 0) are vertices of a triangle, find the number k such
that the horizontal line y 5 k divides the triangle into
two regions of equal area.

69. If points A~0, 0!, B~2, 0!, and C~0, 4! are vertices of a
triangle, find the number m such that the line y 5 mx
divides the triangle into two regions of equal area.

70. Right Triangle The lengths of the sides of a right
triangle are given by x, x 1 2, and x 1 4. Find the
value of x.

71. What is the smallest integer k such that the graph of
y 5 x 2 1 kx 1 5 lies entirely above the x-axis?

72. A rock is blasted vertically upward from ground level
with a velocity of 144 feet per second.
(a) How high does the rock go before it starts to fall

back down?
(b) Is it going upward or downward when t 5 5?
(c) What is its velocity when it is 200 feet above the

ground on the way up?

73. Leaking Pail The volume (in cubic inches) of water
remaining in a leaking pail after t seconds is given by

V 5 1200 2 40t 1 0.2t 2.

(a) How much water was in the pail at time t 5 0?
(b) What is the volume of water in the pail when t 5 4?

10? 20?

(c) How long does it take for all the water to leak out
of the pail?

74. Height of a Cliff A stone dropped from the edge of a
cliff takes 4.5 seconds to hit the ground. How high is the
cliff ?

75. How long will it take for a brick to reach the ground if
it is dropped from a height of 180 feet?

76. Megan rides a bicycle up a hill at a speed of 12 feet per
second and then comes back down the same hill at a
speed of 24 feet per second. What is her average speed
for the entire trip up and back down?

77. When traveling a distance of 150 miles, how much less
time does it take at a speed of 60 mph compared to the
same trip at a speed of 50 mph?

78. A car traveling at 90 kilometers per hour is 150 meters
behind a truck traveling at 60 kilometers per hour.
(a) How soon will the car reach the truck?
(b) Suppose the truck is x meters ahead of the car. Let

T~x! be the time it takes for the car to reach the
truck. Find a formula to express T~x! as a function
of x.

79. Travel Agency Maximum Revenue A travel agency is
offering a two-week tour of the Orient, in which a group
will travel in a plane of capacity 180. The fare is $2400
per person if 100 or fewer subscribe but the cost per
person will be decreased by $15 for each person in
excess of 100. For instance, if 125 go, then the cost for
each is $2400 2 15(25) 5 $2025.
(a) Determine a formula (function) that will allow the

travel agency to compute the total revenue T when
x people go on the tour.

(b) What is the domain of this function?
(c) Draw a graph and use it to determine the number of

people that will give the maximum revenue.



33

pg145 [R] G3 5-36058 / HCG / Cannon & Elich jb 11-9-95 QC1

IN CHAPTER 2 WE EXPLORED a number of functions. Two of the simplest are linear
and quadratic functions, whose graphs are lines and parabolas, respectively. In this
chapter we examine what happens if we take products of linear and quadratic
functions. The set of functions that can be built up in this way are collectively
called polynomials.

Polynomials crop up in a diverse range of problems such as maximizing profits
or efficiency in a production facility, solving a differential equation for electronic
circuit analysis, or finding eigenvalues in matrix analysis to avoid resonances of
rocket motors. The problem of finding roots of polynomial equations has taken on
an entirely different complexion with modern technology, but technology can be
applied meaningfully only when we have understanding.

Two of the features of greatest interest in the study of polynomial functions are
their zeros (where the graph crosses the x-axis) and local extrema (local maximum
and minimum values, where the graph has “humps” in either direction). Since both
zeros and extrema have meaning in terms of graphs, graphs are an essential com-
ponent of learning about polynomial functions.

Our approach to this material is influenced by new technology; our goal is an
understanding of the concepts to make the technology useful. There are now
routines available in most computer software, and in several graphing calculators
as well, that will find all zeros of a polynomial function, real and complex, with a
single keystroke. Such routines, of course, contribute nothing to our understanding
of polynomial functions. Accordingly, we use (and assume) only graphing capabil-
ities in this chapter. A major contribution of graphing calculators is that we can
now appreciate polynomial behavior by looking at as many graphs as we wish,
changing our view at will, to see and examine what is most significant for our
purposes at the moment.

POLYNOMIAL AND
RATIONAL FUNCTIONS

3.1 Polynomial Functions

3.2 Locating Zeros

3.3 More about Zeros

3.4 Rational Functions

145
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Section 3.1 begins with basic definitions and graphical concepts and gives an
overview of key properties of polynomial functions. In Sections 3.2 and 3.3 we
consider zeros in exact form, including some of the classical theorems, while
learning something about approximations to zeros as well. The final section of the
chapter builds on this material to define and discuss rational functions, or quotients
of polynomials.

3.1 P O L Y N O M I A L F U N C T I O N S

I knew formulas for the quadratic and the cubic, and they said there was a
subject called Galois theory, which was a general theory giving conditions
under which any equation could be solved. That there could be such a thing
was beyond my wildest comprehension!

Paul Cohen

In earlier courses you learned that expressions such as

x 2 1 2x 2 1, x 3 1 3x, 2x 5 1 3x 2 8.

are called polynomials. The following are not polynomials:

1 2 x
x

, 2x22 1 3x, _ x _ 2 4, 4x 1 5.

We stated above that polynomials are functions built up as products of linear
and quadratic functions. Unfortunately, polynomials seldom appear in real-world
applications in factored form. Much of our work, in fact, will be devoted to finding
the factors from which a given polynomial is constructed. Accordingly, we begin
with the more standard definition.

Definition: polynomial function

A polynomial function of degree n is a function that can be written in the
form

p~x! 5 anx n 1 an21x n21 1 · · · 1 a1x 1 a0 (1)

where n is a nonnegative integer, an 5/ 0, and an, an21, . . . , a1, a0 are
numbers called coefficients. This course assumes that all coefficients are real
numbers. The leading term is anx n, the leading coefficient is an, and a0 is
the constant term. Equation 1 is the standard form for a polynomial
function.

It should be obvious from the definition that the domain of every polynomial
function is the set of all real numbers. We already know about polynomial func-
tions of degree 2 or less.

Degree 0: f ~x! 5 k, k 5/ 0 (constant function; the graph is a
horizontal line).

Degree 1: f ~x! 5 ax 1 b (linear function; the graph is a line).

Degree 2: f ~x! 5 ax 2 1 bx 1 c (quadratic function; the graph is
a parabola).

For technical reasons, the zero polynomial function, f ~x! 5 0, is not assigned a
degree.

When I was
thirteen, . . . I needed an
emergency operation for
appendicitis. I read two
books in hospital. One was
Jerome’s Three Men in a
Boat, and the other was
Lancelot Hogben’s
Mathematics for the
Million. Some of it I
couldn’t understand, but
much of it I did. I
remember coming across
the idea of dividing one
polynomial by another. I
knew how to multiply
them together, but I had
never divided them before.
So every time my father
came to visit me in hospital
he brought some more
polynomials that he’d
multiplied out.

Robin Wilson



(2, 0)

(0, 4)

y

x

f (x) = (x – 2)2
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Combining Polynomial Functions

It is appropriate to ask how the usual operations on functions apply to polynomial
functions. What about sums, differences, products, quotients, or composition? All
of these except quotients are also polynomials. The quotient of two polynomial
functions is never a polynomial function unless the denominator is a constant
function.

Products, Zeros, Roots, and Graphs

One consistent concern with polynomials, as in the work we did with many func-
tions in Chapter 2, is locating their zeros, finding the x-intercept points of graphs,
or finding roots of a polynomial equation. Every zero of a polynomial function is
associated with a factor of the polynomial. The equivalence of these concepts for
polynomials is summed up in the following box.

Roots, zeros, factors, and intercepts

Let p be a polynomial function and suppose that a is any real number for
which p~a! 5 0. Then the following are equivalent statements:

a is a root of the equation a is a zero of the polynomial
p~x! 5 0 function p

~x 2 a! is a factor of the ~a, 0! is an x-intercept point
polynomial p~x! of the graph of p

We now want to compare the graphs of some simple functions with what we get if
we take their products. We know that the graph of f ~x! 5 ~x 2 2!2 is a core para-
bola shifted 2 units right. The graph of f touches the x-axis at only one point, (2, 0).
See Figure 1. Since the equation ~x 2 2!~x 2 2! 5 0 has two solutions (by the
zero product principle), we say that f has a repeated zero or a zero of multiplicity
two at x 5 2.

Just as a polynomial function can be built up as a product of linear and quad-
ratic factors, its graph can be built up in a similar fashion. To take a simple example,
consider F~x! 5 ~x 1 1!~x 2 2!2. The zeros of F are clearly 2 (repeated) and 21.
When we take values of x near 2, the factor x 1 1 is near 3, and so we might expect
the graph of F to approximate the graph of y 5 3~x 2 2!2. The same kind of
reasoning suggests that the graph of F near 21 should be something like the graph
of y 5 ~x 1 1!~23!2 5 9~x 1 1!. That this reasoning is valid is borne out in
Example 1. To look more closely at a particular point, we may wish to zoom in.

TECHNOLOGY TIP r Zooming in on a point

On many calculators, when we press the ZOOM IN option, we get a cursor that
we move to the desired location and ENTER . On HP calculators, to zoom in on
some point other than the screen center, we must first redraw the graph with
the point at the center of the display window by moving the cursor to the
desired point and pressing CNTR from the ZOOM menu. Then, still in the ZOOM

menu, press ZIN.

FIGURE 1



[– 2, 4] by [– 2, 5]

y = g(x)
y = f (x)

(– 1, 0) (2, 0)

(a)

f (x) = 3(x – 2)2

g(x) = 9(x + 1)

[– 2, 4] by [– 2, 5]

y = F(x)

(– 1, 0) (2, 0)

(b)
F(x) = (x + 1)(x – 2)2

[– 2, 4] by [– 2, 4]

y = 2x3

y = F(x)

y = – 8(x – 2)

F(x) = x3(2 – x)
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cEXAMPLE 1 Products and zeros

(a) Graph f ~x! 5 3~x 2 2!2 and g~x! 5 9~x 1 1! in the same window.
(b) Add the graph of the product, F~x! 5 ~x 1 1!~x 2 2!2. Zoom in on the point

(2, 0) and on (21, 0). Describe in words the behavior of the product function
near its zeros.

Solution

(a) The graphs look like the diagram in Figure 2a.
(b) When we add the graph of F, we get the diagram in Figure 2b. When we zoom

in on the point (2, 0), we see two curves that are barely distinguishable. Both
graphs are tangent to the x-axis at the point (2, 0). We can see the tangent
behavior more clearly if we zoom in again (or several times), but the graphs are
so nearly identical near (2, 0) that we see only one.

Returning to the decimal window and zooming in on the point (21, 0), we
see a graph ( just one) that looks like a fairly steep line. Tracing, we can tell that
the graphs of g and F are not identical, but they are remarkably close.

The graph of the product function near each of its zeros appears to be very
closely approximated by the graph of a constant times one of the factors of F,
in particular, the factor of F which shares that zero. b

The kind of functional behavior we observed in Example 1 is typical of prod-
ucts, an observation we sum up in the following.

Graphs of products near zeros

Let F~x! 5 f ~x!g~x! and suppose that a is a zero of F, where f ~a! 5 0 and
g~a! 5/ 0. Then near ~a, 0!,

the graph of the product function F looks very much like the graph of
y 5 Af ~x!, where A is the constant given by A 5 g~a!.

cEXAMPLE 2 Products, zeros, and graphs

(a) Express the function F~x! 5 2x 3 2 x 4 in factored form and identify all zeros
of F with their multiplicities.

(b) For each zero a of F, find a constant A such that the graph of F near ~a, 0! is
approximated by the graph of the form y 5 Af ~x!. Check by graphing.

Solution

(a) If we factor out x 3, we can write F~x! 5 x 3~2 2 x!. By the zero product
principle, the zeros of F are 0 (of multiplicity 3) and 2.

(b) Near x 5 0, the other factor, ~2 2 x!, is near 2, so we would expect F~x! to be
approximated by y 5 2x 3 near ~0, 0!.

For the other zero, when x is close to 2, x 3 is close to 8. F should be very nearly
equal to y 5 8~2 2 x! 5 28~x 2 2!.

The graphs of y 5 2x 3, y 5 28~x 2 2!, and y 5 F~x! are all shown in
Figure 3. b

From the polynomial functions in the first two examples, it appears that we
should be able to graph such functions by piecing together combinations of shifted
multiples of the functions x, x 2, x 3, and so on. We have not considered the

FIGURE 2

FIGURE 3



[– 3, 3] by [– 5, 5]

y = f (x)

y = F(x)

(– 2, 0)

(0, 2)

(0, 4)

(1, 0)(– 1, 0)
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possibility of a quadratic factor with no real zeros. It turns out that there is also a
close connection between the graph of a function having such a factor and the graph
of a constant multiple of that factor, but we will not pursue the connection in this
text. We invite the curious reader, however, to explore the graph of a function such
as f ~x! 5 ~x 1 3!~x 2 1 1!. The graph of y 5 x 2 1 1 is a parabola with vertex
where x 5 0. Compare the graph of f with the pieces y 5 3~x 2 1 1! and y 5
10~x 1 3!.

For each nonrepeated zero, there is a single factor, and an x-intercept point
where the graph crosses the x-axis in essentially linear fashion. We associate a
double zero, a zero with multiplicity two, with a point where the graph is tangent
to the x-axis. Zeros of greater multiplicity correspond locally to translations of the
graphs of y 5 x 3, y 5 x 4, and so on. We can use this observation to build product
functions with any desired set of zeros. An equation for a product function can be
written in factored form, or the factors can be multiplied out to obtain what is called
the expanded form.

cEXAMPLE 3 Polynomials with specified zeros

(a) Write an equation for a polynomial function f having zeros 21, 22, and 1 as
a zero of multiplicity two.

(b) Write an equation for a polynomial function F, with the same zeros as f , whose
graph contains (0, 4).

Solution

(a) Without specifying some additional point, there is not a unique polynomial func-
tion with the given zeros, so we build the simplest. For the repeated zero 1, 1, we
need a factor ~x 2 1!2, and we also need linear factors x 1 1 and x 1 2. We can
write an equation for f as

f ~x! 5 ~x 2 1!2~x 1 1!~x 1 2! 5 x 4 1 x 3 2 3x 2 2 x 1 2.

The graph is the solid curve in Figure 4.
(b) Tracing along the graph of f , we see that the y-intercept point is (0, 2), a fact

that is also obvious from the expanded form, since f ~0! 5 2. For a function F
with the same zeros as f such that F~0! 5 4, we want to dilate the graph of f
vertically by a factor of 2. Thus F~x! 5 2 f ~x! 5 2~x 2 1!2~x 1 1!~x 1 2!,
or in expanded form, F~x! 5 2x 4 1 2x 3 2 6x 2 2 2x 1 4. Its graph is the
dotted curve in Figure 4. b

TECHNOLOGY TIP r Checking algebra

For most purposes, expanded form is not necessary, but a graphing calculator
can be used to check our algebra even if it does not handle symbolic forms.
To see if our expanded form of F in Example 3 is correct, we can graph both
2~x 2 1!2~x 1 1!~x 1 2! and the expanded form, 2x 4 1 2x 3 2 6x 2 2
2x 1 4, in the same screen. If the graphs show any differences, then we
obviously need to check our multiplication again.

In calculus courses, techniques are developed to find maximum and minimum
values of a function. Important as these techniques are, a graphing calculator can
be used to get excellent approximations for such values. It is handy to have some
terminology and definitions. We assume that the graph of f contains no isolated
points.

FIGURE 4
f ~x! 5 ~x 2 1!2~x 1 1! ~x 1 2!

F~x! 5 2~x 2 1!2 ~x 1 1! ~x 1 2!



(a)
[– 5, 5] by [– 3.5, 3.5] [– 10, 10] by [– 10, 10]

(b)
[– 3, 4] by [– 15, 5]

1

2

(c)

[– .2, 2.2] by [– 10.6, – 9.5]


(.42, – 9.62)

(1.57, – 10.38)

(d)
[3, 3.5] by [– .2, .2]



(e)
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Definition: local extrema and turning points

Suppose c is in the domain D of a function f.

If f ~x! $ f ~c! for all x in D in some open interval containing c,
then f ~c! is called a local minimum of f.

If f ~x! # f ~c! for all x in D in some open interval containing c,
then f ~c! is called a local maximum of f.

Local maxima and minima are called local (or relative) extrema. If the
above inequalities hold for every x in D, then f ~c! is called an absolute
minimum (or maximum).

If f ~c! is a local extremum, then the point ~c, f ~c!! is called a turning
point of the graph.

When we want to find zeros and local extrema of polynomials, the choice of
viewing windows is critical, as illustrated in the next example.

cEXAMPLE 4 Windows and graphs Draw graphs of y 5 x 3 2 3x 2 1
2x 2 10 to locate all zeros and local extrema.

FIGURE 5
y 5 x 3 2 3x 2 1 2x 2 10



[– 10, 10] by [– 20, 20]



(a)

[–10, 10] by [– 130, 25]



(b)
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Solution
If we begin with a decimal window (Figure 5a), we can see an x-intercept near 3,
but very little else of interest. We clearly need a larger window.

Setting a window of @210, 10# 3 @210, 10#, it appears that something is
happening near the y-intercept point (0, 210), but the graph does not yet show
enough detail to allow us even to know what we should be interested in. See
Figure 5b.

To see better what is happening near (0, 210), we set a window of
@23, 4# 3 @215, 5# and get the graph in Figure 5c. We can see two “humps,” as
well as the x-intercept point, but there is too much compression in the y-direction
to get much detail. Accordingly, we zoom in to look at the points of interest more
closely.

When we zoom into a box like the one labeled 571 in Figure 5c, we exaggerate
the vertical dimensions and we can trace to get a pretty good estimate of the local
maximum near (0.42, 29.62) and the local minimum near (1.57, 210.38). See
Figure 5d.

Returning to Figure 5c, if we zoom into a box like the one labeled 572 , we can
trace to find that y 5 0 when x is about 3.31. See Figure 5e. b

There are some obvious questions about what we have done in Example 4.
How do we know we have located all the zeros and local extrema? At this point we
have no real justification for claiming to have completed the example. Part of our
task in this section is to look at enough graphs of polynomial functions to make
some reasonable guesses about “typical” polynomial graphs. In the next section we
get a number of theorems to justify our observations. In particular, we will learn
that the graph of a cubic polynomial such as the one in Example 1 can have at most
two “humps” or turning points, so that there can be no more local extrema, and the
graph can never turn back to the x-axis.

cEXAMPLE 5 Graphs, factors, and zeros
Let p~x! 5 ~x 2 2 1!~x 2 1 x 2 20! 5 x 4 1 x 3 2 21x 2 2 x 1 20.

(a) Find a window in which you can see four zeros and three turning points on the
graph of y 5 p~x!.

(b) Use the factored form of p~x! to find all zeros.

Solution

(a) In a decimal window, we see nothing but essentially vertical lines. Increasing
our ranges to @210, 10# 3 @220, 20# is a little better. We can at least see four
x-intercepts, and what appears to be a turning point near @0, 20#. See Figure 6a.
Tracing in both directions, we can read y-coordinates below 2120, so we try
a y-range of @2130, 25#. The graph in Figure 6b shows four zeros and three
turning points. There are, of course, many windows that would work as well.

(b) From the factored form, we can use the zero-product principle to assert that
p~x! 5 0 only when x 2 2 1 5 0 or x 2 1 x 2 20 5 0. Each of these equations
is a quadratic that factors readily, so p~x! 5 ~x 2 1!~x 1 1!~x 1 5!~x 2 4!.
By the zero-product principle, we get one zero from each factor. The zeros are
25, 21, 1, and 4. b

FIGURE 6

p~x! 5 ~x 2 2 1!~x 2 1 x 2 20!



[– 3, 3] by [– 4, 4]



(– 1, 0)

(1, 0)

[– 4, 5] by [– 15, 30]



(3.6, – 4.5)
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Scaling and autoscalingTECHNOLOGY TIP r

In Example 5, the graph of p in the @210, 10# 3 @220, 20# window went
“off-scale,” dipping down out of our view.

Tracing displays function values as y-coordinates even for points that do
not appear in the window. This allows us to estimate the y-range needed to
see features that aren’t visible in a particular window, as we did in the
example.

Another feature available on many graphing calculators is called Autoscale or
Zscale. Having set the x-range, when we use Autoscale, the calculator computes
function values for the entire x-range and makes the y-range big enough to
show all computed y-values.

This can be handy at times, but with many functions, including
polynomials because of their steep end behavior, the resulting graph has so
much vertical compression that interesting behavior is “squashed” out of
sight. From the @210, 10# 3 @220, 20# window in Example 5, try
autoscaling to see what happens.

cEXAMPLE 6 Graphs, factors, and zeros Repeat Example 5 for the func-
tion p~x! 5 ~x 2 2 1!~x 2 2 x 2 3! 5 x 4 2 x 3 2 4x 2 1 x 1 3.

Solution

(a) Now a decimal window is almost good enough, but one turning point is off
screen. Figure 7 shows a graph in @23, 3# 3 @24, 4#.

(b) From the factored form, we again have zeros at 21 and 1, from x 2 2 1 5 0.
Solving x 2 2 x 2 3 5 0, however, requires the quadratic formula to find the

two remaining zeros: x 5 1 6 Ï13
2 . b

cEXAMPLE 7 Finding turning points Let
p~x! 5 x 4 2 6x 3 1 7x 2 2 2x 1 24.

(a) Find a window in which you can see three turning points and two real zeros.
(b) Find the coordinates of the lowest turning point to one decimal place.

Solution

(a) After some experimentation, we get the calculator graph of Figure 8 in the
@24, 5# 3 @215, 30# window. The two turning points near the y-intercept
point are not very pronounced, but there are clearly three turning points on the
graph. We could set a window in which the turning points near the y-intercept
are more visible, but then we would not see the lowest. The graph has only two
x-intercept points.

(b) Tracing along the curve and zooming in as needed, we find that the lowest
turning point is near (3.6, 24.5). b

Not all graphs of polynomial functions have turning points. The most obvious
case is the set of all polynomials of degree one or less, whose graphs are straight
lines. The graph of y 5 x 3, which we have met before, levels out to run tangent to
the x-axis at the origin; the function is always increasing, and so there are no turning
points. The graph of the cubic function f ~x! 5 x 3 1 2x does not even level out. See
Figure 9.

FIGURE 8
p~x! 5 x 4 2 6x 3 1 7x 2

2 2x 1 24

FIGURE 7
p~x! 5 ~x 2 2 1! ~x 2 2 x 2 3!



y = x3 + 2x

y = x3

y

x

[– 5, 5] by [– 1, 10]

(a)

y = g(x)

y = p(x)

(.2, 4.1)

[0.2, 0.3] by [3.9, 4.3]



(b)

(.245, 4.12)
y = p(x)

y = g(x)

p(x) = x3 – 2x2 + 5x + 3
g(x) = 2    x + 4
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cEXAMPLE 8 Finding intersections Let p~x! 5 x 3 2 2x 2 1 5x 1 3 and
g~x! 5 2Ïx 1 4. Graph both f and g in a window that shows the intersection of
the curves, and locate the coordinates of the intersection to one decimal place.

Solution
After some experimentation, it appears that the graph of p has no turning points
and that the intersection shown in @25, 5# 3 @21, 10# (see Figure 10a) is the only
intersection of the two curves. Zooming in as needed on the point of intersection,
we read the coordinates as approximately (0.2, 4.1). b

TECHNOLOGY TIP r Trapping an intersection

Rather than simply zooming in or drawing a box, some people prefer a pro-
cess that lets us keep track of the window size and thus the accuracy. We can
trace in Figure 10a and find the intersection is between x 5 .2 and x 5 .3,
and between y 5 3.9 and y 5 4.3. Setting these numbers as range values,
we get a picture something like Figure 10b, in which we can trace, knowing

that the pixel increment in the new window is about
.3 2 .2

a pixel cols.
~< .001).

FIGURE 9

FIGURE 10
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Smoothness and End Behavior

All the graphs of polynomial functions we have looked at so far are smooth, with
no jumps, breaks, or corners. You will learn in calculus that these properties follow
from the fact that polynomial functions are continuous and differentiable. For
now, we simply accept these properties about polynomial graphs. Furthermore,
graphs of polynomial functions (of degree greater than 1) continue to rise or fall
very steeply as we move along the graph to the right or left. We are asking what
happens as x becomes large and positive or large and negative (for which we use
the notation x A ` or x A 2`). This end behavior depends solely on the degree
of the polynomial and the sign of the leading coefficient. With a positive leading
coefficient, we always have f ~x! A ` as x A `. In most cases, we can look at the
equation defining the polynomial and see what the end behavior will be.

To get a better feeling for some of the variety of graphs of polynomial func-
tions, numbers of turning points and zeros, and so on, we have a table for several
polynomial functions. We do not show graphs here. Rather, we ask you to graph
each one and verify for yourself the observations we record in the table. You may
select whatever window will be most helpful. Most of the pertinent information can
be seen in a window such as @24, 5# 3 @210, 15#, but adjust the window as
needed. The arrows suggest the end behavior by indicating the direction in which
the graph is heading.

Polynomial Function End Degree Real Zeros Turning Points

y 5 x 5 2 3x 4 2 5x 3 1 15x 2 1 4x 2 12 G F 5 5 4

y 5 2x 3 1 2x 2 1 3x 2 1 E H 3 3 2

y 5 2x 4 1 5x 2 2 4 G H 4 4 3

y 5 x 6 2 2x 4 2 3x 2 2 5x 1 8 E F 6 2 3

y 5 2x 6 1 3x 5 1 5x 4 2 15x 3 2 3x 2 1 12x 2 5 G H 6 4 5

On the basis of our discussions thus far, we can make some observations that
we will substantiate in the next section.

Suppose f is a polynomial function of degree n, where n $ 1.

1. The number of real zeros (counting multiplicities) is either n or some
even number less than n (such as n 2 2, n 2 4, etc.).

2. The number of turning points or local extrema is n 2 1 or some even
number less than n 2 1 (such as n 2 3, etc.).

3. End behavior:

If n is even, and the leading coefficient is

positive, as x A 6`, then y A `; E. . .F
negative, as x A 6`, then y A 2`. G· · ·H

If n is odd and the leading coefficient is

positive, as x A 2`, y A 2` and as x A `, y A `; G· · ·F
negative, as x A 2`, y A ` and as x A `, y A 2`. E. . .H
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EXERCISES 3.1

Check Your Understanding

True or False. Give reasons. Draw a graph whenever you
think it might be helpful.

1. If k is any positive number, then the graph of y 5 1 2
kx 3 contains no points in Quadrant III.

2. The graph of f ~x! 5 x 3 1 x 2 2 2x 1 3 has two turn-
ing points.

3. If c is a zero of f , then (0, c) is a point on the graph
of f.

4. Every real zero of f ~x! 5 ~1 1 x 2!~x 2 2 x 2 2! is
also a zero of g~x! 5 x 2 2 x 2 2.

5. The graph of f ~x! 5 x 3 2 3x 2 2 7x 2 5 contains
points in all four quadrants.

6. The degree of f ~x! 5 x 3 1 x~1 2 x 2! is 3.

7. The function f ~x! 5 x 3 2 3x 2 2 7x 1 3 has one neg-
ative zero and two positive zeros.

8. There is no fourth degree polynomial function whose
graph has exactly two turning points.

9. Using the window @25, 5# 3 @240, 40# we can con-
clude that f ~x! 5 x 3 2 x 2 1 5x 1 4 has a positive
zero.

10. For f ~x! 5 x 3 2 18x 2 1 24x 1 125, using the win-
dow @28, 24# 3 @21300, 400# we can conclude that all
zeros of f are between 23 and 20.

Develop Mastery

Exercises 1–4 Determine whether or not f is a polynomial
function. If it is, give its degree.

1. f ~x! 5 4 2 3x 2 2x 2

2. f ~x! 5 x 2 1 Ïx 2 2 3

3. f ~x! 5 x~x 1 1!~x 1 2!

4. f ~x! 5 Ïx 2 1 9

Exercises 5–10 Combining Functions Use the polyno-
mial functions f , g, and h, where

f ~x! 5 3x 1 2 g~x! 5 5 2 x h~x! 5 2x 2 2 x.

(a) Determine an equation that describes the function ob-
tained by combining f , g, and h. (b) If it is a polynomial
function, give the degree, the leading coefficient, and the
constant term.

5. f 1 g 6. f 2 h 7. fg

8. h 8 f 9. f 8 h 10.
f
g

Exercises 11–12 Which Window? In order to determine
the zeros of f , which window would you use?

11. f ~x! 5 0.3x 3 1 3x 2 2 7x 2 6; three zeros.
(i) @210, 10# 3 @210, 10#
(ii) @28, 10# 3 @210, 50#
(iii) @215, 10# 3 @210, 80#

12. f ~x! 5 x 4 2 11x 3 2 16x 2 1 44x 1 400; two zeros.
(i) @210, 10# 3 @210, 10#
(ii) @210, 10# 3 @2400, 400#
(iii) @25, 15# 3 @22500, 2000#

Exercises 13–14 Which Window? The graph of f con-
tains a local maximum point and a local minimum point.
Which window would you use to see this feature?

13. f ~x! 5 x 3 2 16x 2 2 24x 1 400
(i) @210, 10# 3 @210, 10#
(ii) @25, 10# 3 @2200, 200#
(iii) @25, 15# 3 @2480, 450#

14. f ~x! 5 2x 3 2 20x 2 1 75x 1 800
(i) @210, 10# 3 @210, 10#
(ii) @220, 10# 3 @22000, 1200#
(iii) @220, 5# 3 @21000, 1000#

Exercises 15–18 Zero-product Principle A formula for
function p is given in factored form. (a) Express p~x! in
standard (expanded) form, give the leading coeffi-
cient, and constant term. (b) Use the zero-product
principle to find the zeros of p. (c) Use cut points to
find the solution set for p~x! , 0.
15. p~x! 5 x~x 2 1!~x 1 2!

16. p~x! 5 x 2~x 2 2!~x 2 1!

17. p~x! 5 ~x 2 1!~x 1 1!~2x 2 1!

18. p~x! 5 ~2x 2 1 x 2 1!~x 2 1 2x 2 3!

Exercises 19–22 (a) Factor and find all the zeros of f
(including complex zeros). (b) Determine the end behavior.
(c) Use a calculator graph to check your answers.

19. f ~x! 5 x~x 2 3! 1 2x~x 1 2!

20. f ~x! 5 ~x 1 2!~x 2 1! 2 ~x 1 2!~2x 1 3!

21. f ~x! 5 x 3 2 1

22. f ~x! 5 x 3 2 2x 2 2 3x 1 6

Exercises 23–26 Zeros and Turning Points
(a) Read the discussion at the end of this section and tell
how many real zeros f can possibly have. Do the same for
turning points. (b) Draw a calculator graph and then tell
how many zeros and how many turning points there actually
are. (c) In what quadrants do the turning points lie?

23. f ~x! 5 x 3 2 2x 2 2 3x 2 1

24. f ~x! 5 2x 4 1 5x 2 2 x 1 1

25. f ~x! 5 2x 5 2 4x 4 1 6x 3 1 24x 2 2 5x 2 20

26. f ~x! 5 x 4 2 3x 3 1 x 2 2 3x 2 8



y

x

y

x

y

x

y

x

y

x
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Exercises 27–30 Approximating a Zero Draw a graph
and use it to find an approximation (1 decimal place) for the
lar- gest zero of f.

27. f ~x! 5 x 3 2 2x 2 2 5x 1 3

28. f ~x! 5 2x 3 2 2x 2 1 5x 1 4

29. f ~x! 5 x 4 2 7x 2 1 x 1 5

30. f ~x! 5 x 4 2 7x 2 2 x 1 5

Exercises 31–34 Local Maximum
(a) For the functions in Exercises 27–30, determine the
coordinates of any local maximum points (1 decimal place).
(b) Describe the end behavior for f.

Exercises 35–38 Turning Points Determine the coordi-
nates of the turning point in the given quadrant (1 decimal
place).

35. f ~x! 5 x 3 2 2x 2 2 5x 1 3; QII

36. f ~x! 5 x 3 2 2x 2 2 5x 1 3; QIV

37. f ~x! 5 3 1 5x 2 2x 2 2 x 3; QIII

38. f ~x! 5 3 1 5x 2 2x 2 2 x 3; QI

Exercises 39–43 Graph to Formula A graph of a poly-
nomial function is given, where the vertical scale is not
necessarily the same as the horizontal scale. From the fol-
lowing list of polynomials, select the one that most nearly
corresponds to the given graph. As a check draw a calcula-
tor graph of your selection and see if it agrees with the given
graph.

(a) f ~x! 5 x 2~x 2 1!~x 2 3!

(b) f ~x! 5 x 2 1 3x
(c) f ~x! 5 x 2~x 2 2!2

(d) f ~x! 5 x~x 2 1!2~x 1 2!2

(e) f ~x! 5 4x 2 x 3

(f) f ~x! 5 x~x 2 1!~3 2 x!

(g) f ~x! 5 x~1 2 x!~3 2 x!

(h) f ~x! 5 x 4 2 5x 2 1 4

39.

Exercises 44–47 Related Graphs Draw graphs of f and
g. From the graphs, make a guess about how the graphs are
related. Prove algebraically.

44. f ~x! 5 x 3 1 x 2 2 6x, g~x! 5 x 3 1 7x 2 1 10x

45. f ~x! 5 x 3 1 3x 2 2 x 2 3,
g~x! 5 x 3 1 6x 2 1 8x

40.

41.

42.

43.
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46. f ~x! 5 x 3 1 3x 2 2 x 2 3,
g~x! 5 x 3 2 3x 2 2 x 1 3

47. f ~x! 5 x 3 2 x 2 2 6x, g~x! 5 x 3 2 7x 2 1 10x

48. Determine all integer values of k for which f ~x! 5
x 3 2 x 2 2 5x 1 k will have three real zeros. (Hint:
Locate the local maximum and local minimum points
for the graph of g~x! 5 x 3 2 x 2 2 5x. Then consider
vertical translations.)

49. Solve Exercise 48 for f ~x! 5 x 3 2 2x 2 2 5x 1 k.

50. Solve Exercise 48 for f ~x! 5 2x 3 2 x 2 1 x 1 k.

51. For what integer value(s) of k will f have one negative
and two positive zeros where

f ~x! 5 ~x 2 k!3 1 5~x 2 k!2 1 3~x 2 k! 2 1?
(Hint: Draw a graph of y 5 x 3 1 5x 2 1 3x 2 1 and
then consider horizontal translations.)

52. Solve Exercise 51 for

f ~x! 5 2~x 2 k!3 2 5~x 2 k!2 1 5.
Exercises 53–54 Your Choice Draw a rough sketch of a
graph of a polynomial function satisfying the specified con-
ditions. The answer is not unique.
53. Function f has exactly 3 distinct zeros and f ~x! A ` as

x A 2`.
54. The degree of f is 3, f has one real zero, and f ~x! A 2`

as x A `.
55. The base of a rectangle is on the x-axis and its upper two

vertices are on the parabola y 5 16 2 x 2. Of all such
rectangles, what are the dimensions, (1 decimal place)
of the one with greatest area?

56. Solve the problem in Exercise 55 where y 5 16 2 x 4.

57. A rectangular box without a top is to be made from a
rectangular piece of cardboard 12 3 15 inches by cut-
ting a square from each corner and bending up the sides
of the remaining piece. Of all such boxes, find the di-
mensions (1 decimal place) of the one having the largest
volume. See illustration on p. 179.

58. Maximum Strength At a lumber mill a beam with
rectangular cross section is cut from a log having
cylindrical shape of diameter 12 inches. Assuming that
the strength S of the beam is the product of its width w
and the square of the depth d, what are the dimensions
(1 decimal place) of the cross section that will give a
beam of greatest strength.

59. If a polynomial function of degree 3 has no local ex-
trema, explain why it must be one-one and therefore
have an inverse.

60. (a) Draw a graph of f ~x! 5 x 3 2 3x 2 1 9x 1 2.
(b) Is it reasonable to conclude that f is one–one, and

so it has an inverse given by the equation x 5
y 3 2 3y 2 1 9y 1 2 giving y 5 f 21~x!? Give rea-
son.

(c) Find a decimal approximation (1 decimal place)
of f 21~3!. That is, solve the equation
y 3 2 3y 2 1 9y 1 2 5 3

61. Solve Exercise 60 for the function
f ~x! 5 x 3 2 3x 2 1 9x 2 2.

62. Explain why a fourth degree polynomial function can-
not be one-one. Consider end behavior.

Exercises 63–64 Point of Intersection On the same
screen, draw graphs of f and g. The two graphs intersect at
a single point. Find the coordinates of that point (1 decimal
place).

63. f ~x! 5 x 3 2 2x 2 1 5x 1 4, g~x! 5 x Ïx 1 4.

64. f ~x! 5 x 3 1 2x 2 1 3x 2 5,
g~x! 5 x 2 2 8x 1 15.

Exercises 65–66 Intersecting Graphs The graph of f
and the half circle intersect at a single point. Use calculator
graphs to help you find the coordinates of the point of inter-
section (1 decimal place).

65. f ~x! 5 x 3 2 3x 2 1 5x 2 8;
upper half of circle ~x 2 2!2 1 y 2 5 25.

66. f ~x! 5 x 3 2 3x 2 1 5x 1 8;
lower half of circle ~x 1 1!2 1 y 2 5 9.

Exercises 67–72 Determine the end behavior of the graph
of the function when x A ` and when x A 2`.

67. f ~x! 5 2x 2 3x 2 68. g~x! 5 x 4 2 3x 2 1 4

69. h~x! 5 1 1 3.4x 2 5.2x 3 2 2x 5

70. f ~x! 5 2
2
5

~2x 2 x 3!

71. g~x! 5 ~3 2 2x!~4 2 x 3!

72. h~x! 5 ~1 2 2x!~3 2 4x 2!

Exercises 73–76 Looking Ahead to Calculus In cal-
culus you will learn that for the given function f there is an
associated function g such that the real zeros of g are the
x-coordinates of the local extrema points of f. If g has no
real zeros then f has no local extrema points.
(a) Find the zeros of g.
(b) Find the coordinates of the local extrema points of f , if
there are any.
(c) Use a graph as a check.

73. f ~x! 5 2x 3 1 3x 2 2 12x 1 3,
g~x! 5 x 2 1 x 2 2

74. f ~x! 5 x 3 2 x 2 2 8x 1 1,
g~x! 5 3x 2 2 2x 2 8

75. f ~x! 5 x 3 2 3x 2 1 12x 1 1,
g~x! 5 x 2 2 2x 1 4

76. f ~x! 5 x 3 2 6x 2 1 9x 1 4,
g~x! 5 x 2 2 4x 1 3
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3.2 L O C A T I N G Z E R O S

The man who breaks out into a new era of thought is usually himself still a
prisoner of the old. Even Isaac Newton, who invented the calculus as a
mathematical vehicle for his epoch-making discoveries in physics and
astronomy, preferred to express himself in archaic geometrical terms.

Freeman Dyson

I had a good teacher for
In Section 3.1 we indicated that two of the important concerns for polynomials arefreshman algebra. I think
locating zeros and local extrema. With calculator graphs we can make excellenthe was simultaneously the

football coach. Then I took approximations for both. On a graph, there is no obvious relation between zeros
sophomore geometry. It and turning points, but in calculus we learn that every turning point of a polynomial
was apparently thought function f occurs at a zero of another polynomial function called the derivative of
that students couldn’t learn

f. Thus the location of turning points also depends on locating zeros. We leave thegeometry in one year so
study of derivatives to calculus, but we devote this section to understanding morethey had a second course
about zeros of polynomial functions.in the junior year. The

teacher in this second It would be nice to have something analogous to the quadratic formula for
course didn’t understand higher degree polynomials. For some polynomial functions, zeros can be expressed
the subject and I did. I

in exact form using radicals and the ordinary operations of algebra, but in general,made a lot of trouble for
we must rely on approximations. See the two Historical Notes in this section. Someher.

Saunders MacLane of the theorems included in this section help us determine whether or not exact form
solutions are available.
Locator Theorem

Graphs of all polynomial functions share some common properties; they are
continuous and smooth, with no corners, breaks, or jumps. The idea of continuity
(no breaks or jumps) is another topic for calculus and subsequent courses. We need
some such theorem because calculator graphs are neither smooth nor continuous.
Every calculator graph is the result of computing lots of discrete function values
(one for each column of pixels). Dot mode shows only the isolated points. How are
we to be confident that there isn’t some break or jump in the graph between two
adjacent pixel columns? In connected mode, a graphing calculator connects differ-
ent points of the graph by vertical strips, which we know cannot be part of the
graph of any function.

Nevertheless, our eye smooths out calculator graphs. We have come to expect
graphs to be smooth and continuous, and the following theorem supports our
intuition. It says, in effect, that a polynomial function cannot change from positive
to negative without going through 0. The locator theorem is a special case of a
theorem from analysis called the Intermediate Value Theorem.

Locator (sign-change) theorem

Suppose p is a polynomial function and a and b are numbers such that p~a!
and p~b! have opposite signs. The function p has at least one zero between a
and b, or equivalently, the graph of y 5 p~x! crosses the x-axis between
~a, 0! and ~b, 0!.

cEXAMPLE 1 Using the locator theorem
Let p~x! 5 2x 3 2 2x 2 2 3x 1 1.

(a) Use the locator theorem to verify that p has a zero between 0 and 1.
(b) Using a decimal window, graph y 5 p~x! and trace to verify that the zero is

located between 0.2 and 0.3.



[– 5, 5] by [– 3.5, 3.5]


(.2, .336)

(.3, .026)

p(x) = 2x3 – 2x2 – 3x + 1
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Solution

(a) p~0! 5 1 and p~1! 5 22, so there is a sign change and hence a zero between
0 and 1.

(b) Tracing along the graph of p~x! in a decimal window, we can read the coordi-
nates shown in Figure 11. Thus p~0.2! 5 0.336 and p~0.3! 5 20.026. There
is a sign change between 0.2 and 0.3, so there is a zero in the interval. b

We could, of course, use the calculator to locate the zero in Example 1 more
precisely. If, for example, we simply zoom in on the point (0.2, 0) and then trace,
we can locate the zero between 0.275 and 0.30. With time and patience we can
locate zeros with as much accuracy as a calculator will display. A closer approxima-
tion is 0.2929.

To get zeros in exact form, to move beyond approximations, we need other
tools. The most powerful technique available to us involves factoring and the zero-
product principle. Unfortunately, in most cases where we need the zeros of a given
polynomial function, there is no dependable procedure for finding even one zero
in exact form, and with polynomial functions of higher degree, even knowing
several zeros may not be enough.

The Division Algorithm

Just as we can divide one integer by another to get an integer part q and a remainder
r, where the remainder must be smaller than the divisor, so we can divide one
polynomial by another. The result of polynomial division is a polynomial part q~x!,
and a remainder r~x! whose degree must be smaller than the degree of the divisor.
In particular, when the divisor is a linear polynomial (of the form x 2 c), then
the remainder is some number r. This result is stated as a theorem known as the
Division Algorithm. Properly, in the statement of the theorem, the degree of the
divisor, d~x!, must be no greater than the degree of the polynomial we are dividing,
p~x!. In our work, we assume a divisor that is either a linear or a quadratic
polynomial.

Division algorithm

If p~x! is a polynomial of degree greater than zero, and d~x! is a polynomial,
then dividing p~x! by d~x! yields unique polynomials q~x! and r~x!, called the
polynomial part and remainder, respectively, such that

p~x! 5 d~x! · q~x! 1 r~x!,

where the degree of r~x! is smaller than the degree of d~x!.
If d~x! 5 x 2 c, then the remainder is a unique number r, such that

p~x! 5 ~x 2 c! · q~x! 1 r. (1)

To find the polynomial part and remainder for any given pair of polynomials
we use the familiar process of long division. For the special case of a linear divisor,
there is a shortcut called synthetic division. Synthetic division is stressed in tradi-
tional courses because it is also used for several different evaluation purposes. With
graphing calculators, however, the convenience of synthetic division does not jus-
tify the time required to learn the process. We outline synthetic division in the
following (optional) discussion. You may divide by any method you wish, but we
will do all of our polynomial division by long division.

FIGURE 11



pg160 [V] G6 5-36058 / HCG / Cannon & Elich clb 11-22-95 MP1

160 Chapter 3 Polynomial and Rational Functions

HISTORICAL NOTE IS THERE A CUBIC FORMULA?

Synthetic Division Algorithm (Optional)

Synthetic division is sometimes a convenient method for factoring a polynomial
function. We do not justify the steps, but the procedure is really nothing but a
short-cut method of dividing, using only the coefficients. The steps are outlined in
the following box.

Synthetic division algorithm (for divisors of the form x 2 c)

To divide a polynomial p~x! of degree n by x 2 c:

1. On the top line write c (change sign from x 2 c), followed by all the
coefficients of p~x! in order of decreasing powers of x, including any zero
coefficients.

2. Bring down the leading coefficient, multiply by c, and add the product to
the next coefficient to get the next entry on the bottom line. Repeat,
multiplying the sum by c, and adding the product to the next coefficient,
and continue for all coefficients of p.

3. The first n numbers on the bottom line are the coefficients of q~x!, of
degree n 2 1, and the last number is the remainder r.

We illustrate the synthetic division algorithm with the problem from Exam-
ple 2: Divide p~x! 5 2x 3 2 2x 2 2 3x 1 1 by x 1 1. You may want to compare
the coefficients in the long division of Example 2 with the numbers in the synthetic
division. Since x 1 1 5 x 2 ~21!, We write 21 on the top line at the left,

The Babylonians could solve some
quadratics nearly four thousand
years ago, as could the ancient
Greeks and Egyptians although
they thought only positive roots
had meaning. In essence, the
quadratic formula has been around
for at least a thousand years.

From at least 1200 A.D. people
have searched for a comparable
formula for cubics. The story of
who first succeeded, and when, gets
muddled by conflicting claims. At
least part of the credit belongs to
Scipione del Ferro (ca. 1510). By
about 1540, Tartaglia had learned enough to win a
public contest, solving 30 cubics in 30 days.
Somehow, Cardan got the method from Tartaglia
and published it in 1545, much to Tartaglia’s

dismay. The solution is often called
Cardan’s even though he did credit
Tartaglia.

The methods of this chapter
are much easier to apply, but the
formula from Cardan’s book still
works. Given a cubic of the form

x 3 1 ax 1 b 5 0,

first calculate

A 5 Sa
3D

3

1 Sb
2D

2

.

Cardan’s solution is given by

x 5 3ÎÏA 2
b
2

2 3ÎÏA 1
b
2

.

Although Cardan is known for
developing the first cubic
formula, credit actually

belongs to Tartaglia, pictured
here.
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followed by the coefficients of p~x! in order of decreasing powers of x:

c from x 2 c A 21 2 22 23 1 B Coefficients of p~x!
For each entry on22 4 21 B
middle line, multiply2 24 1 0
bottom entry by 21,
and add.q~x! 5 2x 2 2 4x 1 1 r 5 0

From the last line we read the coefficients of the polynomial part q~x!, when p~x!
is divided by x 1 1, and the remainder r. Writing p~x! in the form of the division
algorithm,

2x 3 2 2x 2 2 3x 1 1 5 ~x 1 1!~2x 2 2 4x 1 1! 1 0.

cEXAMPLE 2 Using the division algorithm Verify that 21 is a zero of the
polynomial function from Example 1, p~x! 5 2x 3 2 2x 2 2 3x 1 1, and find the
other two zeros in exact form.

Solution
Substituting 21 for x, p~21! 5 0.

Dividing p~x! by x 1 1 yields the following:

2x 2 2 4x 1 1
x 1 1)2x 3 2 2x 2 2 3x 1 1

2x 3 1 2x 2

24x 2 2 3x
24x 2 2 4x

x 1 1
x 1 1

0
Since the remainder is 0, p~x! can be written in factored form as

2x 3 2 2x 2 2 3x 1 1 5 ~x 1 1!~2x 2 2 4x 1 1!.

By the zero-product principle, either x 1 1 5 0 or 2x 2 2 4x 1 1 5 0. Using the
quadratic formula for the second equation, we find that the zeros of p are 21,
2 2 Ï2

2 , 2 1 Ï2
2 . The second zero is about 0.29289, clearly the number we were

“zeroing in on” in Example 1. b

cEXAMPLE 3 The division algorithm again

(a) Show that x 2 1 4 is a factor of the polynomial
p~x! 5 x 4 2 x 3 1 2x 2 2 4x 2 8. (b) Find all zeros of p~x!.

Solution

(a) We use long division.
x 2 2 x 2 2

x 2 1 4)x 4 2 x 3 1 2x 2 2 4x 2 8
x 4 1 4x 2

2 x 3 2 2x 2 2 4x
2 x 3 2 4x

2 2x 2 2 8
2 2x 2 2 8

0



[– 2, 3] by [– 10, 2]



p(x) = x4 – x3 + 2x2 – 4x – 8
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By the division algorithm, since the remainder is 0,

p~x! 5 ~x 2 1 4!~x 2 2 x 2 2!,

and we have a factorization of p~x!, thus reducing the problem of finding the
zeros of a fourth polynomial function p to solving two quadratic equations,
x 2 1 4 5 0, and x 2 2 x 2 2 5 0.

(b) The four zeros of p~x! are 6 2i, 21, and 2. With two real zeros, the graph of
y 5 p~x! should cross the x-axis just twice. See Figure 12. b

Factor and Remainder Theorems

Examples 2 and 3 illustrate one of the key concepts in finding exact form zeros of
polynomial functions. Finding a zero is equivalent to finding a factor, and once we
have factors, by the zero-product principle, the zeros of p are the zeros of the
factors. Further, since the degree of q is smaller than the degree of p, q~x! is called
the reduced polynomial.

In the case where the divisor is linear, the division algorithm provides two
powerful theorems. Consider again Equation (1),

p~x! 5 ~x 2 c!q~x! 1 r.

First, suppose r 5 0. Then ~x 2 c! is a factor, p~x! 5 ~x 2 c!q~x!. Conversely, if
~x 2 c! is a factor of p~x!, then p~x! 5 ~x 2 c!q~x!, so r must be 0.

Equation (1) is an identity, so we can replace x by any number and obtain a
true statement. In particular, if we replace x by c, we obtain

p~c! 5 ~c 2 c!q~c! 1 r 5 0 · q~c! 1 r 5 0 1 r 5 r.

Thus the remainder always equals the value of the function p at the number c.
Putting these observations together, we have the following.

Remainder and factor theorems

When p~x! is divided by x 2 c, the remainder is p~c!.
When p~x! is divided by x 2 c, then x 2 c is a factor of p~x! if and only if

p~c! 5 0.

The factor and remainder theorems give us ways to find a remainder without
performing a lengthy division and can simplify many calculations.

cEXAMPLE 4 The remainder theorem

(a) Find the remainder when the polynomial p~x! 5 4x 15 1 5x 7 1 2x 4 1 3 is
divided by x 1 1.

Strategy: By the remainder (b) Find the value of k such that if the polynomial P~x! 5 x 3 1 x 2 1 kx 2 4 is
theorem, for (a) p~21! 5 r, divided by x 1 2, then the remainder is 0.
and for (b) P~22! 5 0,
from which we can solve Solutionfor k.

(a) Following the strategy, p~21! 5 4~21! 1 5~21! 1 2~1! 1 3 5 24. Hence,
p~21! 5 24, so r 5 24.

(b) Evaluating P at 22, we have P~22! 5 28 1 4 2 2k 2 4 5 2822k. Since
the remainder when P~x! is divided by x 1 2 is 0, then P~22! 5 0. Thus,

28 2 2k 5 0, or 22k 5 8, or k 5 24.

The desired function is
P~x! 5 x 3 1 x 2 2 4x 2 4. b

FIGURE 12
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HISTORICAL NOTE THERE IS NO “QUINTIC FORMULA”

Clearing Fractions and Rational Zeros

Multiplying an equation by a nonzero constant to clear fractions does not change
the roots of the equation. For example, multiplying both sides of the equation

x 3 1
7
2

x 2 1
7
3

x 2
2
3

5 0,

by 6, we get an equation with integer coefficients having the same roots,

6x 3 1 21x 2 1 14x 2 4 5 0.

If all coefficients are integers, then the following theorem provides a complete
list of all the rational numbers that can possibly be zeros.

Rational zeros theorem

Let p be any polynomial function with integer coefficients. The only rational
numbers that can possibly be zeros of p are the numbers of the form r

s ,
where r is a divisor of the constant term, and s is a divisor of the leading
coefficient.

If none of these numbers is a zero, then p has no rational zeros.

The rational zeros theorem is useful and important because it lists all the
possibilities for rational zeros. The theorem does not tell us whether a given
polynomial has any rational zeros at all; many do not. Without graphing technol-
ogy, the theorem is a great help in guiding the search for zeros. Used with a grapher,
the theorem can tell us things about graphs that the calculator cannot. No calcula-
tor can distinguish between rational and irrational numbers; every decimal is

Very shortly after discovery of
the general solution of the cubic
equation (see “Is There a Cubic
Formula?”), Ferrari (Italy, ca.
1545) derived a method for quartics
(polynomials of degree 4). For
n 5 2, 3, or 4, solutions for equa-
tions of degree n involve nth roots.
Why not for degree 5? Nearly three
hundred years passed before much
more was done. Then, within a few
years, two brilliant young men completely
resolved the question.

In 1820 Niels Henrik Abel of Norway was 18
when he thought he had the desired formula.
Before it could be checked by others, however, he
found his error and proved that there could be no
general solution for quintic equations.

In Paris in 1829 another
18-year-old, Evariste Galois, took
the final step. In papers written
during 1829 and 1830, Galois found
the conditions that determine just
which polynomial equations of
degree 5 or higher can be solved in
terms of their coefficients.

Abel died of tuberculosis in
1829 at age 26. In 1831, at the age
of 20, Galois was killed in a duel he

himself recognized as stupid. During their brief
careers, they laid the foundations for modern
group theory, which has applications as diverse as
solutions for Rubik’s cube and the standard model
of elementary particle physics at the beginning of
the universe.
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truncated (“cut off ”) to fit the display capacity. Knowing what the rational possibil-
ities are, we can use a calculator to verify that a particular zero is or is not a rational
number.

cEXAMPLE 5 Rational possibilities Use the rational zeros theorem to list
all possible zeros of the polynomial function.

(a) P~x! 5 x 3 2 4x 2 1 x 2 6 (b) R~x! 5 x 4 2 4x 3 1 14
9 x 2 1 44

9 x 2 5
3

SolutionStrategy: (b) To get integer
coefficients, multiply

(a) For P, begin by listing all possible numerators (factors of 26) and denomina-through by 9 and then apply
the rational zeros theorem. tors (factors of 1):
Zeros of 9R are are the

Possible numerators: 6 1, 2, 3, 6same as the zeros of R.
Possible denominators: 6 1

The only possibilities for rational zeros of P are the integers 26, 23, 22, 21,
1, 2, 3, and 6.

(b) Follow the strategy and find all possible rational zeros of S~x! 5 9R~x!:

S~x! 5 9x 4 2 36x 3 1 14x 2 1 44x 2 15.

Possible numerators are factors of 15; denominators are factors of 9.

Possible numerators: 6 1, 3, 5, 15
Possible denominators: 6 1, 3, 9

The rational zeros theorem tells us that S, and hence R, has only sixteen pos-
sible rational zeros (in reduced form):

6F1, 3, 5, 15, 1
3 , 5

3 , 1
9 , 5

9G. b

Having listed lots of possibilities for rational zeros of the polynomials P and R
in Example 5, what do we know of the actual zeros? At this stage, we have nothing
but possibilities. When we add graphing technology, we can say a great deal more,
as in the next example.

cEXAMPLE 6 Finding rational zeros Find all rational zeros, if there are
any, of the polynomial functions P and R in Example 5. Approximate any irrational
zeros to two decimal place accuracy.

(a) P~x! 5 x 3 2 4x 2 1 x 2 6 (b) R~x! 5 x 4 2 4x 3 1 14
9 x 2 1 44

9 x 2 5
3

Solution

(a) We don’t know anything about P except that as a cubic it must have at least one
real zero. We begin with a graph in the @210, 10# 3 @210, 10# window. See
Figure 13a. It is clear that there is exactly one real zero, very near 4. Looking
at the list of rational zeros for P from Example 5, we see that the only positive
rational possibilities are 1, 3, and 6. Therefore, the real zero of the polynomial
P cannot be a rational number. If we zoom into a very small box around the



[– 10, 10] by [– 10, 10]



(a)

4

8– 4

– 8

4

8

– 4

– 8

[3.8, 4.2] by [– 0.1, 0.1]



(b)

4 4.05 4.10 4.15

[– 10, 10] by [– 10, 10]



(a)

[– 1.5, 4] by [– 3.2, 3]



(b)

1 2 3– 1
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x-intercept point of the graph (Figure 13b) and then trace, we find that the zero
is very near 4.11.

(b) For graphing purposes, we can choose either the polynomial R~x!, or the poly-
nomial S~x! 5 9R~x! with integer coefficients, because R and S have the same
zeros. If we were working by hand, most of us would choose S to avoid
fractions; for the calculator there is no difference, except that R requires a
smaller window. The graph of R is shown in the @210, 10# 3 @210, 10#
window we used for part (a) in Figure 14a. When we zoom into a box just large
enough to include the zeros of the graph, as in Figure 14b, we can trace along
the curve to find zeros near 21, 0.3, 1.6, and 3.

Which, if any, of these are rational zeros? The list of rational possibilities (from
Example 5) includes 21, 3, 1

3 , and 5
3 , all of which are reasonable candidates, but

are these actually zeros of the function? To decide, we need to evaluate R at each
number (see the following Technology Tip). To calculator accuracy we find that

R~21! 5 0, R~3! 5 0, R~1
3! 5 0, R~5

3! 5 0.

We conclude that R has four rational zeros, 21, 3, 1
3 , and 5

3 . b

FIGURE 13
P~x! 5 x 3 2 4x 2 1 x 2 6

FIGURE 14
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TECHNOLOGY TIP r Function evaluation

Most calculators, when we trace along a curve, display coordinates. The
y-coordinate is the calculated value corresponding to the x-coordinate of the
pixel, but we have no way to specify a particular x-value unless our window
happens to have it as a pixel. If our goal is to evaluate R~1

3!, we don’t want to
settle for R (.324076113). We give here some suggestions for different
calculators, but there may be a more efficient way for your particular
machine. The displayed value is the calculator’s evaluation of R~1

3!, which
may involve round-off error. For example, one of our calculators displays
R~1

3!, 5 3E-13, meaning 0.0000000000003, and which in this context we
interpret as 0.

TI calculators: If you are graphing a function as Y1, return to the home
screen, store the desired value in the x-register, and then enter Y1 . Thus, for
R~21!, 21A X Enter. Then call up Y1 from the Y-vars menu (or on the TI-85,
2nd Alpha y1, and Enter. The TI-82 will evaluate Y1(21) directly.

Casio calculators: The function must be entered on your MEM list, so type
in the function, SHIFT MEM, F1(STO) and the number, say 1 for f1 .To evaluate f1~3!,
EXIT and store 3 in the x-register, 3 A X EXE . Then F2(RCL) 1 EXE.

HP–38: Having entered a function as, say, F1~X!, return to the home
screen, type F1~1y3!, and ENTER.

HP-48: The calculator will evaluate the function at any pixel-address
and store the result on the stack, but direct evaluation is less convenient. One
way is to store the number in, say, register A: 21 ENT ‘A’ STO. Then write the
function as an expression in A: ‘A ` 4 2 4*A ` 3 1 14/9*A ` 2 1 44/9*A 2 5/3’. ENTER twice, so
you have an extra copy on the stack. Then, purple NUM converts to a number.
For another value, store it in A, Enter, and evaluate as a number.

All these calculators except the TI-81 have some sort of SOLVE routine
that will approximate zeros directly, which does not make it less important
for you to understand the ideas we are discussing here.

Applying the Rational Zeros Theorem

The rational zeros theorem may be applied to problems other than looking for the
zeros of a particular polynomial function. For instance, if we know that some
number c is a zero of a polynomial function but c is not among the possibilities for
rational zeros, then we can conclude that c is not a rational number, as in the next
example.

cEXAMPLE 7 Showing a number is not rational

(a) Find a polynomial equation with integer coefficients satisfied by the number
c 5

3Ï5 2 1.
(b) Use the rational zeros theorem to show that c is not a rational number.

Solution

(a) The simplest polynomial equation satisfied by c is

x 5
3Ï5 2 1,



[– 5, 5] by [– 3.5, 3.5]

on [– 1, 0.5] < [2, `)



2x3 – 3x2 – 3x + 2 $ 0

(– 1, 0) (2, 0)

(.5, 0)
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but of course, this does not have integer coefficients. To get integer coefficients,
we add 1, cube both sides, and simplify: @See the inside front cover for the
expansion of ~x 1 1!3.]

~x 1 1!3 5 ~
3Ï5!3

x 3 1 3x 2 1 3x 1 1 5 5

x 3 1 3x 2 1 3x 2 4 5 0.

Now we have a polynomial equation, one of whose solutions is the number c.
Incidentally, a graph makes it clear that p~x! 5 x 3 1 3x 2 1 3x 2 4 has only
one real zero, which thus must be

3Ï5 2 1.
(b) Since the leading coefficient of p~x! is 1, the only possible rational zeros of p

are 6 @1, 2, 4#. The number c is a zero of p but is not one of the possible
rational zeros, so

3Ï5 2 1 must be an irrational number. b

cEXAMPLE 8 Solving an inequality Find the solution set for
2x 3 2 3x 2 2 3x 1 2 $ 0.

Solution
A graph of f ~x! 5 2x 3 2 3x 2 2 3x 1 2 is shown in Figure 15. It appears from
the graph that the zeros are 21, 1

2 , and 2, as we may verify, either by tracing in a
decimal window, or by evaluating the function. The function f is clearly positive
between 21 and 1

2 , and whenever x . 2. Therefore, the solution set for the inequal-
ity is given by

S 5 @21, 0.5# < @2, `!. b

EXERCISES 3.2
Check Your Understanding

Draw a graph whenever helpful.

Exercises 1–6 True or False. Give reasons.

1. The function p~x! 5 4x 3 2 x has three real zeros.

2. The positive zero of f ~x! 5 x 3 2 3x is less than 1.73.

3. For f ~x! 5 x 3 2 1.6x 2 2 8.52x 1 15.84, since f ~2!
and f ~3! are positive, then f contains no zeros between
2 and 3.

4. The equation 2x 3 2 5x 2 1 4x 2 1 5 0 has no ration-
al roots.

5. The function f ~x! 5 ~3x 2 2!~x 2 2 2x 2 4! has ex-
actly one real zero.

6. When x 3 2 2x 2 1 3x 2 16 is divided by x 2 3, then
the remainder is 2.

Exercises 7–10 Fill in the blank so that the resulting
statement is true.

7. If x 3 1 2x 2 1 1 5 ~x 1 1!~x 2 1 x 2 1! 1 r for ev-
ery value of x, then r 5 .

8. The number of rational zeros of
f ~x! 5 ~x 2 2 2!~x 2 2 2x 1 3! is .

9. The number of real roots of
~x 2 2 2!~x 2 2 2x 1 3! 5 0 is .

10. If x 37 2 2x 24 1 3x 2 2 5 is divided by x 1 1, then the
remainder is .

Develop Mastery

Exercises 1–4 Locator Theorem Use the locator theo-
rem to determine which half of the interval contains a zero
of the function.

1. p~x! 5 x 3 2 3x 1 1; @22, 21#

2. f ~x! 5 2x 3 1 3x 2 2 x 2 2; @0,1#

3. g~x! 5 x 3 2 5x 2 1 5x 1 3; @21, 0#

4. p~x! 5 x 3 2 5x 2 1 7x 2 2; @2.5, 3#

FIGURE 15
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Exercises 5–8 Division Algorithm Use division to find
the polynomial part q~x! and remainder r when p~x! is di-
vided by the given divisor. Write the result in the form
p~x! 5 ~x 2 c!q~x! 1 r, and find p~c!.

5. p~x! 5 2x 3 1 3x 2 2 x 2 2; x 2 1

6. p~x! 5 2x 3 1 3x 2 2 x 2 2; x 1 2

7. p~x! 5 3x 4 1 x 3 2 2x 2 1 x 2 1; x 1 1

8. p~x! 5 x 3 2 3x 2 2 x 1 2; x 2 4

Exercises 9–10 Remainder Find the remainder when
the polynomial is divided by x 2 c.

9. 4x 12 2 3x 8 1 5x 2 2 2x 1 3; c 5 21

10. x 10 2 64x 4 1 3; c 5 2

Exercises 11–14 Factor Theorem Use the factor theo-
rem to find the value of k so that the given linear expression
is a factor of the polynomial.

11. 2x 3 1 4x 2 1 kx 2 3; x 1 2

12. x 4 1 kx 2 1 kx 1 2; x 2 2

13. kx 3 1 3x 2 2 4kx 2 7; x 2 3

14. x 3 2 k 2x 1 ~k 1 1!; x 2 k

Exercises 15–18 Remainder Theorem Use the remain-
der theorem to find the value of k so that when p~x! is divided
by the linear expression you get the given remainder.

15. p~x! 5 2x 3 1 4x 2 1 kx 2 3; x 1 2; r 5 0

16. p~x! 5 2x 3 1 4x 2 1 kx 1 3; x 1 2; r 5 3

17. p~x! 5 x 3 1 kx 2 2 kx 1 8; x 2 2; r 5 1

18. p~x! 5 x 3 1 kx 2 2 kx 1 8; x 2 2; r 5 0

Exercises 19–24 Rational Zeros Theorem (a) Apply
the Rational Zeros Theorem to list all of the possible ratio-
nal zeros of f. If the theorem does not apply, explain why.
(b) Use a calculator graph to help you eliminate some to the
numbers listed in part (a).

19. f ~x! 5 6x 3 1 3x 2 2 2x 2 1

20. f ~x! 5 6x 3 2 2x 2 2 9x 1 3

21. f ~x! 5 2x 4 2 2x 3 2 6x 2 1 x 1 2

22. f ~x! 5 6x 3 2 x 2 2 13x 1 8

23. f ~x! 5 3x 3 2 1.5x 2 1 x 2 0.5

24. f ~x! 5 x 3 2 2x 2 1 Ï2x 2 2

Exercises 25–30 Exact Form Zeros (a) Find all zeros
of f (including any complex numbers) in exact form. First
look for rational zeros and express f ~x! in factored form
(linear or quadratic factors). (b) Find the solution set for
p~x! , 0.

25. f ~x! 5 x 3 2 4x 2 1 2x 2 8

26. f ~x! 5 4x 3 2 4x 2 2 19x 1 10

27. f ~x! 5 x 3 2 2.5x 2 2 7x 2 1.5

28. f ~x! 5 x 3 2 3.5x 2 1 0.5x 1 5

29. f ~x! 5 6x 4 2 13x 3 1 2x 2 2 4x 1 15

30. f ~x! 5 4x 4 2 4x 3 2 7x 2 1 4x 1 3

Exercises 31–32 Solving Polynomial Equations Find
the solution set.

31. (a) 3x 2 2 12x 5 ~x 2 1!~x 2 2 4x!

(b)
3x 2 2 12x

x 2 2 4x
5 x 2 1

32. (a) 3x 3 2 12x 5 ~x 1 2!~x 3 2 4x!

(b)
3x 3 2 12x

x 1 2
5 x 3 2 4x

Exercises 33–34 Exact Form Roots (a) Find the roots
in exact form. (Hint: The equation is quadratic in x2. Use
the quadratic formula to first find x 2.) (b) Get approxima-
tions (2 decimal places) to the answers in part (a). Graph as
a check.

33. x 4 2 4x 2 1 1 5 0 34. x 4 2 2x 2 2 1 5 0

Exercises 35–38 Solution Set Find the solution set for
(a) f ~x! 5 0, (b) f ~x 2 1! 5 0, (c) f ~x! # 0. (Hint: For
part (c), first factor and get cut points.)

35. f ~x! 5 2x 3 2 3x 2 2 3x 1 2

36. f ~x! 5 x 4 2 2x 3 2 3x 2 1 4x 1 4

37. f ~x! 5 x 3 2 3x 1 2

38. f ~x! 5 4x 3 2 4x 2 2 19x 1 10

Exercises 39–42 Nonrational Numbers (a) Find a
polynomial equation with integer coefficients having c as a
root. (b) Explain why c is not a rational number. (Hint: See
Example 7.)

39. c 5 Ï2 40. c 5 2 1 Ï5

41. c 5
3Ï2 2 1 42. c 5 2

3Ï31 1

Exercises 43–46 Verbal to Formula (a) Find a formula
(in expanded form) for a polynomial function satisfying the
given conditions. (b) How many turning points does the
graph have?

43. Degree 3; zeros are 22, 1, and 3; leading coefficient
is 1.

44. Degree 3; zeros are 21, 2, and 4; leading coefficient is
22.

45. Degree 4; zeros are 21, 2, and a double zero at 1; graph
of f contains the point (0, 22).

46. Degree 4; zeros are 0, 2, and ~x 2 2 2x 2 5! is a factor
of f ~x!; graph contains the point (3, 6).

Exercises 47–48 Zeros and Turning Points (a) How
many real zeros does f have? (b) Find all rational zeros.
(c) How many turning points does the graph of f have, if
any? In what quadrants?

47. f ~x! 5 ~x 2 2 4!~x 2 2 8x 1 15!
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48. f ~x! 5 ~2x 2 2 x 2 3!~x 2 1 2x 1 4!

49. Is there a polynomial function of degree 3 that has zeros
at 22, 21, and 2, whose graph passes through the
points (0, 4), (3,220)? Explain.

Exercises 50–53 End Behavior and Local Minima The
intercept points for a polynomial function f of degree 3 are
given. (a) Draw a rough sketch and determine the end be-
havior. (b) Determine the coordinates (one decimal place)
of the local minimum point.

50. ~22, 0!, ~1, 0!, ~3, 0!, ~0, 6!

51. ~22, 0!, ~1, 0!, ~3, 0!, ~0, 26!

52. ~24, 0!, ~22, 0!, ~1, 0!, ~0, 8!

53. ~25, 0!, ~21, 0!, ~1, 0!, ~0, 210!

Exercises 54–57 Local Maxima For the function in Ex-
ercises 50–53, give the coordinates (one decimal place) of
the local maximum point.

Exercises 58–61 Your Choice Suppose the graph of a
polynomial function f of degree 3 has a local maximum
point at P and a local minimum point at Q. Draw a rough
sketch (or sketches) of the graph of f and use it to describe
any features such as the location of x-intercept points, end
behavior, and any other properties. Write an equation for
your function.

58. Both P and Q are in Quadrant I.

59. P is in Quadrant I and Q is in Quadrant IV.

60. P is in Quadrant II and Q is in Quadrant IV.

61. P is in Quadrant I and Q is in Quadrant III.

Exercises 62–65 Bracketing Roots Find the smallest in-
terval with integer endpoints @b, c# containing all the roots
of the equation; that is, b is the largest integer smaller than
all roots of the equation, and similarly for c.

62. 2x 3 2 3x 2 2 2x 1 3 5 0

63. x 3 2 3x 2 2 2x 1 4 5 0

64. x 4 2 2x 2 2 3 5 0

65. x 3 2 3x 2 2 2x 1 8 5 0

66. (a) For what number c is c a zero of
f ~x! 5 2x 3 2 cx 2 1 ~3 2 c 2!x 2 6?

(b) Using your value for c, draw a graph and verify that
c is a zero of f.

Exercises 67–68 Bracketing Zeros Find the smallest in-
terval with integer endpoints @b, c# containing all the zeros
of the function. See Exercises 62–65.

67. f ~x! 5 x 4 2 9x 2 1 6x 2 4

68. f ~x! 5 x 4 2 6x 2 1 3x 1 4

69. Explore Try integer values of c in f ~x! 5 x 3 2
cx 1 2 until you find one for which f has a repeated
zero. Then determine the other zero. Justify your con-
clusions algebraically.

70. Repeat Exercise 69 for f ~x! 5 x 3 2 cx 1 16.

71. Cone in a Sphere A cone is inscribed in a sphere of
radius 8 cm. See the diagrams showing cross sections.
Let r denote the radius of the cone and h the height.

(a) Show that for both diagrams, r 2 5 16h 2 h 2. Ex-
press the volume V of the cone as a function of h.

(b) Of all such possible cones, there is one that has the
greatest volume. What are the radius and height
(1 decimal place) giving maximum volume? What is
the maximum volume?

72. Cone in a Sphere (Alternative Approach) Solve Exer-
cise 71 by expressing V as a function of r. Explain why
it is not necessary to consider the second diagram to find
the maximum volume.
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Why do we try to prove things anyway? I think because we want to
understand them. We also want a sense of certainty. Mathematics is a very
deep field. Its results are stacked very high, and they depend on each other a
lot. You build a tower of blocks but if one block is a bit wobbly, you can’t
build the tower very high before it will fall over. So I think mathematicians
are concerned about rigor, which gives us certainty. But I also think proofs are
so that we can understand. I guess I like explanations better than step-by-step
rigorous demonstrations.

William P. Thurston

We now have considerable experience with graphs of polynomial functions and a
feeling for the nature of their zeros. When we have completely factored a polyno-
mial, we obviously know its zeros, but how do we find the zeros (or equivalently,
the factors) of a nonfactored polynomial?

Exact form answers are not always available, even theoretically (see the Histor-
ical Note, “There Is No Quintic Formula”). There are useful theorems about the
nature of zeros, and we now have technological tools undreamed of by earlier
mathematicians. This section adds to our arsenal of theorems about the nature of
polynomial zeros, and then gives an informal introduction to Newton’s Method, an
important tool for approximating zeros with great precision.

Number of Zeros of Polynomial Functions

How many zeros does a polynomial function of degree n have? Returning again to
quadratic functions (degree 2, parabola as the graph), there can be two real zeros
(when the parabola crosses the x-axis twice), a repeated real zero (when the para-
bola is tangent to the x-axis), or two nonreal conjugate zeros (when the parabola
does not touch the x-axis). Such behavior is typical of polynomial functions in
general. We explore some cubics in the following two examples.

cEXAMPLE 1 Zeros of a family of cubics Consider the family ^ of cubic
curves given by f ~x! 5 x 3 2 cx 1 2. Graph members of ^ for c 5 0, 1, 2, 3, 4.
Decide what values of c give a cubic whose graph crosses the x-axis (a) just once,
(b) exactly three times. (c) For what value of c does f have a repeated zero? Check
by factoring.

Solution

(a) and (b) When c 5 0, the graph is a vertical shift of the cubic y 5 x 3, with
only one real zero. When c 5 1 or 2, the graph has two turning points but crosses
the x-axis only once, so there is only one real zero. At c 5 3, the graph appears to
just touch the x-axis at the point (1, 0). See Figure 16. For values of c larger than
3, there are exactly three real zeros. (c) When c 5 3, it appears that there is a
repeated zero at 1, and the other crossing looks like ~22, 0!. To check, we want to
show that a factored form of x 3 2 3x 1 2 is ~x 2 1!2~x 1 2!.

~x 2 1!2~x 1 2! 5 ~x 2 2 2x 1 1!~x 1 2! 5 x 3 2 3x 1 2. b

The problem that
infected me with such
virulence . . . concerned
solving cubic equations and
the answer had been
known since Cardano
published it in 1545. What I
did not know was how to
derive it. The sages who
had designed the
mathematics curricula . . .
had stopped at solving
quadratic equations.
Questions by curious
students about cubic and
higher-order equations
were deflected with
answers such as “This is too
advanced for you” or “You
will learn this when you
study higher mathematics,”
thereby creating a
forbidden-fruit aura about
the subject.

Mark Kac
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cEXAMPLE 2 Zeros of a family of cubics, continued Consider the family
^ of Example 1, f ~x! 5 x 3 2 cx 1 2.

(a) Find a value c for which 2 is a zero of f , and find the other zeros of f in exact
form. (b) Find all zeros in exact form when c 5 21.

Solution

(a) To find a value of c for which f ~2! 5 0, we substitute 2 for x and solve for c:

23 2 c · 2 1 2 5 0

2c 5 10, or c 5 5.

Thus, the cubic in ^ that has 2 as a zero is f ~x! 5 x 3 2 5x 1 2. We know then
that ~x 2 2! is a factor, and we can use long division (or synthetic division, or
simple factoring) to find the other factor:

x 3 2 5x 1 2 5 ~x 2 2!~x 2 1 2x 2 1!.

The remaining zeros of f are the roots of x 2 1 2x 2 1 5 0, which the
quadratic formula gives as 21 6 Ï2 (Check.) See Figure 17.

(b) For c 5 21, f ~x! 5 x 3 1 x 1 2 has one real zero and no turning points, and
the x-intercept point appears to be (21, 0), which we can verify by substituting
21 for x: f ~21! 5 ~21!3 1 ~21! 1 2 5 0. Therefore, ~x 1 1! is a factor.

FIGURE 16
y 5 x 3 2 cx 1 2

FIGURE 17
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f ~x! 5 x 3 1 x 1 2 5 ~x 1 1!~x 2 2 x 1 2!

As in part (a), the remaining zeros are the roots of x 2 2 x 1 2 5 0, which the
quadratic formula gives as 1 6 Ï7i

2 . b

Examples 1 and 2 remind us again of the utility of the factor and remainder
theorems of Section 3.2, and they reinforce our ideas about the nature of zeros of
cubic polynomials. A cubic always has three zeros, at least one real zero. There can
be a repeated zero, and there is a possibility of two nonreal conjugate zeros.

Fundamental Theorem of Algebra

The general situation is summed up in the fundamental theorem of algebra and
some of its consequences, called corollaries. These are stated in terms of the
complex-number system and proofs necessarily involve complex numbers as well.
The fundamental theorem was first proved by one of the greatest mathematicians
of all times. See the Historical Note, “Carl Friedrich Gauss.”

Fundamental theorem of algebra

Suppose p is a polynomial function of degree n, n $ 1. There is at least one
number c where p~c! 5 0; that is, p has at least one zero (which may be a
nonreal complex number).

Corollary 1: In the complex number system, p has exactly n zeros (counting
multiplicities).

Corollary 2: If the coefficients of p~x! are real numbers, then the graph of p
can cross (or touch) the x-axis in at most n points.

The fundamental theorem of algebra is what mathematicians call an existence
theorem. For any given polynomial function of positive degree, the theorem states
that zeros exist, but it provides no help for finding any particular zero. For linear
and quadratic functions we can find the zeros exactly; for higher-degree polyno-
mial functions, the situation becomes more difficult.

For most of the problems that arise in applications we can only approximate
zeros. Virtually all numerical techniques to do this are rooted in the locator
theorem, our most fundamental tool. Mathematicians have found a number of
theorems, however, that can help in the search for certain kinds of zeros.

Gauss’ proof of the fundamental theorem applies to polynomial functions with
both imaginary and real coefficients. We emphasize, however, that in this chapter
we discuss only polynomial functions with real number coefficients.

Nature of Zeros of Polynomial Functions

The next theorem generalizes what we already know about quadratic polynomials.
In certain situations zeros of quadratic functions come in pairs. For example,

if f ~x! 5 x 2 2 4x 1 1, then the zeros of f are 2 1 Ï3 and 2 2 Ï3;

if g~x! 5 x 2 2 2x 1 2, then the zeros of g are 1 1 i and 1 2 i.

The numbers a 1 bi and a 2 bi are called complex conjugates. Certain kinds of
zeros must occur in pairs in higher-degree polynomials, as well.
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HISTORICAL NOTE CARL FRIEDRICH GAUSS (1777–1855)

Conjugate zeros theorem

Let p be any polynomial function with real number coefficients.
If the nonreal complex number a 1 bi is a zero of p, then a 2 bi is also

a zero. Here b is not zero.
If, in addition, p has integer coefficients and a 1 Ïb is a zero of p, then

a 2 Ïb is also a zero. Here b is not a perfect square.

The conjugate zeros theorem is illustrated in the next example.

cEXAMPLE 3 Conjugate zeros Given that p~i! 5 0, find all zeros of the
polynomial p~x! 5 2x 4 2 2x 3 1 x 2 2 2x 2 1.

Solution
As the strategy suggests, both i and 2i are zeros, so both x 2 i and x 1 i are factors
of p~x!. Thus p~x! has x 2 1 1 as a factor since

~x 2 i!~x 1 i! 5 x 2 1 1.

Dividing p~x! by x 2 1 1, we find that the other factor is 2x 2 2 2x 2 1 and so

p~x! 5 ~x 2 1 1!~2x 2 2 2x 2 1!.

The remaining zeros of p are the roots of 2x 2 2 2x 2 1 5 0, which the quadratic

formula gives as 1 6 Ï3
2 . Therefore, p has two pairs of conjugate zeros: i and 2i, and

1
2 1 1

2 Ï3, 1
2 2 1

2 Ï3. The graph in Figure 18 shows the two real zeros and suggests,
as we now know, that there are no others. b

Strategy: Since the
coefficients of p are real
numbers, the conjugate ze-
ros theorem applies; if i is a
zero, then 2i must also be a
zero.

Called the “prince of
mathematicians,” Gauss is clearly
among the greatest mathematicians
of all time. He contributed to all
areas of mathematics, as well as to
astronomy and physics, and we are
still building directly on
foundations he laid.

Most of us could construct an
equilateral triangle or a square with
a compass and ruler. The Greeks
also constructed a pentagon. Angle
bisection allows us to double the
number of sides, so it is theoretically
possible to construct regular polygons of n sides if
n is a power of 2 or n 5 2k · 3 or n 5 2k · 5,
where k is any nonnegative integer. Gauss made
the first significant progress in 2000 years when he
discovered how to construct a regular polygon of

17 sides when he was almost 17
himself. His construction was
published before he turned 19.

Gauss was the first to use i for
Ï21 and thoroughly understood
the importance of complex
numbers in the solution of
equations. Although he left college
before receiving his doctorate, he
submitted his dissertation and
attained the degree by the age of
21. His thesis established the
fundamental theorem of algebra.
This theorem so fascinated him that

he gave three different proofs during his lifetime.
Returning to constructions, he proved in 1826

that an n-gon is constructible for an odd prime n
only when n has the form 22k

1 1 (for instance, 3,
5, and 17).

Mathematician, astronomer,
and physicist Carl Friedrich

Gauss.

FIGURE 18
p~x! 5 2x 4 2 2x 3 1

x 2 2 2x 2 1
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Approximating Real Zeros: Newton’s Method

Without some initial information it may be effectively impossible to find zeros of
a polynomial function. In Example 3, we are given the fact that i is a zero, which,
with the conjugate zeros theorem, is enough for us to find all zeros in exact form.
We know how to zoom in on zeros from a graph, but the process is slow, and it is
difficult to get much precision.

Many graphing calculators will immediately give approximations for all zeros
of a polynomial function, to full calculator accuracy, at the press of a single key.
How do they do it? A comprehensive answer is beyond the scope of this course, but
most SOLVE routines essentially build on an iterative technique for approximation
called Newton’s (or the Newton-Raphson) method. The idea behind the process has
a simple graphical interpretation that we can describe with the aid of a few pictures.
For the pictures we need to speak of the “slope” or “direction” of a curve at a given
point, another idea that is made precise in calculus is the derivative of a function.
For our purposes, we will explain how to work with derivatives of polynomials of
degrees 3 and 4, but we could just as well use the numerical derivative in the form
already built-in in several graphing calculators.

First we look at a picture of a typical function near a zero we want to approx-
imate. See Figure 19. This could be almost any function, under any degree of
magnification. If we know that the number x0 is near the desired zero (which we
have indicated as c in Figure 19), then we want a mechanical procedure for getting
a better approximation, a new number nearer to c than x0. The idea is that if we go
to the point on the curve ~x0, f ~x0!! and essentially “take aim” along the curve in
the direction of what is called the tangent line to the curve, we should hit the x-axis
at a point x1 nearer c than x0. Repeating the process from x1 should take us nearer
still, after which we could move to a point x2 still nearer, and so forth.

Fortunately, the general process (derived in calculus) is given in a simple
formula that can be implemented easily on our calculators. We take the following
information from calculus. Associated with every polynomial function f is a related
function called the derivative of f , denoted by f 9. We give formulas for the deriva-
tives of cubic and quartic functions, leaving explanations for later courses. (It may
also be possible to use a built-in program of your calculator; see the Technology Tip
following Example 4.)

Function Derivative

f ~x! 5 ax 3 1 bx 2 1 cx 1 d f 9~x! 5 3ax 2 1 2bx 1 c

Example: f ~x! 5 x 3 2 4x 2 1 2x 2 1 f 9~x! 5 3x 2 2 8x 1 2

f ~x! 5 Ax 4 1 Bx 3 1 Cx 2 1 Dx 1 E f 9~x! 5 4Ax 3 1 3Bx 2 1 2Cx 1 D

Example: f ~x! 5 2x 4 1 5x 3 2 x 1 17 f 9~x! 5 8x 3 1 15x 2 2 1

Having a way to write the derivative, we can describe the approximation
process of Newton’s method. If x0 is an approximation to the zero c, then the new
approximation is given by

x1 5 x0 2 f ~x0!yf 9~x0!,

where f 9~x0! is the slope of the tangent line, the number we get when the derivative
function (or the numerical derivative) of f is evaluated at x0.

FIGURE 19
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The process can be programmed very simply with almost any calculator, but
we outline the steps as an algorithm that can be performed on your home screen.
Then we illustrate with an example. Follow Example 4 with your calculator.

Algorithm for Newton’s method

1. Make an initial guess, a reasonable approximation to the desired zero.
Note: the better the first guess, the more efficient the method.

2. Store your guess in memory register x. (For example, if your initial guess
is 1, 1 A x, ENTER.)

3. Evaluate the next approximation, using x1 5 x0 2 f ~x0!yf 9~x0!, store it in
memory register x and ENTER. This displays the new number and stores it
for use in the next step.

4. Now press ENTER again and again, getting a new approximation with each
repetition, until the display doesn’t change, indicating that we have the
best approximation the calculator can deliver.

cEXAMPLE 4 Approximating zeros The polynomial p~x!5x 3 2 5x 1 2
has a real zero between 0 and 1. Use Newton’s method, beginning with an initial
guess of 0.5, to approximate the zero to ten decimal-place accuracy.

Solution
We would normally get our initial guess from a graph, but following directions, we
will let x0 5 0.5, and store: .5 A x ENT. For p~x! 5 x 3 2 5x 1 2, we have
p9 5 3x 2 2 5, so we enter

X 2 ~X3 2 5X 1 2!y~3X2 2 5! A X ENTER.

The display (ten decimals) reads .4117647059, and as we repeatedly ENTER, the
sequence of displayed numbers is as follows.

.4142119097

.4142135624

.4142135624

This last number does not change when we continue to press ENTER. Thus, to ten
decimal-place accuracy, the desired zero is .4142135624. This is the same polyno-
mial function we considered in Example 2a, in which we found an exact form for
the same zero, 21 1 Ï2. b

TECHNOLOGY TIP r Numerical derivatives

If your calculator has a built-in function for calculating a numerical
derivative, as the TI-82 (MATH 8), TI-85 (2nd CALC F2), HP–38 (▪ CHARS, Choose ,
OK; you want X~F1~X!), or Casio fx 9700 (SHIFT dydx), you need not write out the
derivative. Enter the function in your Y1 register (or on your SHIFT MEM list as f1).
Then follow the first two steps of the algorithm. In place of having to write
out both the function and its derivative in Step 3, simply enter X 2 Y1/nDER(Y1) A

X and iterate.
While this may not seem a significant advantage for polynomials, using

X 2 Y1/nDER(Y1) A X will work with an appropriate initial guess for any function
that has a reasonably smooth graph.
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Polynomials in Application

In many applied problems, we are not interested in finding polynomial zeros in
exact form; we may not care about the number of zeros. The nature of the problem
may dictate that only certain zeros have physical meaning, as the next example
illustrates.

cEXAMPLE 5 Application leading to a polynomial Twin radio towers are
to be erected on opposite sides of a 10-foot roadway, where 50-foot guy wires reach
from the top of each tower to the base of the other. The wires must cross high
enough to leave a 12-foot clearance above the road. How tall can the towers be, and
how close to the side of the roadway can they be built?

Solution
We sketch a diagram to help us visualize the situation. See Figure 20. Because of
the symmetry, all of the pertinent information is contained in the second part of the
diagram, where x is the distance from the edge of the road to the tower of height h.

From similar right triangles, nACB and nAED, we have

h
2x 1 10

5
12
x

, or h 5
24~x 1 5!

x
.

Using the Pythagorean theorem with nACB,

h 2 1 ~2x 1 10!2 5 502.

We substitute 24~x 1 5!yx for h,
242~x 1 5!2

x 2 1 4~x 1 5!2 5 2500, then expand

and simplify to get a polynomial equation,

x 4 1 10x 3 2 456x 2 1 1440x 1 3600 5 0.

Clearly, only positive values for x have any meaning, and from the picture, we
estimate that x is probably between 5 and 15, so we look for zeros in that range.
In a @5, 15# 3 @25, 50# window, we see just two vertical lines, but there appear to
be two zeros. To get a picture that looks a little more like the polynomials we are
familiar with, we need a much larger y-range. With a y-range of @28000, 7000#,
we see the curve in Figure 21. We still see two zeros, one near 14 and one near 5.7.
The corresponding heights are given by h < 32.6 and h < 45.2.

How do we interpret two different answers? When we look more closely, it
turns out that we can get at least a 12-foot clearance over the road if the distance

FIGURE 20

FIGURE 22FIGURE 21
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from the roadway is anything between 5.7 feet and 14 feet. The maximum tower
height decreases as we move away from the road. See Figure 22. For maximum
height, we can erect 45-foot towers 5.7 feet on each side of the roadway. b

EXERCISES 3.3
Check Your Understanding

Exercises 1–7 True or False. Draw graphs when helpful.

1. The function f ~x! 5 x 3 2 8x 2 1 5x 1 4 has three
real zeros.

2. The graph of f ~x! 5 x 4 1 2x 2 1 1 crosses the x-axis.

3. The equation x 3 2 7x 1 5 5 0 has two negative and
one positive root.

4. Since Ï3 is a zero of f ~x! 5 x 3 2 2x 2 Ï3, then
2Ï3 must also be a zero.

5. All zeros of f ~x! 5 x 3 2 8x 2 1 5x 1 8 lie between
21 and 8.

6. If f ~x! 5 2x 4 1 x 3 1 7x 2 2 x 2 6, then f ~x! , 15
for every x.

7. Based on what can be seen from the graph of
f ~x! 5 x 3 2 40x 2 2 400x 1 1600 using @224, 50# 3
@25100, 17,000#, we can conclude that f has one nega-
tive and two positive zeros.

Exercises 8–10 Fill in the blank so that the resulting
statement is true.

8. For the family of functions f ~x! 5 x 3 1 cx 2 5, the
value of c for which 21 is a zero is .

9. The number of real zeros of f ~x! 5 x 4 1 2x 3 2
2x 2 2 4x is .

10. In applying Newton’s method, if f ~x! 5 x 3 2 2x 1 3,
then f 9~x! 5 .

Develop Mastery

Exercises 1–4 Zeros from Graph (a) Graph y 5 p (x)
and locate each zero between two consecutive integers.
(b) Find an approximation (one decimal place) for the
largest zero.

1. p~x! 5 x 3 2 3x 2 2 x 1 2

2. p~x! 5 x 3 2 3x 2 2 3

3. p~x! 5 x 3 2 2x 2 2 x 1 3

4. p~x! 5 x 3 1 2x 2 2 3x 2 2

Exercises 5–8 Locate Intersection Graph the two equa-
tions on the same screen and find the coordinates of the
point of intersection (one decimal place).

5. y 5 x 3 2 3x 6. y 5 x 2 x 3

y 5 23 y 5 1

7. y 5 x 3 8. y 5 1 2 x 3

y 5 x 1 1 y 5 x 2 2 2

Exercises 9–12 Zeros to Function Find a polynomial
function of lowest degree with integer coefficients, a leading
coefficient of 1, and the given numbers as zeros. Give the
result in standard (expanded) form. Use the conjugate zeros
theorem, if needed.

9. 1 1 i, 1 2 Ï2 10. 1, Ï2

11. 2, 21 1 Ï3 12. Ï2, 1 2 i

Exercises 13–16 Conjugate Zeros Theorem The given
number is a zero of f. Find the remaining zeros. (Hint: Use
the conjugate zeros theorem and long division.)

13. f ~x! 5 x 3 2 4x 2 1 3x 1 2; 1 2 Ï2

14. f ~x! 5 x 3 2 2x 2 2 9x 2 2; 2 1 Ï5

15. f ~x! 5 2x 3 2 9x 2 1 2x 1 1; 2 2 Ï5

16. f ~x! 5 2x 3 2 3x 2 2 4x 2 1; 1 1 Ï2

Exercises 17–24 Find All Zeros Assume that the do-
main of the variable is the set of complex numbers. Find all
zeros in exact form.

17. f ~x! 5 x 3 2 4x 2 1 2x 2 8

18. f ~x! 5 4x 3 2 4x 2 2 19x 1 10

19. f ~x! 5 x 3 2 2.5x 2 2 7x 2 1.5

20. f ~x! 5 3x 3 2 1.5x 2 1 x 2 0.5

21. f ~x! 5 6x 4 2 13x 3 1 2x 2 2 4x 1 15

22. f ~x! 5 2x 4 1 3x 3 1 2x 2 2 1

23. f ~x! 5 4x 4 2 4x 3 2 7x 2 1 4x 1 3

24. f ~x! 5 4x 4 1 8x 3 1 9x 2 1 5x 1 1

Exercises 25–32 Exact Form Roots Find all roots in
exact form.

25. 6x 3 2 2x 2 2 9x 1 3 5 0

26. 6x 3 2 x 2 2 13x 1 8 5 0

27. x 4 2 x 3 2 3x 2 1 x 1 2 5 0

28. x 4 2 x 3 2 8x 1 8 5 0

29. x 3 2 3x 1 2 5 0

30. 18x 3 1 27x 2 1 13x 1 2 5 0

31. x 3 1 2 5 2
~14x 2 1 17x!

3

32. x 4 1 4x 3 2 5x 2 5 36x 1 36



pg178 [V] G2 5-36058 / HCG / Cannon & Elich clb 11-22-95 MP1

178 Chapter 3 Polynomial and Rational Functions

Exercises 33–34 Solution Set, Exact Form Find the so-
lution set for (a) f ~x! $ 0 (b) f ~x 2 1! $ 0. Give answers
in exact form.

33. f ~x! 5 x 3 1 x 2 2 11x 2 15

34. f ~x! 5 x 3 2 6x 2 1 4x 1 16

Exercises 35–38 Evaluating Inverse (a) Graph the
function to support the claim that f is either an increasing or
decreasing function (tell which), so that f has an inverse, f21.
(b) Find f 21~3! (1 decimal place). (Hint: In x 5 f ~y! replace
x by 3 and solve for y.)

35. f ~x! 5 2x 3 1 3x 2 4

36. f ~x! 5 x 3 2 3x 2 1 4x 1 5

37. f ~x! 5 2 2 x 1 x 2 2 2x 3

38. f ~x! 5 4 2 3x 2 2x 3

39. For f ~x! 5 x 3 2 3x 2 2 x 1 3 and g~x! 5 _ x _ , how
many zeros does the function f 8 g have? Draw a graph.
Does your answer contradict the corollaries to the fun-
damental theorem of algebra? Explain.

40. Repeat Exercise 39 for f ~x! 5 x 3 2 3x 2 2 4x 2 4.

41. Explore For f ~x! 5 x 3 1 cx 1 4, choose several in-
teger values for c (positive and negative) and draw a graph
of the corresponding function. What values of c give graphs
with (a) turning points, (b) more than one x- intercept
point?

42. Repeat Exercise 41 for f ~x! 5 x 3 1 cx 2 4.

Exercises 43–46 Explore The equation defines a family
of polynomial functions of degree 3. Experiment with sev-
eral integer values of c and for each draw a graph. Describe
the role that c appears to play. Include information about
local extrema, number of real zeros, and any other graphi-
cal features you observe. Use complete sentences.

43. f ~x! 5 x 3 1 cx 2 2 4x 1 3

44. f ~x! 5 x 3 1 2x 2 1 cx 1 3

45. f ~x! 5 x 3 1 2x 2 2 4x 1 c

46. f ~x! 5 cx 3 1 2x 2 2 4x 1 3

Exercises 47–50 Explore For each real number k, f is a
polynomial function of degree 3. Experiment with several
integer values of k and determine the values of k for which
f will have (a) three real zeros, (b) exactly one real zero, (c)
one negative and no positive zeros.

47. f ~x! 5 x 3 1 kx 2 2 48. f ~x! 5 x 3 1 kx 1 3

49. f ~x! 5 x 3 1 kx 1 8 50. f ~x! 5 x 3 1 kx 2 5

Exercises 51–53 Explore Composition with Absolute
Value (See Section 2.6)

51. Try several polynomial functions f of degree 3 and in
each case draw a graph of f and then a graph of g~x! 5
f ~_ x _ !. For what functions f will the composition func-
tion g have
(a) no zeros (b) two zeros (c) four zeros
(d) six zeros

52. Draw a graph of f ~x! 5 _ x 3 1 x 2 2 2x _ . Explain why
the graph of f cannot be the graph of a polynomial
function. (Hint: Read “Smoothness and End Behavior”
in Section 3.1.)

53. (a) Take any polynomial function f of degree 3 and
draw the graph of g~x! 5 _ f ~x! _ . Use the graph to
explain why g cannot be a polynomial function.

(b) Is there a polynomial function f of degree 4 for
which g~x! 5 _ f ~x! _ is also a polynomial function?
Explain.

54. For each real number c, the graph of f ~x! 5 0.1~x 1
c!3 1 0.3~x 1 c!2 2 ~x 1 c! 2 8 is a horizontal
translation of the graph of g~x! 5 0.1x 3 1 0.3x 2 2
x 2 8. For what integer values of c will f have a nega-
tive zero?

55. Explore The graph of f ~x! 5 x 3 2 6x 2 1 9x 2 6
has one real zero and local extrema at ~1, 22! and
~3, 26!. Draw a graph in a shifted decimal window to
support this claim. Consider the family of functions
g~x! 5 f ~x! 1 c.
(a) For what integer values of c will g have three dis-

tinct real zeros?
(b) For what integer values of c will g have a repeated

zero? Justify algebraically.
(c) For what integer values of c will g have a negative

zero?

56. Explore Consider the family of functions f ~x! 5
0.3x 3 2 4x 1 c. Let P be the local maximum point
and Q be the local minimum point. For what integer
values of c will (a) P and Q be below the x-axis?
(b) P be above and Q be below the x-axis? (c) P and
Q be above the x-axis?

Exercises 57–60 Newton’s method Use Newton’s method
to find the largest zero of f (nine decimal places). See Exam-
ple 4.

57. f ~x! 5 x 3 2 4x 1 2

58. f ~x! 5 x 3 1 4x 2 2 8

59. f ~x! 5 x 4 2 5x 2 1 3x 2 1

60. f ~x! 5 x 4 2 9x 2 1 8x
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61. A box with an open top is constructed from a rectan-
gular piece of tin that measures 9 inches by 12 inches by
cutting out from each corner a square of side x, and then
folding up the sides as shown in the diagram.
(a) If V denotes the volume of the box, find a formula

for V as a function of x. What is the domain of the
function?

(b) What size corners should be cut out so that the box
will have a capacity of 81 cubic inches? (Hint:
There are two answers, both between 1 and 2.)

62. A storage tank consists of a right circular cylinder
mounted on top of a hemisphere, as shown in the dia-
gram. If the height of the cylindrical portion is 12 feet
and the tank is to have a capacity of 1250p cubic feet,
find the radius r of the cylinder to 3 significant digits.

63. An isosceles triangle has the dimensions shown in the
diagram. If the area is equal to 10 square units, find the
length of the altitude h (to the nearest tenth).

64. What are the dimensions of a rectangle of area 7 square
inches that has a diagonal 1 inch longer than the length
of one of its sides? Give the result rounded off to 3
significant digits.

65. A storage tank has the shape of a cube. If one of the
dimensions is increased by 2 and another by 3, while
the third is decreased by 4, then the resulting rectangu-
lar tank will have a volume of 600 cubic units. What is
the length of an edge of the original cube to 3 significant
digits?

66. A rectangular storage container is 3 by 4 by 5 feet.
(a) What is its capacity (volume)?
(b) If we increase each of the dimensions by x feet in

order to get a container with a capacity five times as
large as the original, how large must x be, rounded
off to 3 significant digits?

67. Two vertical poles, AB and CD, are connected by guy
wires of lengths 30 ft and 40 ft, intersecting at point F,
12 feet from the ground. See the diagram. Find the
heights u and v, of the poles and the distance d between
the poles.

68. In Example 5 we found that the two towers can be
placed anywhere from 5.7 ft to 14 ft from the road.
How far from the road should they be located if we want
maximum clearance above the road? (Hint: Let u be the
desired distance and v be the distance, _DE _ , from the
right edge of the road to the guy wire AB.) Write v as a
function of u. See diagram.

69. Solve the problem in Example 5 if the guy wires are 48
feet long.

70. In Exercise 69, how far from the road should the two
towers be located so that there is maximum clearance
above the road? See Exercise 68.
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3.4 R A T I O N A L F U N C T I O N S

What is mathematics about? I think it’s really summed up in what I frequently
tell my classes. That is that proofs really aren’t there to convince you that
something is true—they’re there to show you why it is true. That’s what it’s
all about—it’s to try to figure out how it’s all tied together.

Freeman Dyson

In this section we consider rational functions, which are defined as quotients of
polynomial functions.

Definition: rational function

Suppose p and q are polynomial functions, where q is not the zero function.
Then the function f given by

f ~x! 5
p~x!

q~x!

is called a rational function, sometimes written f 5
p
q . The domain of f

consists of all real numbers for which q~x! 5/ 0.
If p~x! and q~x! have no common factors, then we say that p

q is in
reduced form.

For our discussion in this section, we assume that all rational functions are reduced
unless we specify to the contrary. The most significant information for analyzing
the behavior of a rational function is the set of zeros of the polynomial functions
in the numerator and the denominator.

To get a feeling for the meaning of zeros in the denominator, we look at a
variety of graphs. In Example 1 we consider pairs of graphs, each consisting of a
polynomial and its reciprocal.

cEXAMPLE 1 Functions and reciprocals Sketch the graphs of both func-
tions, together with the horizontal lines y 5 1 and y 5 21, in the specified win-
dow. Then describe where the graphs of f and g meet, and where the graph of g goes
off-scale (out of sight in the window).

(a) f ~x! 5 x 2 2 2x, g~x! 5
1

x 2 2 2x
. Decimal window

(b) f ~x! 5 x 3 2 3x 2, g~x! 5
1

x 3 2 3x 2 . Change y-range to @25, 5#

Solution

(a) The graph of f is the solid parabola in Figure 23, and y 5 g~x! is the dotted
curve. It appears that the graphs of f and g meet where f ~x! 5 61. The graph
of g appears to go off-scale at x 5 0 and x 5 2; that is, where f ~x! 5 0.

(b) In Figure 24a, again the graphs of f and g meet where f ~x! 5 61. The graph
of g appears to go off-scale at x 5 0. It is less clear what happens to g near
x 5 3 (the other point where f ~x! 5 0), so we look closer by reducing the
x-range to @2, 4# (Figure 24b). Now we still see the intersections where

The only idea of real
mathematics that I had
came from Men of
Mathematics. In it, I got my
first glimpse of a mathe-
matician per se. I cannot
overemphasize the
importance of such books
about mathematics in the
intellectual life of a student
like myself completely
out of contact with
research mathematicians.

Julia Robinson

FIGURE 23
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f ~x! 5 61, but the graph of g clearly goes off-scale as x nears 3. Your calculator
may show a nearly vertical column of pixels near 3, this is a “ false (calculator)
asymptote.” It occurs because the calculator connects widely separated y-values
in adjacent columns, but it is not part of the graph of g. b

Rational functions and parenthesesTECHNOLOGY TIP r

In graphing rational functions on a calculator, one of the most common
errors involves the use of parentheses. We are so accustomed to using the
fraction bar as a separator that we can get careless with our calculator. In

Example 1(a), g~x! 5
1

x 2 2 2x
5

1
x~x 1 2!

. On the calculator we could enter

Y 5 1y~X2 2 2X) or Y 5 1y~X~X 2 2)) or Y 5 1y~X*~X 2 2))
but NOT Y 5 1yX2 2 2X or Y 5 1yX*~X 2 2).

Every calculator is programmed to handle operations differently. Try
each of the above on your calculator and make sure you know how to get a
graph that looks like Figure 23.

Vertical Asymptotes

The kind of “off-scale” behavior we observed in the calculator graphs in Example 1
deserves closer examination. When we plot y 5 1yx in a decimal window (Fig-
ure 25), the graph goes off-scale in both directions, with the graph seeming to get
closer and closer to the y -axis. If, however, we increase the y -range to @215, 15#,
the calculator graph climbs up the y -axis and then stops; the highest point is
( 1

10
, 10).

Does the graph really stop at ( 1

10
, 10), or does it keep climbing? We could see

more by zooming in near (0, 10), but the calculator is not the best tool for answering
the question. Looking at the equation y 5 1yx, it is easy to see that we can get a
y -value of 100 (at x 5 1y100), or 1000, or ten million, by taking x-values small
enough. There is no highest point. Taking positive x-values closer and closer to 0,
the y-values keep growing without bound.

We use arrows to describe such behavior and write: as x A 01, y A ` (or
1yx A `), or more compactly, lim

xA01

1
x 5 `.

FIGURE 24

FIGURE 25
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Arrow notation

x A a1 means that x approaches a from above; that is, x takes on values
near a, but greater than a ~such as a 1 0.01, a 1 0.001, . . .).

x A a2 means that x approaches a from below; that is, x takes on values
near a, but less than a (such as a 2 0.01, a 2 0.001, . . .).

Similarly, x A ` or x A 2` means that x assumes larger and larger positive
or negative values, respectively. The same notation is used to indicate
functional behavior.

In calculus the concept of limit has a very important, precise meaning. Here
we use the notation only for the intuitive notion embodied in our arrows. Looking
back at Figure 23, we see the following:

lim
xA02

g~x! 5 `, lim
xA01

g~x! 5 2`,

lim
xA22

g~x! 5 2`, lim
xA21

g~x! 5 `.

The vertical lines x 5 0 (the y-axis) and x 5 2 are called vertical asymptotes for
the curve y 5 g~x!. Without attempting a more precise definition, we say that a line
is an asymptote for a curve if the distance between the curve and the line goes to
zero as we move out along the line.

From the graphs in Example 1, it is clear that each reciprocal function 1yf ~x!
has a vertical asymptote at each zero of f ~x!, and furthermore, that the x-axis is a
horizontal asymptote for each reciprocal function since g~x! A 0 as x A ` and
g~x! A 0 as x A 2`.

Asymptotes for rational functions can be vertical, horizontal, or oblique lines,
as illustrated in Figure 26.

Shifts and reflections are also useful in graphing rational functions.

cEXAMPLE 2 Shifts and reflections Use the graph of f ~x! 5 1
x to graph

(a) y 5
1

x 2 1
(b) y 5

2
2 2 x

(c) y 5
1 1 x

xStrategy: Try to relate each
function to f ~x! 5 1

x . In (a) Solution
f ~x 2 1! gives a horizontal (a) Since f ~x 2 1! 5 1

x 2 1 , graph y 5 1
x 2 1 by translating the graph of f one unittranslation. In (b) factor out

to the right. As a useful check, observe that y 5 1
x 2 1 has a vertical asymptote22 to get 22 · f ~x 2 2!. In

where the denominator is 0, at x 5 1. The result of the translation is shown in(c) y 5 1
x 1 1, for a vertical

Figure 27a.translation.

FIGURE 26
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(b) If we factor out 21 from the denominator, then 2
2 2 x 5 22

x 2 2 , so
2

2 2 x 5 22 f ~x 2 2!. Translate the graph of f two units to the right, reflect it
through the x-axis and stretch it vertically by a factor of 2. Plotting a few points
gives the graph shown in Figure 27b.

(c) To relate
1 1 x

x
to f ~x!, rewrite

1 1 x
x

as

1 1 x
x

5
1
x

1
x
x

5
1
x

1 1 5 f ~x! 1 1.

Translate the graph of f one unit up, as shown in Figure 27c. b

Graphing Other Rational Functions

All of the rational functions we have graphed thus far are either reciprocals or
shifts of reciprocals of polynomial functions, where we have observed that there is
a vertical asymptote at every zero of the denominator. What is the significance of

the zeros of the numerator? Suppose f ~x! 5
p (x!

q~x!
and f is in reduced form (so that

p and q have no common zeros). Then if c is a zero of the numerator, we have

f ~c! 5
p~c!
q~c!

5
0

q~c!
5 0. That is, the zeros of a rational function are the zeros of

the numerator. Collectively, we call the zeros of the numerator and the zeros of the
denominator the set of cut points for a rational function. As in Chapter 1, cut
points identify the location of possible sign changes. In addition, for rational
functions, cut points in the numerator identify x-intercept points, cut points in the
denominator correspond to actual breaks in the graph, at each vertical asymptote.
Summing up, we have the following.

Vertical asymptotes and intercepts

Suppose f ~x! 5
p~x!

q~x!
and that p and q have no common zeros.

Then there is a vertical asymptote at every zero of the denominator, and
there is an x-intercept point at every zero of the numerator.

FIGURE 27

Shifts and reflections of y 5
1
x

.
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cEXAMPLE 3 Graphing a rational function Find the intercepts, cut points
and asymptotes and sketch the graph of the rational function

f ~x! 5
x 1 1

4x~x 2 1!
.

Solution
The zeros of the denominator are 0 and 1, so the vertical asymptotes are the lines
x 5 0 (the y-axis) and x 5 1. The other cut point is the single zero of the numer-
ator, 21, and so we have only one x-intercept point, (21, 0). Since the y-axis is a
vertical asymptote, there is no y -intercept. A calculator graph in a decimal window
(Figure 28a) makes it appear that the graph ends near (21, 0), but of course we
know that the domain of f consists of all real numbers except 0 and 1. We also know
that the numerator, and hence f , changes sign at x 5 21. Tracing along the curve
near (21, 0) or zooming in near the same point verifies that the graph crosses the
x-axis there, and the x-axis is a horizontal asymptote, as in Figure 28b. b

Horizontal and Slant Asymptotes

In all of the examples we have graphed thus far, the x-axis has been a horizontal
asymptote, with the exception of one translated graph. The general principle that
we list below is illustrated in all of these examples. What happens as x A ` or
x A 2` depends on the degrees of the numerator and denominator.

Horizontal and slant asymptotes

f ~x! 5
ax m 1 · · ·
bx n 1 · · ·

If the degree of the denominator is larger ~m , n!,

then the x-axis is a horizontal asymptote.

If the degrees are equal ~m 5 n!,

then the line y 5
a
b

is a horizontal asymptote.

Use long division to get additional information.

If the degrees differ by 1 ~m 5 n 1 1!,

then there is a slant (oblique) asymptote.

Use long division to find an equation for the asymptote.

cEXAMPLE 4 Equal degrees Graph the rational function

f ~x! 5
x 2 2 4
x 2 1 2

.

Solution
We note first that f ~2x! 5 f ~x!, so f is an even function; the graph is symmetric
about the y-axis. Setting the numerator equal to 0, we find that its zeros are 62,
so the x-intercept points are (2, 0) and (22, 0). The denominator has no real zeros,
so the graph has no vertical asymptotes. Since f ~0! 5 22, the y-intercept point is
(0, 22).

FIGURE 28

Graph of y 5
x 1 1

4x~x 2 1!
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The degree of both numerator and denominator is 2, so m 5 n. Thus the line
y 5 a

b 5 1
1 5 1 is a horizontal asymptote. The graph is shown in Figure 29. Note

that without the boxed information above, it would be difficult to tell from a
calculator graph that the graph really does flatten out along the line y 5 1, al-
though increasing the x-range makes that conclusion very plausible. b

cEXAMPLE 5 Equal degrees Graph the function, identifying all asymp-
totes and intercept points in exact form.

g~x! 5
x 2 1 2x 2 7
x 2 2 2x 2 3

.

Solution
The zeros of the denominator are easy to find because the denominator factors:
~x 2 3!~x 1 1!. There are zeros, and hence vertical asymptotes at x 5 21 and
x 5 3. The numerator has zeros at x 5 21 6 2Ï2, so we have two x-intercept
points. g~0! 5 7

3 , so the y-intercept point is ~0, 7
3!.

The degree of both numerator and denominator is 2, so m 5 n. Thus the line
y 5 a

b 5 1
1 5 1 is a horizontal asymptote. If we use long division, as suggested in

the box above, we have

g~x! 5 1 1
4x 2 4

x 2 2 2x 2 3
5 1 1

4~x 2 1!

~x 2 3!~x 1 1!
.

In this form, it is easy to see that g~x! 5 1 when x 5 1, so the graph crosses the
horizontal asymptote at the point (1, 1). Graphing in a decimal window doesn’t
show much of the asymptotic behavior. To see a little more, we zoom out by a factor
of 2 to get the graph shown in Figure 30. b

Intersections of Graphs and Asymptotes

Because graphs get so close to asymptotes it is sometimes difficult to look at a graph
and tell whether or not it crosses an asymptote. Calculator graphs are particularly
difficult to read in some areas where we most need detail. In Example 3 the graph
crosses the horizontal asymptote at the x-intercept point (21, 0) and in Example 5
the graph crosses the horizontal asymptote as well. When numerator and denomi-
nator have equal degrees, long division gives us a form from which we can use
algebraic techniques to find intersections. On the other hand, no graph can cross
a vertical asymptote. If x 5 c is a vertical asymptote for a rational function f , then
there would have to be a point ~c, f ~c!! on the graph, but vertical asymptotes occur
at zeros of the denominator, where by definition, f is undefined.

Slant Asymptotes

From the box above, slant (oblique) asymptotes occur when the degree of the
numerator is 1 greater than the degree of the denominator, as in the next example.

cEXAMPLE 6 Degrees differ by 1 Graph the rational function

h~x! 5
x 2 1 2x
2x 1 2

.

FIGURE 29

FIGURE 30

g~x! 5
x 2 1 2x 2 7
x 2 2 2x 2 3



y

x

(b)Oblique asymptote and

x + 1
2

y =x2 + 2x
2x + 2

y =

graph of y =

Oblique
asymptote

1

1– 1– 2

– 2
– 1

– 3– 4

– 3

– 4

2 3 4

2

3

4

x2 + 2x
2x + 2

[– 4, 4] by [– 4, 4]

(– 2, 0)

(0, 0)

(a)

y

x

y = x2 – 1
x – 1

(1, 2) is
missing

1

1– 1– 2 2

2

3
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Solution

Both numerator and denominator can be factored:
x~x 1 2!

2~x 1 1!
. Thus the cut points

are 0, 22, and 21. The first two give us x-intercept points (0, 0) and (22, 0); the
zero in the denominator indicates a vertical asymptote at x 5 21. A calculator
graph in @24, 4# 3 @24, 4# shows the graph near the vertical asymptote (Fig-
ure 31a), but it isn’t clear what happens to the graph as we move further to the right
or the left. If we zoom out, essentially looking at the graph from further away, say
in the window @210, 10# 3 @26, 6#, the graph looks very much like a line, except
near the vertical asymptote. What line does it approach? The slant asymptote.

The numerator has degree 2 and denominator degree 1, so there is a slant
asymptote. Dividing x 1 1 into x 2 1 2x using long division, we get

h~x! 5
1
2

~x 1 1! 2
1

2~x 1 1!
.

The slant asymptote is the line y 5 ~x 1 1!y2. Adding that line to the graph in the
@210, 10# 3 @26, 6# window shows that the two graphs are indistinguishable
except in the region near the vertical asymptote.

As with horizontal asymptotes, we want to know whether the graph of
y 5 h~x! intersects the oblique asymptote. Such an intersection would come from
a solution to the equation h~x! 5 ~x 11!y2, which clearly has no solution. The
graph is shown in Figure 31b. b

Rational Functions Not Reduced

A rational function f ~x! 5
p~x!

q~x!
is not in reduced form if there are common factors

in the numerator and denominator. To handle common zeros, remember that if p~x!
and q~x! have the same zero, say x 5 c, then since 0

0 is not defined, c is not in the
domain of the function. In such a case the graph has a single point removed.
Consider the function

f ~x! 5
x 2 2 1
x 2 1

.
FIGURE 32

FIGURE 31
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Factor the numerator.

f ~x! 5
~x 2 1!~x 1 1!

x 2 1
.

This is identical to the function g~x! 5 x 1 1 except when x is 1. When x is 1,
g~1! 5 2, but f ~1! is not defined. Therefore, the graph of y 5 f ~x! is the same as
the graph of y 5 x 1 1 with the point (1, 2) removed (see Figure 32).

TECHNOLOGY TIP r Missing points

In graphing nonreduced rational functions, we may or may not be able to see
that a point is missing. Such a gap is visible on a calculator graph if and only
if there is a pixel with x-coordinate corresponding to value where the
function has the form 0

0 .
Thus for the example considered above, f ~x! 5 ~x 2 2 1!y~x 2 1!, in any

window where there is a pixel for x 5 1, such as a decimal window, the
graph makes the missing point quite apparent. If you then change the x-range
by almost any small amount, you will no longer be able to see where the
point is missing; the graph looks just like the line y 5 x 1 1.

EXERCISES 3.4

Check Your Understanding

Use a graph whenever you think it will be helpful. True or
False. Give reasons.

1. If the graph of y 5
1
x

is translated two units left, then

the resulting graph will be that of y 5
1

x 2 2
.

2. If the graph of y 5
1

x 1 2
is translated down one unit,

then the resulting graph will be that of y 5
2x 2 1
x 1 2

.

3. If the graph of y 5
1

x 1 2
is translated up one unit, then

the resulting graph will be that of y 5
x 1 1
x 1 2

.

4. The line y 5
x
2

is an asymptote to the graph of y 5

x 1 1
2x 1 1

.

5. The horizontal line y 5 22 is an asymptote to the

graph of y 5
1 2 2x 2

5 1 2x 1 x 2 .

6. The graph of y 5
x 2 2

x 2 2 x 1 2
has no vertical asymp-

totes.

Exercises 7–8 Suppose f ~x! 5
3x 2 1 1
x 2 1 1

.

7. There is no value of x for which f ~x! 5 3.

8. For every real number x, f ~x! is in the interval @1, 3!.

9. If f ~x! 5
x 2 1 100

x
, then the graph of f has a local

minimum point in the third quadrant.

10. The graph of f ~x! 5
2x 3 2 3x 2 1 500

x 4 1 8x 1 50
, has one zero

and no vertical asymptotes.

Develop Mastery

1. The line x 5 1 is a vertical asymptote for the function

f ~x! 5
x 3

x 2 2 2x 1 1
.

(a) To see what happens to the graph of f as x A 12,
evaluate f at x 5 0.8, 0.9, 0.99, etc. For what values
of x is f ~x! greater than 100? Greater than 1000?

(b) Repeat part (a) as x A 11 .

2. The line y 5 1 is a horizontal asymptote for the func-
tion

f ~x! 5
x 2 1 2x
x 2 1 1

.
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(a) Draw a graph of y 5 f ~x!, Does the graph
approach the line y 5 1 from above or below as
x A `?

(b) Use TRACE and appropriate windows to find some
values of x for which f ~x! is within 0.01, 0.001,
of y 5 1.

(c) Do the same for x A 2`.
(d) Does the graph intersect the line y 5 1? If it

does, find the coordinates of the point of
intersection algebraically.

3. Repeat Exercise 2 for the function

f ~x! 5
x 2 1 2x
x 2 1 2

.

Exercises 4–9 Use translations, reflection, or stretching of
the graph of f ~x! 5 1

x to sketch a graph. See Example 2.

4. y 5
1

x 1 2
5. y 5

1
1 2 x

6. y 5
2

x 2 3

7. y 5
2

3 2 x
8. y 5

2x 1 1
x

9. y 5
x 2 1

x

Exercises 10–13 Related Graphs Graph f ~x! 5
2x 2

x 2 1 1
and the given function g simultaneously. (a) Determine
how the graphs are related and verify algebraically.
(b) Find the coordinates of any intersection points (1 deci-
mal place).

10. g~x! 5
4x 2 1 2
x 2 1 1

11. g~x! 5
22

x 2 1 1

12. g~x! 5
2x 2 1 4x 1 2
x 2 1 2x 1 2

13. g~x! 5
2x 2 2 8x 1 8
x 2 2 4x 1 5

.

Exercises 14–21 Graph Rational Functions Sketch a
graph of f, identifying asymptotes and intercepts.

14. f ~x! 5
1

x 2 1
15. f ~x! 5

2
x 1 2

16. f ~x! 5
x

x 2 1
17. f ~x! 5

2x 2 3
x 1 2

18. f ~x! 5
2x 2

~x 2 1!2 19. f ~x! 5
x 2

x 2 2 4

20. f ~x! 5
x 1 2

x 2 2 3x 2 4
21. f ~x! 5

x
x 2 2 2x 1 1

Exercises 22–28 Intercepts, Domain, Range Draw a
graph and use it to find (a) the x-intercept points, (b) the
domain of f , (c) the range of f.

22. f ~x! 5
2

~x 1 2!2 23. f ~x! 5
2

x 2 1 1

24. f ~x! 5
2x

x 2 1 1
25. f ~x! 5

x 2 1 2
x 2 1 1

26. f ~x! 5
4

x 2 2 3x 2 4

27. f ~x! 5
x 2 2

x 3 2 3x 2 2 4x

28. f ~x! 5
2x 2 4

x 3 2 3x 2 2 4x

Exercises 29–32 Increasing, Decreasing Determine
the intervals on which f is (a) increasing, (b) decreasing.

29. f ~x! 5
x 2 1 4x 1 3

2x 1 4
30. f ~x! 5

x 2 2 2x 2 3
x 2 2 2x 1 3

31. f ~x! 5
x 2 1

x 2 2 x 2 2
32. f ~x! 5

4
x 2 1 2x 2 3

Exercises 33–36 Solution Set Find the solution set alge-
braically.

33.
2
x

2
4

x 2 2
2 6 5 0 34.

x 2 2 6x 1 5
x 2 1 3

5 3

35.
x 3 2 4x
x 2 1 1

5
3
2

36.
2x

x 1 1
1

4
2x 1 1

5
14

2x 2 1 3x 1 1

Exercises 37–40 Solution Set (a) Find the solution set
algebraically. (b) Use a graph to support your answer.

37.
1

x 1 1
. 2 38.

x 2 3
x 1 2

, 0

39.
2x 2 1 x 2 3

x 2 1 1
# 0 40.

x 2 2 3x 2 4
x 2 1 2x 1 1

$ 0

Exercises 41–44 Not Reduced Sketch a graph of f.
(Hint: First express the function in reduced form; keep in
mind the domain.)

41. f ~x! 5
x

x 2 1 2x
42. f ~x! 5

x 3

x 2 2 2x

43. f ~x! 5
x 2 2 2x 1 1
x 2 1 2x 2 3

44. f ~x! 5
x 2 1 2x 2 3
x 2 1 x 2 2

Exercises 45–48 Find an equation for the horizontal
asymptote and find the coordinates of the points (if any)
where the graph of y 5 f ~x! intersects the horizontal
asymptote.

45. f ~x! 5
x 2 2 6

x 2 2 2x
46. f ~x! 5

2x 2 2 2
x 2 2 3x 1 2

47. f ~x! 5
x 2 2 x

x 2 1 x 1 2
48. f ~x! 5

x 2 2 x
x 2 2 x 2 2



y

x

x = 1

y

x

y = 1

y

x

y = 1

x = – 1

x = 2

y

x

x = 1

y = 1

y

x

x = 2

x = – 1

y

x

x = 1

y

x

y = x + 1

x = – 1

x = 2

y

x

x = 1
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Exercises 49–52 Oblique Asymptotes The graph of f has
an oblique asymptote. Find an equation for the asymptote
and find the coordinates of the points (if any) where the
graph of y 5 f ~x! intersects the asymptote. Graph the func-
tion.

49. f ~x! 5
x 2 2 3
x 2 1

50. f ~x! 5
x 2 1 x 2 2

x 1 1

51. f ~x! 5
2x 2 1 3x 1 1

x
52. f ~x! 5

x 2 1 3x 2 2
x 1 1

Exercises 53–54 Minima Find the minimum value of f
algebraically and check graphically. What value of x gives
the minimum value of f?

53. f ~x! 5
x 4 1 x 2 1 1

x 2

Hint: f ~x! 5 x 2 1 1 1
1
x 2 5 Sx 2

1
xD2

1 3

54. f ~x! 5
x 4 1 2x 2 1 4

x 2

Hint: See Exercise 53.

Exercises 55–56 Your Choice Give a formula for a ra-
tional function whose graph satisfies the given conditions.
Check with a graph.

55. x-intercept point (2, 0), vertical asymptote x 5 21,
horizontal asymptote y 5 2.

56. x-intercept points (22, 0), vertical asymptote x 5 1,
horizontal asymptote y 5 2.

Exercises 57–58 Local Maxima Find the coordinates of
the local maximum point(s) on the graph of f.

57. f ~x! 5
x 2 2 7x 1 16

x 2 3
58. f ~x! 5

x 2 1 x 1 1
x

Exercises 59–60 Local Minima Find the coordinates of
the local minimum point(s) on the graph of f.

59. f ~x! 5
x 2 1 5x 1 7

x 1 2
60. f ~x! 5

x 2 2 x 1 4
x

Exercises 61–68 Match Functions Match the graph
with the appropriate function from the following list. Check
by graphing.

(a) f ~x! 5
x 1 1
x 2 1

(b) f ~x! 5
1

x 2 1

(c) f ~x! 5
x 1 1

~x 2 1!2 (d) f ~x! 5
x 2

x 2 1 1

(e) f ~x! 5
1

1 2 x
(f) f ~x! 5

x 2

x 2 2 x 2 2

(g) f ~x! 5
x

x 2 2 x 2 2
(h) f ~x! 5

x 3

x 2 2 x 2 2

61. 62.

63. 64.

65. 66.

67. 68.

Exercises 69–72 Solution Set Functions g and h are

given and function f is defined by f ~x! 5
g~x!

h~x!
. Find the

solution set for f ~x! , 0 algebraically. Draw a graph to
support your answer. (Hint: First show that h~x! . 0 for
every value of x (draw a graph).) Why is the solution set for
f ~x! , 0 the same as the solution set for g~x! , 0?

69. g~x! 5 x 2 2 2x 2 3, h~x! 5 x 2 2 2x 1 3
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70. g~x! 5 x 3 2 2x 2 2 8x, h~x! 5 x 4 2 3x 2 1 4

71. g~x! 5 x 3 1 2x 2 2 x 2 2, h~x! 5 x 2 1 2x 1 2

72. g~x! 5 1 2 x 3, h~x! 5 1 1 x 2

73. For f ~x! 5
2x 3 1 3x 2 1 x 2 2

x 2 ,

(a) show that y 5 2x 1 3 is an oblique asymptote.
(b) Draw graphs of y 5 f ~x! and y 5 2x 1 3 simulta-

neously and see that the graph of y 5 f ~x! is ap-
proaching the asymptote as x A `. Is it approaching
from above or from below?

(c) Does the graph of y 5 f ~x! intersect the asymp-
tote? If it does, find the point of intersection alge-
braically.

(d) Find some values of x for which the difference of
the two y values is less than 0.01.

74. Solve the same problem as in Exercise 72 except use

f ~x! 5
x 3 2 3x 2 1 2x 2 1

x 2 1 1
. First find an equation for

the oblique asymptote.

75. Show that if g and h are polynomial functions with no
common zeros and the degree of h is 3, then the

function f ~x! 5
g~x!

h~x!
(lowest terms) must have at least

one vertical asymptote.

76. (a) Function f ~x! 5
x 2 3

_ x _ 1 2
is not a rational function,

Why?
(b) Draw a graph and see that the graph f has two

horizontal asymptotes.
(c) By considering two cases, x $ 0, and x , 0, find

equations for the two horizontal asymptotes.

Exercises 77–78 Intercepts and Asymptotes Does the
graph of f have (a) x-intercept points? (b) Any vertical
asymptotes? (Hint: Draw graphs of the numerator and de-
nominator separately.)

77. f ~x! 5
x 2 2 2x 1 5
x 4 1 3x 2 4

78. f ~x! 5
x 3 1 x 2 1
x 2 2 3x 1 4

79. Of all rectangles with an area of 160 square inches,
what are the dimensions of the one having the smallest
perimeter?

80. Solve the problem in Exercise 79 for a rectangle of area
240 square inches.

CHAPTER 3 REVIEW

Test Your Understanding

True or False. Give reasons.

1. F~x! 5 x22 1 x21 1 1 is a polynomial function of
degree 22.

81. A cylindrical can is to contain 48 ounces (87 cubic
inches) of apple juice. If the can is to use the least
amount of tin, what should the radius and the height be?

82. Suppose x ounces of pure acid are added to 50 ounces
of 40% solution of acid. Let u denote the concentration
(percent) of the resulting solution.
(a) Express u as a function of x.
(b) Why cannot u be 100 or greater?
(c) What is the domain of this function?
(d) How many ounces of acid must be added to get a

65% solution? Support your answer by drawing a
graph and finding the value of x that gives 65 for u.

83. Find the positive number (2 decimal places) such that
the sum of its square and its reciprocal is a minimum.

84. A rectangular box is to have a base whose length is
twice its width, and whose volume is 2460 cubic inches.
Of all such boxes, what are the dimensions (1 decimal
place) of the one that will require the least amount of
material if the box has (a) a top? (b) no top?

85. Solve the problem in Exercise 84 if the length of the
base is three times its width.

Exercises 86–89 Applied Minima

86. A rectangular printed page is to have margins 2 inches
wide at the top and bottom and 1 inch wide on each of
the two sides. If the page is to have 60 square inches of
printed material,
(a) What is the minimum possible area of the page?
(b) What are the dimensions of the page?

87. A factory has a fixed daily overhead cost of $600. If it
produces x units daily, then the cost for labor and mate-
rials is 3x dollars. The daily cost of equipment mainte-

nance is
x 2

240000
dollars.

(a) Find a function giving the total daily cost, c~x!,
when x units are produced.

(b) How many units should be produced each day to

minimize the cost per unit Sminimize
c~x!

x D? (Hint:

x . 10000.)

88. The x-axis, y-axis and any line with negative slope pass-
ing through the point P~3, 5! determine a triangle. Of
all such triangles, determine the line for which the area
of the triangle is a minimum.

89. Solve the problem in Exercise 88 if P is the point (5, 4).

2. The equation x 3 1 x 1 1 5 0 has no positive roots.

3. The equation x 3 1 x 2 1 5 0 has no negative roots.

4. The equation x 3 1 x 2 2 1 5 0 has no positive roots.
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5. Every polynomial function of degree 3 has at least one
real zero.

6. Every polynomial function of degree 4 has at least one
real zero.

7. The graph of y 5 x 3 1 x 2 1 1 is the same as that of
y 5 x 3 1 x 2 translated upward by 1 unit.

8. The equation x 3 1 2x 2 2 1 5 0 has no rational roots.

9. The equation x 4 1 3x 3 2 x 1 1 5 0 has no rational
roots.

10. The function f ~x! 5 x~x 2 Ï3!~x 1 Ï3! is a poly-
nomial function with integer coefficients.

11. The function f ~x! 5 Ïx 3 1 x 2 1 is a polynomial
function of degree 3.

12. The graph of y 5 x 3 1 x 2 2 2x 2 1 crosses the x-axis
at exactly two points.

13. An x-intercept point on the graph of y 5 x 4 1 x 2 2 2x
is (1, 0).

14. The graph of y 5 x 4 1 x 2 1 1 crosses the x-axis at
four points.

15. All real roots of x 4 1 3x 3 2 3x 2 1 5 0 are irra-
tional.

16. The graphs of f ~x! 5 x 3 1 5x 2 4 and g~x! 5
~x 2 1 1!~x 3 1 5x 2 4! cross the x-axis at precisely the
same points.

17. Given that Ï3 is a root of x 3 1 Ï3x 2 2 6x 5 0, then
2Ï3 is also a root.

18. The graph of y 5 x 4 1 1 does not cross the y-axis.

19. The graph of every polynomial function crosses the
y-axis at exactly one point.

20. f ~x! 5
x 2 1
x 2 1 1

is a rational function.

21. f ~x! 5 x22 2 x is a rational function.

22. An irrational root of x 4 2 2x 2 2 3 5 0 is Ï3.

23. A factor of 3x 4 2 2x 3 1 x 2 4 is x 1 1.

24. When x 15 2 2x 10 1 x 8 2 3x 2 1 1 is divided by
x 1 1, the remainder is 24.

25. A factor of x 12 2 2x 8 1 x 5 2 4x 2 2 is x 1 1.

26. If f ~x! 5 x 3 1 2 and g~x! 5 x 2 2 1, then f 8 g is a
polynomial function of degree 5.

27. The function F~x! 5 x 3 2 2x 2 1 x 2 1 has an irra-
tional zero between 21 and 22.

28. The graph of every rational function has at least one
vertical asymptote.

29. Every polynomial function is also a rational function.

30. The graph of y 5
3x 2 1 1
x 2 1 1

has no horizontal

asymptotes.

31. The graph of y 5
x 2 2 4x
x 2 2 1

crosses the x-axis at exactly

two points.

32. If c is a root of the polynomial equation f ~x! 5 0, then
c 1 1 is a root of f ~x 2 1! 5 0.

33. If c is a root of the polynomial equation f ~x! 5 0, then
c 2 3 is a root of f ~x 1 3! 5 0.

34. If f ~x! 5 ~x 1 3!~x 1 1!~x 2 2!, then f ~x! is negative
for every x in the interval (21, 2).

35. The graph of y 5 x 4 2 x 3 1 2x 2 1 1 has no points in
the third quadrant.

36. The graph of y 5 x 3 1 2x 1 1 has no points in the
fourth quadrant.

37. Every horizontal line must intersect the graph of any
polynomial function of degree 3 in at least one point.

38. Every vertical line will intersect the graph of any polyno-
mial function of degree 4 in exactly one point.

39. The graph of every rational function must have a hori-
zontal asymptote.

40. The graph of every polynomial function of degree 4 must
have a y-intercept point.

41. Every vertical line will intersect the graph of any polyno-
mial function.

42. If f is a polynomial function and both f ~1! and f ~2! are
positive, then f cannot have a zero between 1 and 2.

43. The graph of y 5 2x 3 2 3x 2 2 12x 2 8 has no local
maximum point in the fourth quadrant.

44. The function f ~x! 5 2x 3 2 3x 2 2 4x 2 4 has three
real zeros.

45. The function f ~x! 5 2x 3 1 9x 2 1 24x 1 5 is an in-
creasing function.

46. The function f ~x! 5 x 3 2 x 2 1 3x 2 4 has an inverse.

47. The function f ~x! 5 x 4 2 2x 2 1 x 2 1 has a mini-
mum value.

48. The function g~x! 5 3 2 4x 2 x 4 has a minimum
value.

49. The graph of y 5
x 1 1
x 2 1 1

has no horizontal asymptote.

50. The graph of y 5
x 2 1 1

x 2 2 2x 1 3
has no vertical

asymptotes and no x-intercept points.

51. The graph of y 5
2x 2 1 1
x 2 1

has a slant asymptote.

52. If f is a polynomial function of degree 4, there is at
least one horizontal line that will not intersect its
graph.

53. The graph of f ~x! 5 x 3 1 3x 2 4 has a local mini-
mum point.
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54. The graph of every polynomial function of degree 4
must have at least one local maximum or local mini-
mum point.

55. The graph of a polynomial function of degree 3 cannot
have more than one local maximum point.

56. The graph of f ~x! 5
2x 2 2 3x

x 2 1 4
approaches the line

y 5 2 from above as x A `.

57. The line y 5 2x 2 1 intersects the graph of
y 5 x 3 1 4x 2 5 at exactly one point.

58. If f ~x! 5 5 2 4x 2 x 3, then f is a decreasing function.

59. The solution set for x 3 1 4x 2 1 x 2 6 $ 0 is
$x _ 2 3 # x # 22 or x $ 1%.

60. The solution set for
x 2 2 5x 1 6

x 2 1 3
$ 0 is the same as

the solution set for x 2 2 5x 1 6 $ 0.

61. Suppose f is a polynomial function and f ~x! A ` as
x A `. If g~x! 5 f ~2x!, then g~x! A 2` as x A 2`.

Review for Mastery

Use a graph whenever you think it might be helpful.

1. Find the quotient and remainder when
3x 3 2 4x 2 2 x 1 1 is divided by x 1 1.

2. For f ~x! 5 x 4 2 3x 2 1 2x 2 5, find q~x! and r such
that f ~x! 5 ~x 2 3!q~x! 1 r.

3. Determine the remainder when
3x 16 1 2x 10 2 5x 3 1 3x 2 2 1 is divided by x 1 1.

4. Sketch a graph of y 5 ~x 2 1!~x 2 2 4!. Label on your
graph the x- and y-intercept points.

5. Sketch a graph of y 5 ~x 1 2! ~x 2 1!2. Label the x-
and y-intercept points on your graph.

6. For f ~x! 5 2x 3 2 3x 2 1 x 2 4 locate a zero between
successive integers.

7. Suppose f ~x! 5 2x 3 2 x 2 2 27x 2 30.
(a) List all possible rational zeros given by the rational

zeros theorem.
(b) Draw a graph. Which of the numbers listed in part

(a) can be eliminated?
(c) Find all of the zeros in exact form.

8. Find all rational zeros of
f ~x! 5 2x 3 2 3x 2 2 12x 2 5.

9. Find all zeros of f ~x! 5 2x 3 1 9x 2 1 7x 2 6 in exact
form.

10. Locate each of the irrational roots of x 4 1 2x 3 2
4x 2 2 6x 1 3 5 0 between two consecutive integers.

11. Locate each of the irrational roots of x 3 2 5x 1 3 5 0
between (a) two consecutive integers and (b) two con-
secutive tenths. (c) Determine the largest root rounded
off to two decimal places.

12. (a) Locate each of the zeros of f ~x! 5 3x 3 2 2x 2 2
x 1 1 between two consecutive integers.

(b) Determine the largest zero rounded off to one deci-
mal place.

13. (a) Find all roots of x 4 2 3x 2 5 0 in exact form.
(b) Sketch a graph of y 5 x 4 2 3x 2.

14. Find a polynomial function of lowest degree with lead-
ing coefficient 1 that has 21, 1, and 3 as zeros. Give
your answer in expanded form.

15. Find a polynomial function of degree 4 that has each of
22 and 2 as double zeros. Give your answer in ex-
panded form.

16. Find a polynomial function of lowest degree that has
integer coefficients, a leading coefficient of 2, and 1

2 and
Ï3 as zeros. Give your answer in expanded form.

17. Sketch the graph of y 5 x 3 2 3x 2 2 x 1 3. Label the
x- and y-intercept points on your graph.

18. (a) Find all roots of x 3 1 x 2 2 6x 2 6 5 0 in exact
form.

(b) Draw a graph of y 5 x 3 1 x 2 2 6x 2 6 and label
the intercept points.

19. Draw a graph of each function.
(a) y 5 x 3 2 4x (b) y 5 x 3 2 4x 2 1
(c) y 5 ~x 2 1!3 2 4~x 2 1!
(d) How are the graphs related?

20. Find the zeros in exact form for the function f and g.
(a) f ~x! 5 x 3 1 x 2 2 5x 2 5
(b) g~x! 5 ~x 2 1!3 1 ~x 2 1!2 2 5~x 2 1! 2 5

Exercises 21–23 Intercepts and Asymptotes For the
graph of the function, (a) give the x- and y-intercept points,
(b) determine the equations of any vertical or horizontal
asymptotes, and (c) sketch.

21. f ~x! 5
x 1 3
2 2 x

22. f ~x! 5
x 2 2 9

x 2 2 x 2 2

23. f ~x! 5
x 2 2 2x 1 1

x 2 2 4x

Exercises 24–28 Solution Set Find the solution set.
(Hint: Draw a graph or use cut points.)

24. x 3 2 4x 2 1 x 1 6 , 0

25. x 3 2 3x 2 1 x 2 3 $ 0

26. x 4 1 4x 3 1 2x 2 2 4x 2 3 . 0

27. x 2 1
4

x 2 3
$ 0 28. x 2 2

3x
x 2 2

$ 0

Exercises 29–30 Evaluate Inverse Find the indicated
values of f 21 .

29. f ~x! 5 x 3 1 x 1 8
(a) f 21~18! (b) f 21~22!
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30. f ~x! 5 2x 3 2 4x 2 1 3x 2 5
(a) f 21~22! (b) f 21~214!

Exercises 31–32 Related Functions Find the solution
set for (a) f ~x! 5 0 (b) f ~x 2 1! 5 0 (c) f ~x 1 2! 5 0.

31. f ~x! 5 2x 3 2 5x 2 2 4x 1 3

32. f ~x! 5 ~2x 2 3!~12 2 x 2 x 2!

Exercises 33–34 Solution Set Find the solution set for
(a) f ~x! $ 0 (b) f ~x 2 1! $ 0.

33. f ~x! 5 2x 3 1 5x 2 2 4x 2 3

34. f ~x! 5 ~x 1 3!~x 2 2 16!

Exercises 35–36 Finding Intersections Find the points
of intersection of the graphs of f and g.

35. f ~x! 5 x 3 2 2x 1 3 and g~x! 5 x 2 2 3x 2 11.

36. f ~x! 5 2x 3 2 4x 2 1 5 and g~x! 5 22x 1 11
4

.

37. For what values of x is 2x 3 2 5x 2 1 9x 2 9 positive?

38. For what values of x is 2x 3 1 5x 2 1 9x 1 9 negative?

39. For what values of x is x 3 1 2x 1 3 greater than x 2 1
3x 2 7?

40. The length of each of the two equal sides of an isosceles
triangle is x 1 2, and the base is 2x. The area is 10.
Find the dimensions (2 decimal places) of the triangle
and its height.

41. Find the maximum value of f ~x! where f ~x! 5 4 2
~x 2 1!4.

Exercises 42–43 Local Maxima Determine the coordi-
nates of the local maximum point for the graph of f ,

42. f ~x! 5
x 3

3
2

x 2

2
2 6x 2 4

43. f ~x! 5 2x 3 1 4x 2 2 x 2 6

44. Find the solution set for x 3 1 4x 2 1 x $ 6.

45. Find the point(s) of intersection of the graphs of y 5
x 2 2 6 and y 5 x 3 2 3x. Support your answer with a
calculator graph.

46. Find the point(s) of intersection of the graphs of y 5
x 3 1 x 2 2 1 and y 5 x 1 9.

47. Local Extrema

(a) For f ~x! 5
x 3

3
1

x 2

2
2 2x 1 3, draw a graph.

Does the graph have any local maximum or mini-
mum points?

(b) If it does, determine the coordinates of the local
maximum.

48. Repeat Exercise 47 for f ~x! 5 3 1 2x 1
x 2

2
2

x 3

3
.

49. Oblique Asymptotes

For f ~x! 5
2x 3 2 x 2 1 3x 2 3

x 2 1 1
,

(a) find an equation for the oblique asymptote for the
graph of f.

(b) Draw a calculator graph of y 5 f ~x! and the
asymptote simultaneously. Check to see that the
graph of y 5 f ~x! is approaching the asymptote as
x A `.

(c) Does the graph intersect the asymptote? If it does,
find the point of intersection algebraically.

50. Do the problem in Exercise 49 for

f ~x! 5
22x 3 1 3x 2 2 x 1 5

x 2 1 1

Exercises 51–56 Applied Extrema Problems Round off
results to one decimal place.

51. Point P~u, v! is any point in the first quadrant and on the
graph of y 5 8 2 x 2. A right triangle POQ is drawn as
shown in the diagram. Of all such possible triangles find
the dimensions of the one that has a maximum area.

52. Use the diagram in Exercise 51 and suppose the triangle
is revolved about the leg PQ generating a cone. What
are the coordinates of P that will give a cone of maxi-
mum volume?

53. A rectangle with an area of 40 square inches has a
diagonal that is 4 inches longer than one of its sides.
What are the dimensions of the rectangle?

54. The base of a rectangle is on the x-axis and its upper two
vertices are on the graph of y 5 4x 2 x 2. Of all such
possible rectangles, find the dimensions of the one with
greatest area.

55. Of all rectangles with an area of 128 square inches,
what are the dimensions of the one with smallest
perimeter?

56. A manufacturer wants to make a cylindrical can that
contains 24 ounces (43 cubic inches) of tomato juice.
Of all such possible cans, find the radius and height of
the one that uses the least amount of tin.
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THE PEOPLE IN THE TOWN of Calburn have a long tradition of summer leisure time
swimming and boating in the Hatchee reservoir outside town. On May 1, an indus-
trial accident in the county upstream released a toxic chemical that left a dangerous
level of pollutants in the reservoir. The leak was stopped almost immediately, but
water testing showed that the pollution level had only dropped to half of the initial
level by May 16.

Assuming that the water continues to clear at the same rate, with the pollution
level dropping by half every fifteen days, and that the water won’t be safe until 95%
of the chemical is gone, how soon can people use the dam again? Can the city safely
have its Fourth of July Centennial celebration at the dam as planned?

Given these assumptions, we know that in another 15 days (May 31) the
pollution level will be down to 25% (half of half ), by June 15 to 12.5%, by June
30 to 6.25%, and by July 15 the water will have become safe, at just over 3% of the
original level of contamination, but how much will be gone by July 4? On what day
will enough of the chemical flow out to drop the level below 5%? The mathematical
model that allows us to predict such information (and many, many other phenom-
ena) is called an exponential function. We will return to the question of Hatchee
Reservoir in Section 4.5, after we have developed the tools we need.

In Chapter 3 we discussed polynomial functions. This chapter looks at two
closely related families of functions, exponential and logarithmic functions. Sec-
tion 4.1 reviews properties of exponents and uses those properties to introduce
exponential functions. Exponential functions are one–one functions, so they have
inverses. Sections 4.2 and 4.3 explore these inverses, called logarithmic functions.
The last two sections of the chapter show how to evaluate and apply both exponen-
tial and logarithmic functions.

EXPONENTIAL AND
LOGARITHMIC FUNCTIONS

4.1 Exponents and Exponential Functions

4.2 Logarithmic Functions

4.3 Properties of Logarithmic Functions

4.4 Computations with Logarithmic and Exponential
Functions

4.5 Models for Growth, Decay, and Change

We had a thing at high
school called the algebra
team, which consisted of
five kids, and we would
travel to different schools
as a team and have
competitions. A teacher,
who was running the
contest, would take out an
envelope, and on the
envelope it says, “forty-five
seconds.” She . . . writes
the problem on the
blackboard, and says,
“Go!” One thing was for
sure: It was practically
impossible to do the
problem in any
conventional,
straightforward way . . . so
you had to think, “Is there
a way to see it?”

Richard P. Feynman

195
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4.1 E X P O N E N T S A N D E X P O N E N T I A L F U N C T I O N S

What I really am is a mathematician. Rather than being remembered
as the first woman this or that, I would prefer to be remembered, as a
mathematician should, simply for the theorems I have proved and the
problems I have solved.

Julia Robinson

Elementary algebra courses define expressions of the form b x for integer exponents
(and a few rational-number exponents). We need to expand this to allow more kinds
of numbers as exponents. This requires extending definitions to nth roots and then
to rational exponents. The extension to irrational exponents is properly left to
calculus, but we can at least get a feeling for what a calculator does when we
evaluate an expression such as 3Ï2 or 2p. In the following definitions, n and m
denote positive integers.

Definition: exponents, roots, and radicals

Integer Exponents b n 5 b · b · . . . · b, product of n factors, if n . 0
b 0 5 1 if b 5/ 0;

b2n 5 1yb n, n . 0 and b 5/ 0.
Principle nth Root b 1yn 5

nÏb is the real number root of
x n 5 b when there is only one root; when there
are two, b 1yn is the positive root.
When n 5 2 we write b 1y2 5 Ïb.

Rational Exponents If myn is in lowest terms, then
b myn 5 ~b 1yn!m. When b . 0, b myn is also equal to

nÏb m, which is called radical form.

Irrational Exponents

Certain theoretical considerations require care in defining a number like 2Ï2 but
properties of the real number system guarantee its existence. We use calculators to
evaluate exponential expressions. Since

Ï2 < 1.41421356 . . . ,

we would expect the numbers 21.4, 21.41, 21.414, . . . (where all of the exponents are
rational! to approach 2Ï2. The calculator makes the conclusion plausible:

21.4 5 27y5 < 2.639 21.41 < 2.6574 21.414 < 2.66475

2Ï2 < 2.6651441.

Properties of Exponents

In the expression b x we call b the base and x the exponent. If b is a positive number,
then b x is a real number for every value of x. If, however, b is negative, then b x is
a real number for some values of x, but it is nonreal for other values of x. For
instance, ~24!5y3 is a real number (see Example 2b), but ~24!3y2 is a nonreal
complex number. Our primary interest in this chapter is the exponential function,
which requires a positive base. Therefore, the following properties of exponents
assume b and c are positive.
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Properties of exponents

If b and c are positive numbers and x and y are any real numbers, then

E1. b xb y 5 b x1y E2.
b x

b y 5 b x2y E3. ~b x!y 5 b xy

E4. ~bc!x 5 b xc x E5. Sb
cD

x

5
b x

c x .

Roots of negative numbersTECHNOLOGY TIP r

Different calculators handle roots of negative numbers differently. Check to
see how your calculator evaluates ~21!1y3. We know that 21 is the only real
root of x 3 5 21, so ~21!1y3 5 21. Your calculator may use 57yx or 57̀.
Remember parentheses for both 21 and the 1

3. If the display returned is 21,
then your calculator evaluates ~21!1y3 as you expect. Your calculator may
display an ERROR message (which means that your machine does not evaluate
roots of negative numbers), or you may get something like (.5, .866 . . .),
which means your calculator is giving you a complex number root. When b is
negative and the exponent is irrational, do not expect a real number result.

If your calculator doesn’t return what you expect, you have to be more
clever than your calculator. Remember that cube roots of negative numbers
are defined and that

~2b!1y3 5 2~b 1y3!.

To make certain that you know how to use the above definitions and to get your
calculator to evaluate exponential expressions, make certain that you can do every-
thing suggested in the first example.

cEXAMPLE 1 Exponential expressions Simplify and evaluate (in exact
form if possible, five-decimal place approximation otherwise):

(a) 3Ï264 (b) 42y3 (c) ~28!5y3 (d) 4Ï2

Solution

(a) 3Ï264 5 ~264!1y3 5 2~641y3! 5 2~26!1y3 5 2~22! 5 24.
We use the calculator to check by evaluating 264`~1y3!.

(b) 42y3 can be rewritten in other forms, as, for example, ~42!1y3 5
3Ï16,

but other equivalent forms are no easier to evaluate. In decimal form,
4^~2y3! < 2.51984 (be careful about parentheses).

(c) ~28!5y3 5 2~~23!5y3! 5 225 5 232.
(d) 4Ï2 < 7.10299. b

cEXAMPLE 2 Calculator evaluation Give a four-decimal place approxi-
mation to illustrate E2 and E3.

(a) 5p2Ï2 and 5py5Ï2 (b) 5p · Ï2 and ~5p!Ï2

Solution

(a) Evaluating 5p2Ï2 and rounding off to four decimal places gives 16.1208. Eval-
uating 5p and 5Ï2 and then dividing, also returns 16.1208.

(b) Rounding to four decimal places, both 5p · Ï2 and ~5p!Ï2 are given by the
calculator as 1274.7996. b



pg198 [V] G2 5-36058 / HCG / Cannon & Elich cr 11-27-95 MP1

198 Chapter 4 Exponential and Logarithmic Functions

cEXAMPLE 3 Getting rid of negative exponents Simplify. Express the
result without negative exponents.

(a) ~x22y 3!22 (b)
x22 2 4x21 2 5

5x 2 1

Solution

(a) ~x22y 3!22 5 ~x22!22~y 3!22 5 x 4y26 5 x 4S 1
y 6D 5

x 4

y 6 .

(b)
x22 2 4x21 2 5

5x 2 1
5

1
x 2 2

4
x

2 5

5x 2 1
5

1 2 4x 2 5x 2

x 2

5x 2 1
5

~1 2 5x!~1 1 x!

x 2~5x 2 1!

5 2
x 1 1

x 2 . b

cEXAMPLE 4 Rationalize denominator Rationalize the denominator of
x 2 1

Ïx 1 1
.

Solution
Follow the strategy.

x 2 1

Ïx 1 1
5

~x 2 1!~Ïx 2 1!

~Ïx 1 1!~Ïx 2 1!
5

~x 2 1!~Ïx 2 1!

x 2 1
5 Ïx 2 1. b

cEXAMPLE 5 Disguised quadratic equation Solve the equation
2x22 1 7x21 2 4 5 0.

Solution
Follow the strategy.

x 2~2x22 1 7x21 2 4! 5 x 2 · 0 2 1 7x 2 4x 2 5 0

Factoring, ~2 2 x!~1 1 4x! 5 0. By the zero-product principle, the solutions are
2 and 21

4 . b

cEXAMPLE 6 Equating powers of 3 Solve the equation 32x11 2
27
3Ï9

5 0.

Solution
Follow the strategy.

27
3Ï9

5
33

3Ï32
5

33

32y3 5 332~2y3! 5 37y3

Therefore, the given equation is equivalent to

32x11 5 37y3.
In this form it is intuitively clear that the two exponents must be equal:
2x 1 1 5 7

3 . Thus the solution is 2
3 .

If we had been unable to express 27
3Ï9

as a simple power of 3, then the solution

of this problem would have had to await the techniques of Section 4.4. b

Strategy: (a) Use E4 first,
followed by E3, and sim-
plify. (b) First replace x22

by 1
x 2 and 4x21 by 4

x , then
simplify.

Strategy: Multiply numera-
tor and denominator by
Ïx 2 1 and simplify to get
rid of the radical in the de-
nominator.

Strategy: First get rid of
the negative exponents by
multiplying both sides by x 2,
then solve the resulting
quadratic equation.

Strategy: First express 27
3Ï9

as a power of 3, then use
properties of exponents.
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Rational Power Functions, x myn

In Chapter 3, our focus was on polynomial functions, which can all be expressed
as sums of power functions, x 0, x 1, x 2, x 3, . . . . With the definition of rational
exponents, it makes sense to consider graphs of rational powers of x, functions
of the form f ~x! 5 x myn, where m and n are positive integers (for a negative ex-
ponent, we would take the reciprocal). We have already looked at the graph of
y 5 Ïx 5 x 1y2, which we recognize as the inverse of the function f ~x! 5 x 2,
x $ 0.

There is a basic difference between graphs of even and odd powers of x. The
even powers form a family, all of whose graphs contain the points (21, 1), (0, 0),
and (1, 1). See Figure 1a. As the power increases, the graphs become progressively
flatter around the origin and then increase more and more steeply, as if a slightly
flexible parabola had been “jammed nose first” into the x- axis. None of these even
powers is one-one, but each is increasing if we restrict the domain to x $ 0. Thus
for even numbers n, restricting the domain to the nonnegative real numbers gives
a function y 5 x n, x $ 0 with an inverse function y 5 x 1yn, x $ 0. See Figure 1b.

The odd powers of x also form a family. All graphs contain the points
(21, 21), (0, 0), (1, 1). All odd power functions are increasing and hence one-
one. Therefore every odd power function y 5 x n has an inverse function y 5 x 1yn

that is also increasing, and the domain (and range) for every member of the family,
including inverses, consists of all real numbers. See Figure 2.

From the definition, x myn 5 ~x 1yn!m. Thus to graph y 5 x 2y3, we enter
Y 5 ~X`~1y3!!2 . The parentheses are critical to make sure that the calculator is graphing
what we intend. The graphs of several rational power functions are shown in
Figure 3 and are typical of such functions in general. The variations in shape
depend on the parity (odd or even) of m and n. Rather than trying to describe all
possible combinations, we suggest that you experiment and observe the patterns,
being careful with parentheses. See the following Technology Tip.

FIGURE 1

FIGURE 2
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TECHNOLOGY TIP r What your calculator may not show you

To graph rational power functions correctly, you need to be sure that you
know how your calculator handles such expressions. The graph of y 5 x 2y3

is shown in Figure 3a. The function is defined for all real numbers x and
has what is called a “cusp” at the origin, a sharp corner at a local minimum.
Without care, your calculator will almost surely not duplicate the graph in
Figure 3a. If you enter Y 5 X`2y3 ; you will probably get the parabola y 5 1

3 x 2.
Graphing Y 5 X`(2y3), you will get a function whose domain is the set of
nonnegative numbers. To get the graph in Figure 3a, you will probably have
to enter Y 5 (X`(1y3))2 . On the HP-38 and HP-48, even that function will
produce only the right half of the graph, the points where x $ 0. You simply
must recognize that the graph of the function contains more than the
calculator shows in that case.

cEXAMPLE 7 A shifted rational power function Describe the graph of
f ~x! 5 1 2 ~x 2 2!2y3 in terms of basic transformations of a rational power func-
tion. For what values of x is f increasing? Find all local extrema.

Solution
If g~x! 5 x 2y3, then the graph of y 5 ~x 2 2!2y3 is a horizontal shift of the graph of
g, 2 units right, and y 5 2 ~x 2 2!2y3 is a reflection of the shifted graph through the

FIGURE 3
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 3

(2, 1)

y = 1 – (x – 2)

[– 3, 6] by [– 3, 6]
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x-axis (tipping it upside down). Finally, the graph of f is obtained by shifting up 1 unit.
Graphing Y 5 1 2 ((X 2 2!`(1y3))2 gives a picture something like Figure 4. It is clear that
f is increasing on ~2`, 2! and that there is a local maximum at (2, 1). Because
g~x! 5 x 2y3 has a minimum at the origin, f has only the one local extremum. b

Beyond Calculator Precision

There are times when we need more precision than a calculator can display. If we
understand some basic principles, we may be able to do more than the calculator
alone can provide. The idea of one–one functions has some unexpected applica-
tions that are used a number of times in this chapter. For example, suppose
a2 5 b 2. What can we say about a and b? Because two numbers can have the same
square (as 22 5 ~22!2!, without more information, all we can say is that a 5 6b.
If, however, a2 5 b 2 and we know that both a and b are positive, then we can
conclude that a 5 b. We are using the fact that the function y 5 x 2 is a one–one
function on the limited domain where x $ 0. We use this idea in the next example.

cEXAMPLE 8 Do equal decimals imply equality? Which, if any, of the
following are equal?

a 5 Ï5 1 1 b 5 Ï5 1 Ï21 1 4Ï5 c 5
5702887
1762289

Solution
When we evaluate the three numbers by calculator, each shows the same display,
3.2360679775, so relying on the calculator alone, we would have to conclude that
the numbers are equal. Their appearance is so different, though, that we want more
confirmation.

For the first pair, a and b, we can get rid of some of the radicals by squaring.

a2 5 6 1 2Ï5 b 2 5 5 1 Ï21 1 4Ï5

These numbers still appear very different, but rather than squaring again immedi-
ately, we observe that it would be much easier to square b 2 2 5, so we subtract 5
from each and then square again.

~a2 2 5!2 5 ~1 1 2Ï5!2 5 1 1 4Ï5 1 20 5 21 1 4Ï5.

~b 2 2 5!2 5 21 1 4Ï5.

Since ~a2 2 5!2 5 ~b 2 2 5!2 and a2 2 5, b 2 2 5 are both positive, we have
a2 2 5 5 b 2 2 5, so a2 5 b 2, and finally, since a and b are positive, a 5 b.

Now, how about a and c? Since c is clearly a rational number, we might be able
to use the technique of Example 7 from Section 3.3 to show that a is an irrational
number. As an alternative, we use an approach that shows how to go beyond the
number of digits a calculator can display. We begin with the idea of squaring. Before
squaring, though, we subtract 1 from both a and c, and then we can clear fractions.
That is, we want to know if a 2 1 5 c 2 1, or if Ï5 5 3940598

1762289, and then if
~1762289Ï5!2 5 ~3940598!2. What the calculator shows for both is 1.55283125976E13.
That is, the display tells us only that each number equals 155283125976??; the last
two digits are not displayed. Here we use what we know about properties of
multiplication. While we cannot display the entire number, we can use the calcula-
tor for either the first digits or the last.

FIGURE 4
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39405982 ends ~. . . 598!2 5 . . . 7604, and

17622892 · 5 ends ~. . . 289!25 5 . . . 7605.

Putting the information together, we have

~1762289Ï5!2 5 15528312597605, and

~3940598!2 5 15528312597604.

We conclude that a 5/ c, so that a and b are equal to each other, but c is different
from either a or b. b

Exponential Functions

We assume the properties of real numbers that assure us that for any real number
x, the expression 5x is a positive real number, so the equation f ~x! 5 5x defines a
positive-valued function whose domain is R, called an exponential function. The
number 5 is the base of this exponential function, but any other positive number
(except 1) can be used as a base for an exponential function as well.

Definition: exponential function

An exponential function, base b, is any function that can be expressed in
the form

f ~x! 5 b x

where b is a fixed positive number ~5/ 1).

Graphs of Exponential Functions

Graphs of all exponential functions have one of essentially two different shapes,
depending on whether b . 1 or b , 1.

To get a feeling for the graphs when b . 1, we use the graphing calculator to
graph exponential functions for two different bases. See Figure 5. The graphs in
Figure 5 are drawn on the same axes, but we suggest that you graph each of the
same functions, preferably on different screens, or at least sequentially, to see how
similar they are. If the base b is a number near 1, then the curve is relatively flat;
as b increases, the curve y 5 b x rises more and more steeply to the right of the
y-axis.

The graphs of exponential functions when the base is a number less than 1 are
reflections through the y-axis of the kinds of curves in Figure 5. For example, if
f ~x! 5 3x, then for g~x! 5 ~1

3!
x, we have

g~x! 5 ~321!x 5 32x 5 f ~2x!,

so the graph of g is the reflection through the y-axis of the graph of f. See Figure 6
and graph a variety of such functions yourself. Again, when the base b is a number
near 1, the exponential curve is flatter, becoming steeper to the left of the y-axis as
b decreases toward 0.

Properties of Exponential Functions

The graphs in Figures 5 and 6 suggest some general properties of exponential
functions.

FIGURE 5
Exponential functions with

bases greater than 1

FIGURE 6
Exponential functions with

bases less than 1
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Properties of exponential functions

Suppose b is a positive number different from 1 and f ~x! 5 b x.

Domain: (2`, `) Range: ~0, `!
Intercepts: x-intercept points, none; y-intercept point (0, 1).
Asymptotes: the x-axis is always a horizontal asymptote.
If b . 1, then f is an increasing function;
if b , 1, then f is a decreasing function.

Every exponential function f is one-one and thus has an inverse function.

The Euler Number e and the Natural Exponential Function

It turns out, as we shall see, that in one very important sense, all exponential
functions can be considered as transformations of a single exponential function.
That being the case, we should be able to choose any particular exponential
function and use it as the exponential function, from which we can obtain all
others. As a matter of fact, however, nature has made a selection for us. There is
an important number just a little less than 3, denoted by e, which is the base of what
is almost universally called the natural exponential function, and denoted by

f ~x! 5 ex or f ~x! 5 exp~x!.

Justification for the name “natural” usually comes in a calculus course; for our
purposes, we simply state that all sorts of natural growth and decay phenomena are
most easily described in terms of ex.

The number e, sometimes called the Euler number, can be defined in many
different ways (see the Historical Note, “p and e,” Part I) and appears in as many
unexpected mathematical contexts as the number p . Your calculator is pro-
grammed to evaluate ex for real numbers x. The number itself is an irrational
number that has been calculated to many decimal places, the first twenty-five of
which are given by

e < 2.71828 18284 59045 23536 02875.

You should see what your calculator displays by evaluating e1 or EXP (1).
Since e is a number between 2 and 3, and much nearer 3, we would expect the

graph of natural exponential function to lie between the graphs of y 5 2x and
y 5 3x, closer to the latter, as can be seen in Figure 7. You should be able to draw
a calculator graph similar to Figure 7, using the built-in function key for ex, which
is paired on almost all calculators with the 57LN key. Use a decimal window and
trace along the curves to the point where x 5 1. Compare the y-coordinates at that
point. On the natural exponential function, you should see part of what your
calculator displays for e.

One of the ways to define the number e is as the limit of the function
f ~x! 5 ~1 1 1

x!
x as x increases without bound. That is, lim

xA`
~1 1 1

x!
x 5 e. The

expression ~1 1 1
x!

x appears when we compute compound interest on investments.
See “Compound Interest” formula in Section 4.5. We show how the graph of
y 5 ~1 1 1

x!
x is related to the number e in the next example.

FIGURE 7
Natural exponential function,

y 5 ex



(a)

g(x) = e

f (x) = (1 +     )
1
x

x

[0, 10] by [0, 6] [– 1, 20] by [0, 6]
(b)

y = e

f (x) = (1 +     )
x1

x
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HISTORICAL NOTE p A N D e, P A R T I

cEXAMPLE 9 The number e Draw calculator graphs of g~x! 5 e and
f ~x! 5 ~1 1 1

x!
x and describe what happens as x becomes large and positive.

Solution
We are not told how large x must be, so we may need to experiment with various
windows. Note first that g is a constant function, not an exponential function; g has
the same value, e, for every x, and the graph is a horizontal line. We enter Y1 5 e`1
and Y2 5 (1 1 1yX)`X and then choose a window. Since e is just a little less than 3, our
y-range should include 3, but we have little experience to guide us with the function
f. Fortunately, one of the advantages of a graphing calculator is that we can look
at a function in a particular window and explore different possibilities until we have
a view that gives us the information we need.

If we try @0, 10# 3 @0, 6# we get a graph like Figure 8a. It appears that the
graph of f is approaching the graph of g, that the line y 5 e is a horizontal

Leonhard Euler (Switzerland,
1707–1783) first used the letter e
for the base of natural logarithms; e
is often called Euler’s number.
Euler proved in 1737 that e is
irrational, 24 years before p was
shown to be irrational. Euler
discovered a relationship between p
and e that some thought to have
mystical significance:

epi 1 1 5 0, where i 5 Ï21.

The numbers p and e share another property.
Any number that is a root of a polynomial
equation with integer coefficients is called an
algebraic number. The set of algebraic numbers

includes all of the rational numbers
and some of the irrational numbers.
For example, Ï2 1 Ï6 is an
irrational number and it is also
algebraic since it is a root of
x 4 2 16x 2 1 16 5 0. Real
numbers that are not algebraic are
called transcendental numbers. It
was long suspected that p and e
might be transcendental, but not
until 1873 did Hermite (France)
prove the transcendence of e. Nine

years later, Lindemann (Germany) extended
Hermite’s result to include p (as well as many
numbers involving trigonometric and logarithmic
functions).

Leonhard Euler

FIGURE 8



[– 5, 5] by [– 3.5, 3.5]

y = e– x
y = x + 2

(– .44, 1.56)
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asymptote for the graph of f. Tracing to the right along f shows that the values of
f are getting closer to e. To see more of the graphs, we can expand the window. Fig-
ure 8b shows the view in @21, 20# 3 @0, 6#. To support our feeling that the graph
of f has a horizontal asymptote, we can return to the home screen and eval- uate f
at larger values of x. For example, f ~100! < 2.705, and f ~2000! < 2.7176. It
seems clear that f ~x! is approaching e as x gets large; it seems equally clear that
evaluating f is not a good way to approximate e with much accuracy. b

cEXAMPLE 10 Solve an exponential equation Draw calculator graphs of
f ~x! 5 e2x and g~x! 5 x 1 2 on the same screen. To two decimal places,

(a) find the coordinates of the point of intersection, and
(b) approximate the solution to the equation e2x 2 x 2 2 5 0.

Solution

(a) If we graph both functions on the same screen, we see something like Figure 9.
(Note that the graph of f has the same shape as the other exponential functions
in Figure 6.) When we zoom in on the point of intersection, and trace, we read
the coordinates as about (2.44, 1.56).

(b) The given equation is the same as f ~x! 2 g~x! 5 0, or f ~x! 5 g~x!. Thus the
one solution is the x-coordinate of the point of intersection, which we just
estimated as 20.44.

Alternative Solution Many graphing calculators have a solve routine that
will find the desired intersection for the first two functions, or the zero of the second
function. We invite you to investigate your calculator and to become familiar with
any such built-in routines. In this case, the desired x-coordinate is approximately
20.44285440100. b

Basic Transformations and Exponential Functions

Basic transformations apply to the family of exponential functions just as they do
all functions, but some of the properties of exponents and the way we write
exponential functions have unexpected consequences when we explore transforma-
tions. We list below some of the relations to keep in mind as you graph and work
with exponential functions.

FIGURE 9
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Basic transformations and the family of exponential functions

f ~x! 5 ex, c . 0

Vertical Shifts f ~x! 6 c 5 ex 6 c
Horizontal Shifts/Dilations f ~x 6 c! 5 ex6c 5 ex · e6c 5 kex (because
ec and e2c are constants). Thus every horizontal shift is the same as some
vertical dilation.

Reflections x-axis: 2 f ~x! 5 2ex y-axis: f ~2x! 5 e2x

This is why the graphs in Figure 6 all have the same basic shape; each is the
reflection of one in Figure 5.

Horizontal Dilation/Change of Base f ~cx! 5 ecx 5 ~ec!x, an exponential
function with base ec. This is why every exponential function is really a
transformed natural exponential function.
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Although every horizontally-dilated natural exponential function can be con-
sidered as an exponential function with another base, the last statement in the
preceding box (that any exponential function is a transformed natural exponential
function) is less obvious. We get a better feeling for such relationships in the next
couple of examples.

cEXAMPLE 11 Recognizing transformations Simplify the equations that
describe functions f and g. Describe the relation of each to the natural exponential
function and draw graphs of both f and g on the same screen as y 5 ex.

f ~x! 5
e2x 2 ex

ex , g~x! 5
ex

e2

Solution

f ~x! 5
e2x 2 ex

ex 5
e2x

ex 2
ex

ex 5 ex 2 1, and g~x! 5 ex · e22 5 ex22.

In simplified form, we can recognize that the graph of y 5 f ~x! is a vertical shift
of y 5 ex. The graph of y 5 g~x! may be considered either as a horizontal shift (2
units right) or as a vertical dilation (by a factor of e22). Both graphs are shown in
Figure 10. b

Changing Base for Exponential Functions

Every exponential function may be considered as a horizontal dilation of the
natural exponential function. Thus, by an appropriate choice of c in y 5 ecx we can
get an equivalent formula for y 5 b x. To have ecx 5 b x, we need c such that ec 5 b.
In the next section we introduce the natural logarithmic function, ln x, and see that
c 5 ln b. For now, we illustrate the change in an example.

cEXAMPLE 12 Changing base

(a) Show that e0.69315 < 2. Is e0.69315 larger or smaller than 2?
(b) Draw graphs of f ~x! 5 e0.69315x and g~x! 5 2x on the same screen. Which

graph is higher to the right of the y-axis?

Solution

(a) Evaluating e`0.69315, the calculator displays 2.00000563889, so e0.69315 . 2, but
not by very much. We would certainly expect the graphs of y 5 2x and
y 5 e0.69315x to be very close to each other. The graphs are so close together that
we cannot see two graphs at all; both share the same y-pixels in most reason-
able windows. In fact, when x 5 10, f ~x! < 1024.03, and g~x! 5 1024. By the
time x 5 20, f ~x! < 1,048,635.13, and g~x! 5 1,048,576. To the right of the
y-axis the graph of f is always higher than the graph of g. b

EXERCISES 4.1

Check Your Understanding

Draw a graph whenever it may be helpful.
Exercises 1–5 True or False. Give reasons.

1. For every real number x,
3ÏÏ64x 6 5 2x.

2. For every real number x, ~x 2 2!0 5 1.

3. For every negative number x, Ï~2x!2 5 2x.

4. ~22!248 1 ~21!215 . ~22!248.

5. The function f ~x! 5 1 1 22x is increasing.

FIGURE 10
Translations of

y 5 ex
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Exercises 6–10 Fill in the blank so that the resulting
statement is true.

6. The number of zeros for f ~x! 5 ex 2 x 2 2 is .

7. The number of roots of 22x 2 x 5 2 is .

8. The graphs of y 5 e0.25x and x 1 y 5 2 intersect at a
point in Quadrant .

9. The graphs of y 5 e2x 2 2 and x 1 y 1 4 5 0 inter-
sect at a point in Quadrant .

10. The graphs of y 5 ex 1 2 and y 5 4 2 x 2 intersect in
Quadrant(s) .

Develop Mastery

Exercises 1–3 Simplify. Give answer in exact form.

1. (a)
321 1 222

621 (b) ~223 1 421!23

2. (a) S321 · 22

621 D21

(b) ~Ï8 2 Ï2!24

3. (a)
75y2 2 633y2

Ï7
(b)

Ï105~Ï35!21

3

Exercises 4–6 Decimal Approximations Give a calcu-
lator approximation, rounding off to four significant digits.

4. (a) ~23!5y3 (b) ~Ï5 2 1!p

5. (a) ~1 1 p!22y5 (b) ~Ï2 1 Ï5!21y2

6. (a) 5Ï5 (b) ~21.47!2y3

Exercises 7–8 Rationalize Rationalize the denominator
and simplify.

7. (a)
8

Ï5 1 1
(b)

x 2 4

Ïx 2 2

8. (a)
6

Ï3 1 1
(b)

x 2 2 9x

Ïx 1 3

Exercises 9–14 Simplify.

9. Ï1 2 ~1 1 x!~1 2 x!

10.
x 2~x22 2 2x21 1 1!

x 2 1

11. x 5y2x23y2 12. 4223x 8x22

13.
27x21

9123x 14. SÏx 1
1

Ïx
D2

2
1
x

Exercises 15–22 Solution Set Find the solution set.

15. x22 2 3x21 1 2 5 0 16. x22 2 2x21 1 1 5 0
17. 2x22 2 5x21 5 0 18. 4x21 2 4Ï2 5 0
19. ~x 2 2 1!0 5 1 20. ~x 2 2 2x 2 3!0 5 1
21. 24 · 32x11 5 64 22. 23 · 52x21 5 103

Exercises 23–26 Does the equation define an exponential
function? Give reasons.

23. y 5 p x 24. y 5 ~Ï3 2 1!x

25. y 5 ~1 2 Ï2!x 26. y 5
e2x

ex

Exercises 27–28 Function Evaluations Give results
rounded off to two decimal places.

27. F~x! 5 xex; find
(a) F~21! (b) F~Ï2!

28. F~x! 5 ex 1 e2x; find
(a) F~21! (b) F~Ï5!

Exercises 29–30 Determine which of the two numbers is
greater.

29. 3Ï3 or ~Ï3!3 30. e3 or 3e

Exercises 31–36 Graphs (a) Draw a graph and use it
to determine the range of the function. Note that 23x means
2~3x!, not ~23!x. (b) Is the function increasing, decreas-
ing, or neither?

31. f ~x!5 23x 32. g~x! 5 232x

33. f ~x! 5 ex11 34. g~x! 5 ex 1 1

35. f ~x! 5 1 2 ex 36. f ~x! 5 ~Ï2 2 1!x

Exercises 37–40 Graphs (a) From the graph of
f ~x! 5 ex, describe the translations and/or reflections re-
quired to get the graph of g. (b) Draw graphs of f and g
on the same screen. Does the graph of g support your de-
scription in part (a)?

37. g~x! 5 2ex 38. g~x! 5 ex22

39. g~x! 5 ex 1 2 40. g~x! 5 e2x 1 1

Exercises 41–46 Solution Set Find the solution set.
Solve algebraically and then check graphically.

41. x 2 · 2x 2 4 · 2x 5 0 42. 2x 5 6 2 8 · 22x

43. 22x21 42x15 5 82x13 44. ~2x!2 2 2~2x! 2 8 5 0

45. x 2e2x 2 5e2x . 0 46. 2x $ 6 2 8 · 2x

Exercises 47–48 Simplify the equation describing f and
then draw a graph. Use translations where appropriate.

47. f ~x! 5 e2ex 48. f ~x! 5 1 1
2x

8

Exercises 49–51 End Behavior In example 9 we con-
sidered the end behavior of y 5 ~1 1 1

x!
x and concluded

that as x A `, y A e. Draw calculator graphs of f and g on
the same screen and observe what happens to f ~x! as x A `.

49. f ~x! 5 ~1 1 2
x!

x, g~x! 5 e2;
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50. f ~x! 5 ~1 2 1
x!

x, g~x! 5 e21;

51. f ~x! 5 ~1 1 1
x!

2x, g~x! 5 e2;

Exercises 52–53 Is b equal to c, less than c, or greater
than c? Calculator evaluation is not sufficient to establish
equality. (Hint: See Example 8.)

52. b 5 Ï3 1 Ï5 c 5 Ï8 1 2Ï15

53. b 5 1 1 Ï3 c 5 Ï3 1 Ï13 1 4Ï3
54. Large Numbers, Exact Form

(a) Evaluate Ï3 and 3650401
2107560 and see that the decimal

approximations agree to the capacity of your calcu-
lator.

(b) To show that these two numbers are not equal, let
b 5 Ï3 ~2107560! and c 5 3650401, and evalu-
ate b 2 and c 2 in exact form. You should get two 14
digit numbers that differ by 1. See Example 8.

55. What is the smallest integer that is greater than
~1 1 Ï2!4? than ~Ï2 1 Ï3!5?

56. If f ~x! 5 ~x x!x and g(x) 5 ~x!~xx!, which number is
larger
(a) f (2) or g(2)? (b) f ~3! or g~3!?
(c) f ~0.5! or g~0.5!?

57. If f ~x! 5 1 1 2x, then evaluate
1

f ~x!
1

1
f ~2x!

and sim-

plify your answer.

58. If f ~x! 5 3x, show that
(a) f ~u 1 v! 5 f ~u! · f ~v!
(b) f ~2x! 5 @ f ~x!#2 (c) f ~3x! 5 @ f ~x!#3.

59. Rational Exponents, Domain, Graphs For f ~x! 5
x 4y5,
(a) Determine the domain. To support your answer,

try drawing graphs separately by entering
(i) Y 5 ~X`~1 4 5!!`4

(ii) Y 5 X`~4 4 5! (iii) Y 5 ~X`4!`~1 4 5!.
(b) Which graphs support your answer in part (a)?

60. Repeat Exercise 59 for f ~x! 5 x 3y5.

61. Composition For f ~x! 5 x 4 and g~x! 5 x 1y2, deter-
mine the domain of (a) f 8 g and (b) g 8 f.
As a check, draw graphs of Y 5 ~X`~1 4 2!!`4 for (a) and
Y 5 ~X`4!`~1 4 2! for (b). Do the graphs agree with your
answers in (a) and (b)?

62. Repeat Exercise 61 for f ~x! 5 x 5 and g~x! 5 x 1y3.

Exercises 63–64 Transformations of Rational Power
Function (a) Describe the graph of f in terms of basic
transformations of the graph of a rational power function.
(b) What are the zeros of f ? (c) Find the coordinates of any
local extrema. Check graphically. See Example 7.

63. f ~x! 5 1 2 ~x 1 2!2y3 64. f ~x! 5 ~x 2 2!4y3 2 1

65. Explore Consider the family of functions f ~x! 5 b 0.2x

where b . 0 and b 5/ 1.
(a) Experiment with several values of b and draw

graphs. Describe what you observe and the role that
b appears to play.

(b) For what integer values of b do the graphs pass
between the points P~4, 3! and Q~4, 6!?

66. Repeat Exercise 65 for f ~x! 5 b20.2x, and P~24, 3!,
Q (24, 6).

67. Explore Consider the family of functions f ~x! 5
~0.5!bx where b is a positive constant. Repeat the in-
structions for Exercise 65, with P~2, 2! and Q~2, 8!.

68. Repeat Exercise 67 for f ~x! 5 ~0.5!2bx and P~22, 2!,
Q~22, 8!.

69. (a) Draw graphs of y1 5 2x, y2 5 3x, y3 5 4x on the
same screen. Use @22, 3# 3 @21, 10#.

(b) For what values of x is 2x . 3x . 4x?
(c) Describe how the graph of y 5 2.5x would fit into

the picture. Draw it.

70. Functions f and g are given by f ~x! 5 2x 1 22x,
g~x! 5 x 2 1 2.
(a) Are f and g even functions?
(b) Draw a graph of f using @25, 5# 3 @0, 5#. Is the

graph a parabola?
(c) Include the graph of g on the same screen. Are the

graphs identical? At how many points do the graphs
intersect?

(d) Change the range to @26, 6# 3 @0, 40#. Now how
many points of intersection can you see? Find these
points (1 decimal place).

71. Function f is given by f ~x! 5 2x 2 22x.
(a) Is f an odd function? What symmetry does the

graph have?
(b) Draw a graph to see if it supports your answer in

part (a).
(c) Does f appear to be a 1–1 function?

Exercises 72–73 Intersections Determine the coordi-
nates of the point(s) of intersection of the graphs of f and g
( 2 decimal places). See Example 10.

72. f ~x! 5 2x, g~x! 5 x 1 2

73. f ~x! 5 3x, g~x! 5 x 1 2

74. In what quadrants do the graphs of y 5 e0.5x and
y 5 3 1 4x 2 x 2 intersect?

75. Solve the equation e0.5x 1 x 2 2 4x 2 3 5 0, (2 deci-
mal places). See Exercise 74.

76. The volume V of a sphere of radius r is given by
V 5 4pr3

3 .
(a) Solve for r and get an equation that gives r as a

function of V.
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(b) Use the results in part (a) to find the radius of a
sphere whose volume is 148.4 cubic centimeters. Give
the result rounded off to four significant digits.

77. A container in the form of a right circular cone with its
vertex at the bottom has a height of 16 cm. There is a
control valve at the vertex through which the container
can be emptied. When the height of the water in the
container is h cm ~0 # h # 16! and the valve is
opened, it will take T seconds to empty the container,
where T is given by

T 5 0.04@165y2 2 ~16 2 h!5y2#.

How long will it take to empty the container, when h is
equal to (a) 12 cm (b) 6 cm (c) 3 cm?

Exercises 78–79 Revenue A demand function p that de-
termines the unit price (in dollars) of a certain product is
given, where x is the number of units sold. (a) Calculate p
when 1200 units are sold. (b) Find the corresponding rev-
enue R (where R 5 x · p) when 2000 units are sold.

78. p 5 400 2 0.4~20.003x!

79. p 5 300S1 2
5

5 1 220.003xD
80. Population Model It is predicted that the population

P of Brouwer’s Ferry is given by P 5 2000~20.03t!,
where t is the number of years after 1990. What does
this model predict for the population at the end of
(a) The year 1996? (b) The year 2000?
(c) The year 2020?

Exercises 81–84 Huge Numbers and Estimation It is
often difficult to get a good feeling for the size of numbers
that appear in the daily news. For instance, the size of the
federal debt ($5 trillion) is so huge that we have little basis
for comparison, but working with more familiar numbers
may help.

81. At the end of 1995 the federal debt reached $5.3 trillion
and was increasing at the rate of $13,000 per second.
Assume that the debt continues to increase at this rate.

4.2 L O G A R I T H M I C F U N C T I O N S

A piece of advice: do examples. Do a million examples. I think there are
shameful cases of people making (I’ll even say) silly and reckless conjectures
just because they didn’t take the trouble to look at the first few examples. A
well-chosen example can teach you so much.

Irving Kaplansky

In the preceding section we observed that every exponential function has an
inverse. The inverse of an exponential function is called a logarithmic function.
In this section and the next we study properties of such functions.

(a) What will the debt be at the end of 1996?
(b) During what year will the debt reach $8 trillion?

82. If you can stack 250 dollar bills per inch, how many
miles high would a stack eight trillion (8 3 1012) dol-
lars be? (Hint: The distance from the earth to the moon
is approximately 240,000 miles.)

83. (a) Suppose you are rich, extremely rich, and would
like to give away 5 trillion dollars by giving one
thousand dollars every minute. How long would it
take? Express your answer in reasonable units such
as days, months, or years. First make a guess.

(b) The federal debt is more than 5 trillion dollars.
Write a paragraph describing your feelings about a
debt of that magnitude.

84. In 1994 the journal Science reported the discovery of
the large prime number, 2859433 2 1. This number is a
side benefit of a program developed by David Slowinsk
and Paul Gage to debug supercomputers. If this number
were written out in our usual base 10 notation, it would
have 258,716 digits compared to the previous record
holder of 227,832 digits. Estimate the number of pages
it would take to print out P. (Assume as many charac-
ters on a page as on a typical page of this book.)

85. Looking Ahead to Calculus Using tools of calculus
we can show that the natural exponential function
f ~x! 5 ex can be approximated by certain polynomial
functions such as

g~x! 5 1 1 x 1
x 2

2
1

x 3

6
1

x 4

24
1

x 5

120

1
x 6

720
1

x 7

5040
.

Draw graphs of f and g on the same screen using
@0, 5# 3 @21, 100#. Trace and use the arrow keys to
move from one graph to the other and find the values of
x for which the two y values agree in the first two deci-
mal places.



1 2

1

2

– 1– 1

– 2

– 3

– 2– 3 3 4 5

3

4

5

(1, 3)

(0, 1)

(1, 0)

(3, 1)

y

x

y = x
y = 3x

y = log3 x
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In Section 2.7 we developed a useful algorithm to find equations for inverse
functions. Basically, we write y 5 g~x! and interchange the x and y values. If we
can solve the resulting equation for y, the result gives the inverse of the function g.
Unfortunately, this algorithm depends on solving an equation for y, which is not
always an easy task.

The Inverse of an Exponential Function

Consider the exponential function f ~x!53x. Since f is one–one, we know that it has
an inverse. Applying the algorithm, we write y 5 3x, interchange variables, x 5 3y,
and we stop; we have no way to solve for y. To describe the value of y verbally:

y is the power to which 3 must be raised to get x. (1)

Such a rule describes a function, but it is not easy to apply. Without something
more, we have no way to find the power of 3 that gives 2, for example, even though
the graph of y 5 3x indicates that there is exactly one such number.

We introduce a new name and notation for the function described in (1):

y 5 log3 x

That is, log3 (read “log base 3”) is the name of a function, the inverse of the
exponential function f ~x! 5 3x. We usually write log3 x without parentheses around
x unless needed for clarity.

If f ~x! 5 3x, then f 21~x! 5 log3 x, where log3 x is the power to which 3
must be raised to get x.

cEXAMPLE 1 Logarithmic evaluation Evaluate (a) log3 1, (b) log3 Ï3,
and (c) log3 9.

Solution

(a) Recall that log3 1 is the power to which we must raise 3 to get 1. Since 30 5 1,
log3 1 is 0. We write log3 1 5 0.

(b) In the same way log3 Ï3 is the power of 3 that gives Ï3. Since Ï3 5 31y2,
then log3 Ï3 5 1

2 .
(c) Similarly, since 32 5 9, log3 9 5 2. b

We used our knowledge of some of the powers of 3 to find the values in
Example 1, but we need a calculator to evaluate numbers such as log3 2. In Sec-
tion 4.4, we will learn how to find that log3 2 < 0.6309297536. Check this by using
your calculator to evaluate 30.6309297536.

Graph, Domain, and Range of log3 x

In Section 2.7 we discussed several key ideas about the graph, domain, and range
of an inverse function. Since the number pairs that define a function are inter-
changed in defining the inverse, the graph of f 21 is the reflection of the graph of f
through the line y 5 x; the domain and range are also interchanged accordingly.
We graphed y 5 3x in the preceding section (Figure 5). We can use that graph to
draw the graph of y 5 log3 x (see Figure 11), and we can easily read the domain
and range of both functions from the graphs. Every point pair ~u, v! from y 5 3x

gives a corresponding point pair ~v, u! for the inverse function, y 5 log3 x.

When I was a junior,
Nowlan was giving a
course in the theory of
equations. He watched for
the capable students and
encouraged them. He
would give out special
problems, and if you solved
those he would give you
more special problems. . . .
He got me to explain,
without notes, the nature
of that long proof. Well, it
was rather fun. . . .

Ivan Niven

FIGURE 11
The graph of

y 5 log3 x

is reflection of the graph of
y 5 3x in the line y 5 x.
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Logarithmic Functions

There is nothing special about the base 3 in the discussion above. The exponential
function f ~x! 5 3x has an inverse function, namely the logarithmic function for
base 3, denoted by log3. Just as there is an exponential function for every positive
base b other than 1, there is a corresponding logarithmic function for every such
base.

Definition: logarithmic functions

Suppose b is any positive number other than 1. The exponential function
f ~x! 5 b x has an inverse function called the logarithmic function,
f 21~x! 5 logb x, where logb x is the power to which b must be raised to get x,
that is, b logb x 5 x.

Since each logarithmic function is the inverse of an exponential function,
knowledge of exponential functions and their graphs implies much about the do-
mains and ranges of logarithmic functions. Since b 0 5 1 and b 1 5 b, the definition
gives two values that are common to all logarithmic functions, as well as a very
helpful equivalence.

Domain and range: special values and equivalence

The domain of logb is $x | x . 0%. The range of logb is R.

logb 1 5 0 and logb b 5 1. (2)

y 5 logb x is equivalent to b y 5 x. (3)

cEXAMPLE 2 Converting logarithms to powers Evaluate
(a) log5 25, (b) log10 0.01, (c) log0.5 2Ï2.

Solution

(a) If y 5 log5 25, then by (3), 5y 5 25 5 52, so y is 2. Thus log2 25 5 2.
(b) Let y 5 log10 0.01. By (3), 10y 5 0.01 5 1022. Hence y is 22, or

log10 0.01 5 22.
Strategy: Use equivalence (c) Let y 5 log0.5 2Ï2. By (3), ~0.5!y 5 2Ï2. Since 2Ï2 5 23y2 and
(3) and knowledge of 0.5 5

1

2
5 221,

powers.
~221!y 5 23y2 or 22y 5 23y2

so y is 2
3

2
. Thus, log0.5 2Ï2 5 2

3

2
. b

Inverse Function Identities

In Section 2.7 we observed that, if a function f has an inverse, then

f ~ f 21~x!! 5 x for every x in the domain of f 21, and

f 21~ f ~x!! 5 x for every x in the domain of f.

For the exponential function f ~x! 5 b x and its inverse f 21~x! 5 logb x, this gives
the following inverse function identities.

Inverse function identities

b logb x 5 x for every x . 0 (4)

logb b x 5 x for every real number x (5)
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cEXAMPLE 3 Exact form evaluation Evaluate
(a) 7log7 5 (b) log3 ~log5 5!

Solution

(a) From Equation (4), where b is 7 and x is 5, 7(log7 5) 5 5.
(b) From Equation (2), log5 5 5 1. Therefore, log3 ~log5 5! 5 log3 1. Also by

Equation (2), log3 1 5 0, so log3 (log5 5! 5 0. b

cEXAMPLE 4 Inverse function identities Simplify. Give the values of x
for which the result is valid.

(a) 3log3~x22! (b) log5 5Ïx

Solution

(a) From Equation (4),

3log3~x22! 5 x 2 2 for x 2 2 . 0.

Thus, 3log3~x22! is identically equal to x 2 2 when x is greater than 2, but it is
undefined if x is less than or equal to 2.
(b) From Equation (5),

log5 5Ïx 5 Ïx for every x $ 0. b

cEXAMPLE 5 Logarithmic to exponential form Solve the equation
log3~x 2 2 3x 1 5! 5 2.

Solution
Follow the strategy.

x 2 2 3x 1 5 5 32, x 2 2 3x 2 4 5 0, ~x 2 4!~x 1 1! 5 0

The solutions are 21 and 4. Exercise 21 asks you to verify that 4 and 21 are
solutions of the equation log3~x 2 2 3x 1 5! 5 2. b

cEXAMPLE 6 Domain of logarithmic functions Determine the domains
of f and g.

(a) f ~x! 5 log3~x 2 2 2x 2 3! and (b) g~x! 5 log3 5x

Solution
It is important to understand that any logarithmic function can be evaluated only
at positive numbers. Follow the strategy.

x 2 2 2x 2 3 . 0, ~x 1 1!~x 2 3! . 0.

(a) The solution set is $x _ x , 21 or x . 3%. Consequently, the domain of f is
$x _ x , 21 or x . 3%, or in interval notation, ~2`, 21! < ~3, `!.

(b) Since 5x is positive for every real number x, log3 5x is defined for any real
number x; the domain of g is R. b

Graphs of Logarithmic Functions

For any given base b, the graph of y 5 logb x is the reflection about the line y 5 x
of the graph of y 5 b x. It is helpful to become very familiar with the shapes of the
graphs of the exponential and logarithmic functions. For b . 1, the general shapes

Strategy: Use Equation (3)
to write the given equation
in exponential form, then
solve the resulting quadratic
equation.

Strategy: For each part,
find where the argument is
positive; that is, for f , find
the solution set for
x 2 2 2x 2 3 . 0. For g,
solve 5x . 0.
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of y 5 b x and y 5 logb x are shown in Figure 12. For 0 , b , 1, the graphs of
y 5 b x and y 5 logb x look like those shown in Figure 13.

cEXAMPLE 7 Graphs of logarithmic functions Draw a graph of
(a) y 5 log2 x and (b) y 5 log0.5 x.

Solution

(a) The graph of y 5 log2 x is a reflection about the line y 5 x of the graph of
y 5 2x. See Figure 14a.

(b) Reflect the graph of y 5 ~0.5!x about the line y 5 x to get the graph of
y 5 log0.5 x. See Figure 14b. b

FIGURE 14

cEXAMPLE 8 Shifting logarithm graphs Use translations to draw a graph
of (a) y 5 log2 x 2 1 and (b) y 5 log2~x 2 1!.

Solution

(a) Following the strategy, translate the graph of y 5 log2 x shown in Figure 14a
one unit down to get the graph of y 5 log2 x 2 1.

(b) The graph of y 5 log2~x 2 1! is a horizontal translation of the graph of
y 5 log2 x one unit to the right. Both graphs are shown in Figure 15. b

Strategy: If f ~x! 5 log2 x,
then log2 x 2 1 5 f ~x! 2 1
and log2~x 2 1! 5 f ~x 2 1!.

FIGURE 12 FIGURE 13
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y = log2 x
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cEXAMPLE 9 Solving an inequality graphically Find the solution set for
the inequality log2 x 2 1 , 0.

Solution
Let y 5 log2 x 2 1. Find all values of x for which y is negative. From the graph in
Figure 15, when x is between 0 and 2, y is negative. Therefore, the solution set is
$x _ 0 , x , 2%, or in interval notation, (0, 2). b

Calculator Graphs of Logarithmic Functions

Up to this point we have not used the calculator to draw graphs of logarithmic
functions. There is an exponentiation key on all calculators, usually labeled 57̂
or 57y x , so that we can enter any desired base b and graph Y 5 b `X . We have no
corresponding generic logarithm key with which we can specify the base and graph
Y 5 LOG b X.

There are two ways around this limitation. One way, using parametric equa-
tions as we learned in Chapter 2, can be used to graph any function and its inverse.
More directly, every graphing calculator has a key labeled 57LN , almost always the
same key as the one activating the natural exponential function, 57e x .

The inverse of the natural exponential function is called the natural logarithm
function. For consistency, we should denote this inverse in the same way as the
inverses of the other exponential functions:

natural exponential function: y 5 ex;

natural logarithm function: y 5 loge x.

History, however, is seldom consistent. Logarithms were invented for computa-
tional purposes (see the Historical Note in Section 4.4). It took a long time before
the functional relationships were recognized and we learned how extremely impor-
tant they are for purposes having nothing to do with computations. By historical
accident, the notation log x (with no base indicated) is usually reserved for the
common logarithm function, with base 10, the inverse of the exponential function
y 5 10x. The natural logarithm function is denoted ln.

Calculator logarithmic function notation

Natural logarithm function ln x 5 loge x (inverse of ex)
Common logarithm function log x 5 log10 x (inverse of 10x)

FIGURE 15
Translations of y 5 log2 x



[– 5, 5] by [– 3.5, 3.5]
(a)

(.1, – 1)
(1, 0)

(0, 1)

y = x

y = 10x y = log x

[– .4, .4] by [– 2, – .6]
(b)

(.1, – 1)

y = log x

[– 5, 5] by [– 3.5, 3.5]

y = x

y = ex

y = ln x

[– 5, 5] by [– 3.5, 3.5]

y = x
y = f (x)

y = g(x)

(0, 2)

(2, 0)
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cEXAMPLE 10 Inverse pairs In the decimal window plot the graph of
y 5 x together with (a) y 5 log x and y 5 10x (b) y 5 ln x and y 5 ex.

Solution

(a) The calculator graphs are shown in Figure 16. It looks on the screen as if the
graph begins at the point (0, 21). If we trace, however, the calculator shows
that the function f ~x! 5 log x is undefined at x 5 0 because, as we know, the
domain of any logarithm function is the set of positive numbers. The first point
on the graph in the decimal window is (.1, 21):

f ~.1! 5 fS 1
10D 5 f ~1021! 5 log10 1021 5 21.

FIGURE 16

Since the x-axis is a horizontal asymptote for the graph of y 5 10x, when we
interchange variables for the inverse function, the y-axis must be a vertical
asymptote for the graph of y 5 log x, and if we zoom in near ~0, 21!, we can
see some of the asymptotic behavior. See Figure 16b.

(b) The calculator graphs of y 5 ln x, y 5 x, and y 5 ex show clearly that ln x
and e x are inverse functions. See Figure 17. Since e , 10, the graph of y 5 ex

rises less steeply than the graph of y 5 10x, and the inverses are similarly re-
lated; the graph of y 5 ln x is not nearly as flat as the graph of y 5 log x. b

Each basic transformation of exponential functions has a corresponding trans-
formation for logarithmic functions. A horizontal shift of the natural exponential
function corresponds to a vertical shift of the natural logarithm, as shown in the
next example.

cEXAMPLE 11 Transformations and inverses Graph y 5 x, f ~x! 5
ex 1 1, and g~x! 5 ln~x 2 1! on the same screen. Describe the relationship be-
tween the graphs of f and g.

Solution
Enter Y1 5 X, Y2 5 e`X 1 1, and Y3 5 LN(X 2 1). The calculator graphs are shown in Fig-
ure 18. It appears that the graph of y 5 g~x! is a reflection of the graph of y 5 f ~x!
in the line y 5 x. Since the two graphs are symmetric about the line y 5 x, the

FIGURE 17

FIGURE 18
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functions must be inverses of each other, which we can verify by the inverse
function identities:

f ~g~x!! 5 f ~ln~x 2 1!! 5 e ln~x21! 1 1 5 ~x 2 1! 1 1 5 x

g~ f ~x!! 5 g~ex 1 1! 5 ln~~ex 1 1! 2 1! 5 ln ex 5 x.

The graph of y 5 f ~x! is a vertical shift of the graph of y 5 ex, 1 unit up. When
we interchange the roles of the variables, a 1 unit shift upward should become a
horizontal shift of the graph of y 5 ln x, 1 unit right, which is what we see as the
graph of y 5 ln~x 2 1!. b

Just as each exponential function can be viewed as a horizontal dilation of the
natural exponential function, we would expect each logarithmic function to be
obtainable as a vertical dilation of the natural logarithm function. We discuss that
in Section 4.4. For now, we can use parametric equations to graph logarithmic
functions with different bases.

cEXAMPLE 12 Graphing logarithm functions parametrically Graph
f ~x! 5 3x, y 5 x, and g~x! 5 log3 x on the same screen, using the parametric mode
of graphing.

Solution
With the calculator in parametric mode, we enter X1 5 T,Y1 5 3`T for f , X2 5 T, Y2 5 T for
the line y 5 x, and X3 5 3`T,Y3 5 T for the inverse of f , which we know to be the
function g. Graphs are shown in Figure 19. b

EXERCISES 4.2

Check Your Understanding

Exercises 1–5 True or False. Give reasons.

1. log3 7 , log2 7 (Hint: Think exponents.)

2. log5 p , log2 p

3. If f ~x! 5 log2 x, then f 21~x! 5 2x.

4. The domain of g~x! 5 log2 x 2 is the set of all real num-
bers.

5. The domain of g~x! 5 log2~x 2 1 1! is the set of all real
numbers.

Exercises 6–10 Fill in the blank so that the resulting
statement will be true.

6. The graphs of y 5 22x and x 1 y 5 3 intersect in
Quadrant(s) .

7. The graphs of y 5 32x and x 2 y 1 3 5 0 intersect in
Quadrant(s) .

8. The number of points of intersection of the graph of
y 5 log2 x and y 5 4 2 x 2 is .

9. A point on both of the graphs of y 5 2x and y 5 3x is
.

10. The graphs of y 5 2ln x and y 5 ex22 intersect in
Quadrant .

Develop Mastery

Exercises 1–2 Exponents to Logarithms Write the equa-
tion in equivalent logarithmic form with appropriate base.

1. (a) 53 5 125 (b) 422 5
1

16
(c) 3x21 5 5

2. (a) ~0.5!2 5 0.25 (b) 721 5
1
7

(c) 5x13 5 7

Exercises 3–6 Logarithms to Exponents Express the
equation in exponential form and then solve for y.

3. (a) y 5 log4 16 (b) y 5 log4~
1

16!

4. (a) y 5 log8 512 (b) y 5 log8~
1

64!

5. (a) y 5 logÏ3~
1
3! (b) y 5 logÏ3 ~9Ï3!

6. (a) y 5 logÏ5 Ï5 (b) y 5 logÏ5 ~ 1
25!

Exercises 7–11 Exact Form Evaluation Evaluate.
Express the result in exact form.

7. (a) log3 1 (b) loge
3Ïe

8. (a) log5 5 (b) log4 16

9. (a) e log5Ï5 (b) 7log3 1

10. (a) 5log5Ï3 (b) 3log10 10

11. (a) 4log2 4 (b) 7log7 17

FIGURE 19

y 5 3x; Hx 5 t

y 5 3t

y 5 log3 x; Hx 5 3t

y 5 t
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Exercises 12–15 Simplify Simplify and state the values
of x for which the result is valid.

12. (a) log5 5x (b) 5log5~x11!

13. (a) log3 3x22 (b) 3log3~x22!

14. (a) log3~Ï3!4x (b) 5log5~5x!

15. (a) log4 22x (b) log5~Ï5!2x

Exercises 16–20 Solve Treat the equations in Exer-
cises 19 and 20 as quadratic equations.

16. (a) log7~2x 2 3! 5 1 (b) log5~4 2 3x! 5 2

17. (a) log2~x 2 2 2x 2 1! 5 1
(b) log3~x 2 2 4x! 5 2

18. (a) 3log3~x221! 5 4 (b) 5log5~x222x22! 5 1

19. ~log3 x!2 5 3 1 2 log3 x

20. ~log2 x!2 5 8 1 2 log2 x

21. Verify that 4 and 21 are solutions of the equation
log3~x 2 2 3x 1 5! 5 2. (See Example 5.)

Exercises 22–23 Find b in terms of c.

22. b 5 log4 49, c 5 log8 7

23. b 5 log8 289, c 5 log2 17

Exercises 24–25 Determine b.

24. (a) logb p 5 1 (b) logb 0.49 5 2

25. (a) logb 2 5 2 (b) logb 7 5 2
1
2

Exercises 26–27 Bracketing Logarithms The given num-
ber is between which two consecutive integers? (Hint:
Think in terms of exponents.)

26. (a) log3 31 (b) log6 0.16

27. (a) log2~1 1 Ï35! (b) log3 47

Exercises 28–29 Ordering Logarithms Which of the
pair of numbers is larger?

28. (a) log3 4, log5 120 (b) log2 6, log3 6

29. (a) log5 36, log6 32 (b) log2 0.4, log2 0.2

Exercises 30–31 Find the smallest even integer that is
greater than the number.

30. (a) log2 16 (b) log3 17

31. (a) log3 9 (b) log5 120

Exercises 32–33 Determine how many integers lie be-
tween the number pair.

32. (a) log2 8, log2 64 (b) log3 7, log3 250

33. (a) log3 2, log3 96 (b) log2 3, log3 47

Exercises 34–35 Without using a calculator, graph the
function using appropriate translations or reflections of
core graphs. See Example 8.

34. (a) y 5 log3 x (b) y 5 log3~x 2 1!

35. (a) y 5 2 1 log2 x (b) y 5 log2~2x!

Exercises 36–39 Domain, Graph (a) Determine the do-
main, (b) simplify the equation, and (c) graph the function.

36. y 5 log3 32x 37. y 5 x log3 32x

38. y 5 3log3 x 39. y 5 2log2~22x!

Exercises 40–41 Domain Determine the domain.

40. (a) f ~x! 5 log3~x 2 4! (b) f ~x! 5 log5~5x 2 1!

41. (a) f ~x! 5 log3~2x! (b) f ~x! 5 log3~x 2 2 2x!

Exercises 42–45 Graph (a) Draw a graph of f. Does
the graph suggest that f is 1-1? (b) Find a formula for f 21.
(c) Use calculator evaluations to find f ~2! and f21~4!
( 2 decimal places). As a check use graphs.

42. f ~x! 5 2ex 43. f ~x! 5 e2x

44. f ~x! 5 3 1 e2x 45. f ~x! 5 6 2 ex

Exercises 46–49 Inverse Functions (a) Find a formula
for f 21. (b) Draw graphs of f , f 21, and y 5 x on the same
screen. See Example 11. (c) Do the graphs of f , f 21 and
y 5 x intersect at a common point? If they do, state the
quadrant(s) in which they intersect.

46. f ~x! 5 ln x 47. f ~x! 5 2ln~x 2 1!

48. f ~x! 5 2ln x 49. f ~x! 5 1 1 ln~x 1 2!

Exercises 50–53 Graph Intersections (a) Draw a cal-
culator graph of f and g on the same screen. (b) Find the
coordinates of the point of intersection of the graphs
( 2 decimal places).

50. f ~x! 5 ln~x 2 1!, g~x! 5 3 2 x

51. f ~x! 5 2 2 ln x, g~x! 5
x 2 4

2

52. f ~x! 5 1 1 ln 0.5x, g~x! 5 4 2 x 2

53. f ~x! 5 1 1 ln~2x!, g~x! 5 5 2 x 2

Exercises 54–55 Graphical Transformations (a) Give
a verbal description of how translations and/or reflections
can be used to draw a graph of f from the graph of y 5 ln x.
(b) Draw graphs of y 5 ln x and y 5 f ~x! on the same
screen. Do the graphs support your description in part (a)?
(c) Find the solution set for f ~x! , 0 ( 2 decimal places).

54. f ~x! 5 3 1 ln~x 2 2! 55. f ~x! 5 2 2 ln x

Exercises 56–57 Explore Consider the family of func-
tions f ~x! 5 c 0.2x 1 c20.2x where c . 0. (a) Experiment
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with several values of c and draw graphs. Describe how the
graphs change as c changes. (b) For what integer values of
c do the graphs pass between P and Q?

56. P~5, 4!, Q~5, 7! 57. P~25, 4!, Q~25, 7!

Exercises 58–59 Your Choice From the family of func-
tions f ~x! 5 cekx, where c and k are nonzero constants,
choose c and k so that f satisfies the specified conditions.

58. The graphs of f and f 21 intersect in (a) QI (b) QIII.
(c) Is there an f such that the graphs intersect in QIV?
Explain.

59. (a) The graphs of f and y 5 x 2 2 intersect in QIII and
QIV.

(b) The graphs of f and y 5 x intersect in QIII.

Exercises 60–61 (a) Find a formula for f. (b) If the
graphs of f and f 21 intersect, find the point of intersection.
Use parametric mode.

60. f 21~x! 5 log3~4 2 x! 61. f 21~x! 5
242x

8

Exercises 62–64 Domains, Ranges, Graphs Function f
has an inverse. (a) Find the domain and range of f.
(b) Find a formula for f 21 and give its domain and range.

62. f ~x! 5
1

1 1 3x 63. f ~x! 5
3x

1 1 3x

64. f ~x! 5
32x

1 1 32x

65. If f ~x! 5 20.5x and g~x! 5 Int~x! solve ~ f 8 g!~x! 5 8.
(Hint: Use dot mode in a decimal window.)

66. Repeat Exercise 65 for ~ f 8 g!~x! 5 4.

4.3 P R O P E R T I E S O F L O G A R I T H M I C F U N C T I O N S

If one remembers . . . the useful concepts . . . @as well as# the countless
misconceptions and errors that rigorous mathematical development avoids
without touching, then mathematics begins to resemble not as much a nerve
as the thread that Ariadne used to guide her lover Theseus out of the
Labryinth in which he slew the dreaded Minotaur.

Hans C. von Baeyer

As defined in the preceding section, logarithms are exponents, so we would expect
logarithms to have properties analogous to those of exponents. The list of some of
the most important properties of both logarithms and exponents emphasizes the
parallels between them.

Exercises 67–70 Graph to Formula Use the graph of
y 5 log2x to help match the function with one of the graphs
a, b, c, or d. Think in terms of translations and reflections.

67. f ~x! 5 1 1 log2x 68. f ~x! 5 2log2x

69. f ~x! 5 log2~x 2 1! 70. f ~x! 5 2log2~2x!
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Properties of logarithms and exponents

Logarithms Exponents

L1. logb~uv! 5 logb u 1 logb v E1. b ub v 5 b u1v

L2. logbSu
vD 5 logb u 2 logb v E2.

b u

b v 5 b u2v

L3. logb~u p! 5 p~logb u! E3. ~b u!p 5 b up

L4. logb 1 5 0 and logb b 5 1 E4. b 0 5 1 and b 1 5 b

Because logarithmic functions are defined only for positive numbers, L1, L2,
and L3 are valid only when both u and v are positive.

Use the following equivalence statement to change a logarithmic equation
to an exponential equation, and vice versa:

y 5 logb x is equivalent to b y 5 x. (1)

We outline a proof of logarithm property L1; proofs for properties L2 and L3
are similar and are left as exercises (see Exercises 43 and 44). In words, property
L1 states that the logarithm of a product is the sum of the logarithms.

logb u 5 s and logb v 5 t.

In terms of exponents

u 5 b s and v 5 b t.

Since the equation in property L1 involves uv, multiply the two exponential equa-
tions and apply exponent property E1 to get

uv 5 b sb t 5 b s1t.

Returning to logarithmic form,

logb~uv! 5 s 1 t.

Replacing s and t by logb u and logb v,

logb~uv! 5 logb u 1 logb v

The first three logarithm properties involve logarithms of products, quotients,
and powers. We do not give similar formulas for sums and differences because
there are no simple ways to express logb~u 1 v! and logb~u 2 v! in terms of logb u
and logb v. Similarly, for exponents, we have for instance, b 2 · b 3 5 b 5, but there
is no simpler expression for b 2 1 b 3.

cEXAMPLE 1 Using logarithm properties Use properties L1 through L4
to evaluate

(a) log3 81 (b) log10 0.001 (c) log3~
1

Ï3
!.

Solution
We indicate under the equals sign the property that gives the equality. Follow the
strategy.

(a) log3 81 5 log3 34 5
L3

4~log3 3! 5
L4

4~1! 5 4, hence log3 81 5 4.

I think it was during that
semester in Berkeley, when
I was not quite fifteen,
that I really switched into
being serious about
mathematics. As soon as I
saw what geometry was
about, it was immediately
clear to me how the whole
thing worked—I mean
absolutely clear. I could
visualize the figures rather
well, and I didn’t have
any problem with
understanding what proofs
were supposed to be.

Andrew M. Gleason

Strategy: Rewrite each ar-
gument as a power of the
base: 81 5 34,
0.001 5 1023, 1

Ï3
5 321y2,

then use logarithm proper-
ties as appropriate.
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(b) log10 0.001 5 log101023 5
L3

~23!log1010 5
L4

~23!~1! 5 23,

hence log10 0.001 5 23.

(c) log3 ~ 1

Ï3
! 5

L2

log3 1 2 log3 Ï3 5
L4

0 2 log331y2 5
L3

2~1
2!log33 5

L4

2 1
2 ,

hence log3 ~ 1

Ï3
! 5 2 1

2 b

cEXAMPLE 2 Using logarithm properties Simplify.

(a) log5 10 2 log5 2 (b) log7 3 1 4~log7 2!

Solution

(a) log5 10 2 log5 2 5 log5~
10
2 ! 5 log5 5 5 1

L2 L4

(b) log7 3 1 4~log7 2! 5 log7 3 1 log7 24 5 log7 3 1 log7 16
L3

5 log7~3 · 16! 5 log7 48 b
L1

It is important to learn to use logarithm properties L1 through L3 going from
right to left, as well as left to right. For instance, in Example 2b we used property
L3 to write

4~log7 2! 5 log7 24,
L3

and then we used property L1 to combine logarithms and get

log7 3 1 log7 16 5 log7~3 · 16! 5 log7 48.
L1

We call log7 48 a simplified form of log7 3 1 4~log7 2!. In a similar manner,
using L1 and L3 gives

log7 48 5 log7~3 · 24! 5 log7 3 1 log7 24 5 log7 3 1 4~log7 2!.
L1 L3

Thus, log7 48 can be written as a sum of logarithms, log7 3 1 4~log7 2!.

cEXAMPLE 3 Combining logarithms Simplify.

logb x 1 4 logb~x 2 1! 2 logb 5.

Solution

logb x 1 4 logb~x 2 1! 2 logb 5 5 logb x 1 logb~x 2 1!4 2 logb 5
L3

5 logb@x~x 2 1!4# 2 logb 5
L1

5 logb

x~x 2 1!4

5L2

Hence, logb x 1 4 logb~x 2 1! 2 logb 5 5 logb

x~x 2 1!4

5
b

cEXAMPLE 4 Numerical approximations In the next section we will show
that four-place decimal approximations to log5 3 and log5 6 are:

log5 3 < 0.6826 log5 6 < 1.1133.

Use these values along with logarithm properties L1 through L4 to get three-
decimal place approximations for (a) log5 2 and (b) log5 18.
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Solution
Follow the strategy.

(a) log5 2 5 log5~
6
3! 5 log5 6 2 log5 3

< 1.1133 2 0.6826

5 0.4307.

Therefore, log5 2 < 0.431 to three decimal places.
(b) log5 18 5 log5~3 · 6! 5 log5 3 1 log5 6

< 0.6826 1 1.1133

5 1.7959.

Hence, log5 18 < 1.796. b

cEXAMPLE 5 Using properties to solve equations Solve
(a) log4 x 2 log4~x 2 1! 5 1

2 (b) log4 x 2 log4~x 1 1! 5 1
2 .

Solution

(a) Follow the strategy,

log4 x 2 log4~x 2 1! 5
L2

log4S x
x 2 1D

so the given equation can be written as

log4S x
x 2 1D 5

1
2

,
x

x 2 1
5 41y2, or

x
x 2 1

5 2.

Solving for x, we find that x 5 2. Since log4~2! and log4~2 2 1! are both
defined, we know that 2 belongs to the replacement set for the original equation
and therefore 2 is the desired solution.

(b) As in part (a), the given equation can be written as

log4S x
x 1 1D 5

1
2

,
x

x 1 1
5 41y2, or

x
x 1 1

5 2.

In this case, when we solve for x we find x 5 22. However, if we replace x with
22, the left side involves log4~22! and log4~22 1 1!, neither of which is
defined. Since 22 is not in the replacement set for the original equation, it
cannot be the solution. The given equation has no solution. b

Example 5 illustrates an important point. Properties L1, L2, and L3 are valid
for only positive values of all arguments; logarithmic functions are defined for only
positive arguments. We could check the domains at each step, but it is good enough
to check the final result in the original equation.

cEXAMPLE 6 A logarithmic equation Solve the equation

2 log9 x 1 2 log9~x 1 2! 5 1.

Strategy Write each of 2
and 18 as a product, quo-
tient, power, etc. in terms of
the numbers 3 and 6, whose
logarithms we have: 2 5 6

3 ,
18 5 3 · 6, then use the
properties of logarithms.

Strategy Combine the
terms on the left by using
property L2 to get a single
logarithm equal to a con-
stant, then express the result
in exponential form. Since
property L2 applies only to
positive numbers, check all
results in the original equa-
tion.
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Solution
Divide through by 2 and write the left side in simpler form:

log9 x 1 log9 ~x 1 2! 5
1
2

, log9@x~x 1 2!# 5
1
2

.

In exponential form,

x~x 1 2! 5 91y2, x 2 1 2x 5 3, or x 2 1 2x 2 3 5 0.

Solutions to the quadratic equation are 1 and 23. Since the domain of the original
equation is the set of positive numbers, 1 is a solution but 23 is not. b

cEXAMPLE 7 Logarithms and sums Find the solution set for

(a) log2~8x 1 8x! 5 x 2 1 (b) log2~8x 1 8x! 5 3x 1 1
(c) log2~8x 1 8x! 5 3x.

Solution
To simplify all three equations, begin with the expression 8x 1 8x

8x 1 8x 5 2 · 8x 5 2 · ~23!x 5 2 · 23x 5 23x11

from which log2~8x 1 8x! 5 log2~23x11! 5 3x 1 1. Since 8x 1 8x is positive for
every x in R, log2~8x 1 8x! 5 3x 1 1 for every real number. In each case, replace
log2~8x 1 8x! by 3x 1 1 and solve the resulting equation.

(a) 3x 1 1 5 x 2 1, so x 5 1; the solution set is $1%.
(b) 3x 1 1 5 3x 1 1, which is an identity, so the solution set is R.
(c) 3x 1 1 5 3x, or 0 · x 5 1. The solution set is the empty set. b

cEXAMPLE 8 Domains of logarithmic functions If
f ~x! 5 log3~x 2 2 5x 1 6! and g~x! 5 log3~x 2 2! 1 log3~x 2 3!, then find the
domain of each function. Are functions f and g equal? Explain.

Solution
Follow the strategy. To find the domain of function f , solve the inequality

x 2 2 5x 1 6 . 0, or ~x 2 2!~x 2 3! . 0.

The solution set is $x _ x , 2 or x . 3%, so the domain of f is ~2`, 2! < ~3, `!.
For the function g, the strategy emphasizes that both x . 2 and x . 3. The

solution set is $x _ x . 3%, so the domain of g is ~3, `!.
Finally, since functions f and g have different domains, they cannot be equal.

However, f ~x! 5 g~x! for all x . 3. b

cEXAMPLE 9 Finding an inverse function If f ~x! 5 ln~x 2 1! 1 2,

(a) Find a formula for f 21. Graph f and f 21 on the same screen.
(b) Describe the graphs in terms of transformations of the natural exponential and

logarithmic functions.

Solution

(a) Using the algorithm from Section 2.7, we write y 5 f ~x!, interchange vari-
ables, and solve for y.

y 5 ln~x 2 1! 1 2

x 5 ln~y 2 1! 1 2

ln~y 2 1! 5 x 2 2

Strategy: There is no for-
mula to simplify the loga-
rithm of a sum, rewrite
8x 1 8x as a power of 2 (the
base) and then simplify.

Strategy: The domain of
the log3 function is the set of
positive real numbers. For f
this requires x 2 2 5x 1 6 .
0, and for g, both x 2 2 . 0
and x 2 3 . 0.



(2, 2)

y

x

f(x) = ln(x – 1) + 2

f –1(x) = ex – 2 + 1

[– 5, 5] by [– 3.5, 3.5]

y = 2 – log3 x

y = 1 + log2 x

(1.5, 1.6)
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By Equation (1), the last equation is equivalent to

ex22 5 y 2 1, or y 5 ex22 1 1.

Thus the inverse function is given by

f 21~x! 5 ex22 1 1.

The graphs of f and g are shown in Figure 20.
(b) The graph of f is the graph of the natural logarithmic function shifted 1 unit

right and 2 units up. The inverse of the natural logarithmic function is the
natural exponential function, so the graph of f 21 is the graph of the natural
exponential function shifted 2 units right and 1 unit up. b

cEXAMPLE 10 Finding an intersection of calculator graphs Find the
coordinates (one decimal place) of the point of intersection of the graphs of f ~x! 5
1 1 log2 x and g~x! 5 2 2 log3 x.

Solution
Follow the strategy. We use the algorithm to find formulas for f 21 and g21, inter-
changing x and y and then solving for y:

f: y 5 1 1 log2 x, log2 y 5 x 2 1, y 5 2x21, and so f 21~x! 5 2x21.

g: y 5 2 2 log3 x, log3 y 5 2 2 x, y 5 322x, and so g21~x! 5 322x.

We want to use parametric equations to graph the inverses of f 21 and of g21, thus
giving us the graphs of f and g. In parametric mode, enter X1 5 2`(T 2 1), Y1 5 T for
f , X2 5 3`(2 2 T) , Y2 5 T for g.

A calculator graph is shown in Figure 21. Tracing and zooming as necessary,
we find that the intersection point is approximately (1.5, 1.6). b

cEXAMPLE 11 Answering medical questions The concentration C~t! of
a drug in the bloodstream (in mg/cm3) is given by C~t! 5 0.03te20.01t, where t is the
number of minutes after injection. (a) In how many minutes after injection will the
concentration reach 0.5 mg/cm3? (b) At what time will the concentration be the
greatest?

Solution

(a) We want a graph of Y 5 .03Xe`(2.01X), but we must find a reasonable window first.
If we evaluate the function at several values of x, we can get a feeling for how
large the y-values are and when the concentration seems to be increasing and
decreasing. Some typical values are listed in the table:

Strategy: At this point, we
cannot graph y 5 logb x di-
rectly, but we can graph its
inverse. Find formulas for
f 21 and g21 and then graph
their inverses parametrically,
because f is the inverse of
f 21.

FIGURE 20

FIGURE 21



[0, 160] by [0, 1.5]

(100, 1.10)

C(t) = 0.03te–0.01t
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x 5 10 20 40 80 120 160

y 0.14 0.27 0.49 0.80 1.08 1.08 0.97

From the table, it looks as if a @0, 160# 3 @0, 1.5# window should show us
the information we need. A calculator graph is shown in Figure 22. We trace
to find when y is 0.5 and find that x is between 20 and 21, which means that
the concentration will reach 0.5 mg/cm3 in just over 20 minutes.

(b) We could zoom in to locate the highest point on the curve more precisely, but
the coordinates we read as we trace near the high point indicate that the
concentration is not changing very rapidly there. The high point appears to be
near (100, 1.10), so we conclude that after 100 minutes, the maximum concen-
tration will be about 1.10 mg/cm3. b

EXERCISES 4.3

Check Your Understanding

Exercises 1–5 True or False. Give reasons.

1. log5~Ï2 1 Ï3! 5
1
2

~log5 2 1 log5 3!.

2. The graph of y 5 22x and y 5 2log2~x 1 2! intersect
at (0, 21).

3. The graph of y 5 log4~4x! is the same as the graph of
y 5 1 1 log4 x.

4. The graph of y 5 log2~4x! can be drawn by translating
the graph of y 5 log2 x up 2 units.

5. For every real number x, log2~2x! 5 1 1 log2 x.

Exercises 6–10 Fill in the blank so that the resulting
statement will be true.

6. The domain of f ~x! 5 log2~x 1 2! 1 log2~1 2 x! is
.

7. The sum of all the prime numbers between log2 0.5 and
log2 256 is .

8. If f ~x! 5 log4 x then f 21~x! 5 .

9. The graphs of y 5 23x and y 5 log3 x intersect in
Quadrant .

10. The integers between log2 1 and log2 128 are .

Develop Mastery

Exercises 1–2 Logarithm to Exponent (a) Express the
equation in exponential form. (b) Use the properties of log-
arithms to find a simpler expression for k.

1. (a) k 5 log3 ~3Ï3! (b) k 5 log5~5
3Ï25!

2. (a) k 5 loge~e
2Ïe! (b) k 5 loge~

Ïe
e 3 !

Exercises 3–5 Combining Logarithms Simplify. See
Example 2.

3. (a) log3 6 2 log3 2 (b) log7 2 1 3 log7 3

4. (a) 2 log3 2 1
1
2

log3 4 (b) 3 log5 2 2
1
4

log5 16

5. (a) log10 50 2 2 log10 5 (b)
2
3

log2 27 2 3 log2 4

Exercises 6–8 Using Logarithm Properties Use proper-
ties of logarithms to write the expression as a sum or differ-
ence.

6. (a) log3~2x 3! (b) log4S16
x 4D

7. (a) log5~x Ïx 2 1 4! (b) log5~25x Ïx 2 1 1!

8. (a) log2S 8x 2

Ïx 2 1 1
D (b) log3@9x~x 1 1!#

Exercises 9–10 Using Logarithm Properties Simplify.

9. (a) 2 log3 x 2 log3~x 1 2!
(b) log5 3 1 log5 x 2 log5 Ïx

10. (a)
1
2

log3 x 2 2 2 log3 x 1 log3 4

(b)
3
2

log5 x 2 1 log5 3 2 2 log5 Ïx

Exercises 11–14 If log10 2 5 u and log10 3 5 v, express in
terms of u and v.

11. (a) log10 5, (b) log10~
1
5!

12. (a) log10 30, (b) log10 1.5

13. (a) log10
3Ï18, (b) log10 Ï24

14. (a) log10
16
27 , (b) log10 80

FIGURE 22
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Exercises 15–18 If logb 5 5 u and logb 45 5 v, express in
terms of u and v.

15. (a) logb 9, (b) logb 3

16. (a) logb 15, (b) logb 1.8

17. (a) logb 25, (b) logb 135

18. (a) logb
1
3 , (b) logb Ï1.8

Exercises 19–26 Roots of Logarithmic Equations
Solve. Check to see that your solutions are in the domain of
the original equation. See Examples 5 and 6.

19. log3~x 1 1! 2 log3 x 5 1

20. 2 log2 x 2 log2 32 5 1

21. log4~2x 1 3! 2 log4 x 5 2

22. log3~2x 13 ! 2 log3 x 5 log3 5

23. log2 x 1 log2~x 1 2! 5 3

24. log4~3x 2 2! 2 log4~2x! 5 log4 3

25. log3~x 1 8! 1 log3 x 5 2

26. log5~4x! 2 log5 ~2x 2 1! 5 0

Exercises 27–28 Domain Determine the domain of the
function.

27. (a) f ~x! 5 log3~x 2 3! 1 5
(b) f ~x! 5 log5~x 2 2 2x!

28. (a) g~x! 5 log7~4x 2 x 2!
(b) g~x! 5 log4~x 1 3! 1 log4~2 2 x!

29. For what values of x is log5~x 2 2 3x 2 4! equal to
log5~x 2 4! 1 log5~x 1 1!?

30. (a) For what values of x is log3 x 2 equal to 2 log3 x?
(b) For what values of x is log3 x 2 equal to

2 log3~2x!?
(c) For what values of x is log3 x 2 equal to

2 log3 _ x _ ?

Exercises 31–34 Points of Intersection Draw graphs of
f and g on the same screen. Find the coordinates (2 decimal
places) of the point of intersection.

31. f ~x! 5 2 ln x, g~x! 5 2 2 e2x

32. f ~x! 5 2 2 ln x, g~x! 5 e0.5x

33. f ~x! 5 2 1 ln x, g~x! 5 3 2 ln x

34. f ~x! 5 2 2 ln x, g~x! 5 3 1 ln x

Exercises 35–36 Intercept Points Find the coordinates
( 2 decimal places) of the x-intercept points of the graph of
f algebraically. Check graphically.

35. f ~x! 5 0.5 2 ln~x 2 1!

36. f ~x! 5 2 ln x 2 ln~4 2 x!

Exercises 37–40 Graphs and Zeros Draw graphs of f
and g separately. Use graphs to find the zero(s) of (a) f

the zero(s) of (a) f (b) g. Explain why f and g do not have the
same zeros.

37. f ~x! 5 ln~x 2 2! 1 ln~x 2 4!,
g~x! 5 ln~~x 2 2!~x 2 4!!

38. f ~x! 5 ln~x 2 3! 1 ln~x 2 1!,
g~x! 5 ln~~x 2 3!~x 2 1!!

39. f ~x! 5 ln~x 2 2 3! 2 ln~2x 2 1!,

g~x! 5 ln
x 2 2 3
2x 2 1

40. f ~x! 5 ln~x 2 2 5! 2 ln~2x 2 3!,

g~x! 5 ln
x 2 2 5
2x 2 3

Exercises 41–42 Compare Graphs Draw graphs of f
and g separately. (a) Explain why the graphs are not iden-
tical. (b) For what values of x do the graphs coincide?

41. f ~x! 5 ln x 2, g~x! 5 2 ln x

42. f ~x! 5 ln~~2x 2 3!~x 2 3!!,
g~x! 5 ln~2x 2 3! 1 ln~x 2 3!

43. Prove the validity of logarithm property L2.

44. Prove the validity of logarithm property L3.

45. If a 5 8 and b 5 16, show that log2~ab! is not equal to
~log2 a!~log2 b!.

46. If a 5 16 and b 5 8, show that log2~
a
b! is not equal to

log2 a
log2 b

.

47. If c 5 4 and n 5 3, show that log2~c
n! is not equal to

~log2 c!n.

Exercises 48–50 Find the solution set. See Example 7.

48. (a) log2~2x 1 2x! 5 x 1 1
(b) log3~3x 1 3x! 5 1

49. (a) log3~3x 1 3x! 5 x
(b) log3~3x 1 3x 1 3x! 5 x 1 1

50. (a) log4~4x 1 4x! 5 2x
(b) log2~4x 1 4x! 5 x

51. Show that log3~Ï3 1 Ï2! 5 2log3~Ï3 2 Ï2!.

52. Show that log5~Ï6 1 Ï5! 5 2log5~Ï6 2 Ï5!.

53. Show that for any positive number k,
logb~Ïk 1 1 1 Ïk! 5 2logb~Ïk 1 1 2 Ïk!.

Exercises 54–55 Given that function f has an inverse, find
an equation that describes f 21. What is the domain of f ?
(Hint: Use the algorithm in Section 2.7.)

54. f ~x! 5 log2~Ïx 2 1 1 1 x!

55. f ~x! 5 log3~Ïx 2 1 1 2 x!
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Exercises 56–57 Maximum Value (a) For what val-
ue(s) of x is y equal to 36 (one decimal place)? (b) What
value of x will give a maximum value of y? What is the
maximum value? (Hint: The window @0, 300# 3 @0, 60#
should give you a start.)

56. y 5 4 1 xe20.01x

57. y 5 6 1 x · 320.01x

58. Maximum Concentration The concentration C of a
drug in the bloodstream at t minutes after injection is
given by

C 5 0.036te20.015t mgycm3.

(a) In how many minutes will the concentration reach
0.6 mg/cm3?

(b) How many minutes after injection will the concen-
tration be the greatest? What is the maximum con-
centration? See Example 11.

59. True or False Draw graphs to support your answer.
Assume that L is a line.
(a) If L and the graph of y 5 ln x intersect at two

points, then the slope of L must be positive.
(b) If L and the graph of y 5 e2x intersect at two

points, then the slope of L must be positive.

60. Explore For what integer values (positive and nega-
tive) of c will the graphs of y 5 1 1 x

c and y 5 ln x
intersect at (a) exactly one point? (b) two points?

4.4 C O M P U T A T I O N S W I T H L O G A R I T H M I C
A N D E X P O N E N T I A L F U N C T I O N S

Galileo’s observation that all bodies accelerate equally in the Earth’s gravity is
counterintuitive precisely because it is usually wrong. Everybody knows that a
lump of coal falls faster than a feather. Galileo’s genius was in spotting that
the differences which occur in reality are an incidental complication caused by
air resistance, and are irrelevant to the properties of gravity as such.

P. W. C. Davies

Because logarithms are exponents, evaluation in exact form is possible only in
special cases. We can, for example, evaluate log3(9Ï3) in exact form because 9Ï3
is a power of the base 3:

9Ï3 5 35y2, so log3 9Ï3 5
5
2

.

More generally, we need assistance to approximate logarithms. This section
covers the use of calculators to evaluate logarithmic and exponential functions
to any base. All scientific calculators are programmed to evaluate the natural

61. Explore For what integer values (positive and nega-
tive) of c will the graphs of y 5 cx 2 3 and y 5 2x 1 6
intersect at (a) exactly one point? (b) two points?

62. Explore What is the smallest prime number c for
which the graph of y 5 cx 2 5 will intersect the graph
of y 5 3x 1 5 at exactly two points?

63. Your Choice Give a formula for a linear function f
(with nonzero slope) that satisfies the specified condi-
tions.
(a) The graphs of f and y 5 ln x intersect in Quadrant I

and Quadrant IV.
(b) The graphs of f and y 5 ex intersect in Quadrant I

and Quadrant II.

64. Your Choice From the family of functions f ~x! 5
c ln~kx!, where c and k are nonzero constants, select c
and k so that f satisfies the specified condition.
(a) The graph of f intersects the graph of y 5 2x 2 4

at two points.
(b) The graphs of f and of y 5 x 1 4 intersect in Q II.

Exercises 65–66 Is It a Function? Explain what you
observe when you graph the equation.

65. y 5 ln~2x 2 1 2x 2 3!

66. y 5 ln~x 2 3! 1 ln~2 2 x!
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exponential function, f ~x! 5 ex, and its inverse, the natural logarithm function
f 2~x! 5 ln x. As we will see, these functions are sufficient to handle calculator
evaluation for exponential and logarithmic functions with any base.I was in the ninth grade

of Powell Junior High Change of Base and Evaluating Logarithms in Other Bases
School in Washington, D.C.

As observed in the previous section graphing calculators have an exponentiationI was doing very poorly in
my first course in algebra. key, 57̀ or 57yx , that allows us to evaluate exponential expressions or to graph
To be precise, I was exponential functions for any given base. In contrast, there is no built-in logarithm
flunking. Later on, after key that directly evaluates logarithms for any bases except e ~57LN ! and 10 ~57log !.
recovering from my poor

Fortunately, there is a simple change-of-base formula that allows us to evaluate anystart in algebra, I began to
logarithmic function by means of the natural logarithm function, ln x. To evaluateget top marks. I was good

in math and science in high log3 4, we can express the relationship y 5 log3 4 in exponential form, (by equiv-
school. alence Equation (1)), then apply the natural logarithm function to both sides and

George B. Dantzig solve for y. The same steps work for any base b, as follows:

Thus we have log3 4 5
ln 4
ln 3

< 1.2619, and we have a general formula for evaluat-

ing any logarithmic function.

Change-of-base formula

For any positive real numbers c and b where b is not 1, logb c 5
ln c
ln b

.

The change-of-base formula allows us to evaluate logarithmic functions for any
base, including base 10, so that 57log is not really necessary.

cEXAMPLE 1 Evaluating logarithms Find an approximation rounded off
to four decimal places.

(a) log5 0.43 (b) log8~1 1 Ï3! (c) log 79.442

Solution
Use the change-of-base formula.

(a) log5 0.43 5
ln 0.43

ln 5
< 20.5244.

(b) log8~1 1 Ï3! 5
ln~1 1 Ï3!

ln 8
< 0.4833.

(c) With no base shown, log 79.442 refers to the common logarithm (base 10). Use
57log directly if your calculator has such a key, or use the change-of-base
formula.

log 79.442 5
ln 79.442

ln 10
< 1.9001.

Check each of the above computations using your calculator. b

y 5 log3 4 y 5 logb c

3y 5 4 b y 5 c By EQ1

ln 3y 5 ln 4 ln b y 5 ln c Applying ln function

y ln 3 5 ln 4 y ln b 5 ln c By L3

y 5
ln 4
ln 3

y 5
ln c
ln b

Solving for y
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There are many occasions when we have functions given by two different formulas
and we want to determine whether the functions are identical. A graphing calcula-
tor can be very helpful in this regard, and there are at least three convenient
methods.

Graphing identical functionsTECHNOLOGY TIP r

We want to determine whether two functions, f and g, are identical.

• Method 1 Plot the graphs of y 5 f ~x! and y 5 g~x! on the same
screen. The advantage and disadvantage of this method is that you see
only one graph. Differences in domain may not be apparent. To check,
trace along the curve, using the up or down arrows to jump from one
curve to the other, and watch the y-coordinates.

• Method 2 Translate one graph up or down by some constant, say 1 or
0.5. That is, plot the graphs of y 5 f ~x! and y 5 g~x! 1 .5 on the same
screen. If the functions are identical, the graphs will differ by the same
amount all the way across the screen.

• Method 3 Shift the graph of f 2 g so that the difference is visible on
the screen. Plotting y 5 f ~x! 2 g~x! 1 1 will yield the horizontal line
y 5 1, which can also be checked by tracing (or replace 1 by any other
constant).

cEXAMPLE 2 Verifying the change of base formula Use graphs to sup-
port the claim that the functions f ~x! 5 log x and g~x! 5 ln xyln 10 are identical.

Solution
Following the suggestions in the Technology Tip above, we enter Y1 5 LOG X and
Y2 5 LN X/LN 10. We can graph both Y1 and Y2 on the same screen and see a single
logarithm function, or we can graph Y1 and Y2 1 1 (for Method 2), or Y3 5 Y1 2 Y2 1 1
(for Method 3). By whichever method we choose, the calculator shows that, at least
to calculator accuracy, the functions are identical. b

Using Inverse Function Identities

Restating the inverse function identities in terms of the natural exponential func-
tion and the natural logarithmic function is useful as a reminder of relations that
can simplify much of our work.

If f is the natural exponential function, f ~x! 5 ex, then f 21~x! 5 ln x. Since
f ~ f 21~x!! 5 x for all x in the domain of f 21 and f 21~ f ~x!! 5 x for all x in the
domain of f , we have two identities.

Inverse function identities

e ln x 5 x for all positive numbers x. (1)

ln ex 5 x for all real numbers x. (2)
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HISTORICAL NOTE I N V E N T I O N O F L O G A R I T H M S

cEXAMPLE 3 Using inverse function identities Use inverse function
identities to simplify. Express the result in exact form and then give a five-decimal-
place approximation.

(a) e ln Ï3 (b) e22 ln 7 (c) ln e2Ï5

Strategy: Rewrite each part
Solutionas needed to use inverse

function identities.
(a) By identity (1), e ln Ï3 5 Ï3 < 1.73205. The exact form is Ï3 and 1.73205

is the desired approximation.

(b)For the exact form, first use logarithm property L3 to rewrite 22 ln 7 as ln
722, or ln~ 1

49!, then use identity (1).

e22 ln 7 5 e ln (1y49) 5
1

49
< 0.02041

As the need for more accuracy in
trigonometric computations grew
(see the Historical Note,
Trigonometric Tables in
Section 5.3), so did the need for
better ways to do the arithmetic.
Logarithms have been called “the
most universally useful
mathematical discovery of the
seventeenth century.” They
significantly reduced the time
required to perform computations
and may have been as important for
the exploration of the globe as any
improvement in marine technology
in two hundred years.

One basic idea motivated the
development of logarithms: to
multiply powers of the same base,
simply add exponents. For example,
to multiply 16 by 64, use tables to
identify equivalent numbers 24 and
26, from which

16 · 64 5 24 · 26 5 2416

5 210 5 1024.

To be useful, of course, tables must
identify the exponents of all the numbers we
might need to multiply.

John Napier (1550–1617) spent twenty years
compiling tables of exponents (called logarithms
or ratio numbers). He started with a large number

for accuracy ~N 5 10,000,000!
and calculated a hundred terms in
a geometric sequence, successively
subtracting 1

10,000,000 of each number
from the one before, and rounding
each to 14 digits.

This produced one table of
exponents. If he had simply
continued with this sequence, it
would have required years of
calculation just to get from
10 million to 5 million, producing
an unusable table with nearly 7
million entries. Napier’s genius lay
in his construction of other tables
to allow interpolation between
numbers. Rather than millions of
entries, his second table had only
50 entries, and the third had fewer
than 1500. A user would locate a
pair of exponents from the first
two tables and then use the third
table to compute the logarithm.

After his logarithms of
numbers, Napier produced a table
to give seven-place logarithms of
sines of angles for every minute

from 08 to 908. Kepler credited Napier’s tables for
making possible the incredible calculations
required to analyze the motion of the planets
about the sun.

Part of a page from Napier’s
Logarithmic Tables.
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Thus e22 ln 7 is exactly equal to 1
49 and 0.02041 is the five-decimal-place approx-

imation.
(c) Identity (2) gives ln e2Ï5 5 2Ï5 < 22.23607. An exact form for ln e2Ï5 is

2Ï5 and 22.23607 is the desired approximation. b

cEXAMPLE 4 Identical functions? Graph the functions f ~x! 5 e ln x and
g~x! 5 ln ex separately. Describe and explain the differences between the graphs
of f , g, and the line y 5 x.

Solution
The graphs of y 5 e ln x and y 5 ln ex are shown in Figures 23a and 23b. The graph
of f is the same as the first quadrant portion of the line y 5 x, but the domain of
f is limited to x . 0. We cannot tell visually whether the origin is included, but in
a decimal window, tracing verifies that f is undefined at x 5 0.

Since ex is always positive, ln ex 5 x is defined for all real numbers x. The
graph of g is identical with the graph of y 5 x.

The graphs of both f and g give graphical confirmation of the inverse function
identities. b

Using Inverse Function Identities to Solve Equations

In Section 4.1 we solved the equation 32x11 5 37y3 by using our intuitive under-
standing of exponents. To justify equating exponents, we now know that exponen-
tial and logarithmic functions are one–one; if two numbers are equal, their loga-
rithms are equal, or in mathematical notation, if u 5 v, then logb u 5 logb v.
Applying the log function to both sides, if 32x11 5 37y3, then log3~32x11! 5
log3~37y3!, from which 2x 1 1 5 7

3 , and so x 5 2
3 .

cEXAMPLE 5 Solving exponential equations Solve. Express your solu-
tion in exact form and give a four-decimal-place approximation.

Strategy: Apply the natural (a) e2x21 5 4 (b) 5x 5 3 · 412x

logarithm function to both
Solutionsides and simplify, using
(a) From the strategy,properties of logarithms.

ln e2x21 5 ln 4 or 2x 2 1 5 ln 4.

Therefore x 5 1 1 ln 4
2 < 1.1931, so 1 1 ln 4

2 is the exact solution and 1.1931 is the
desired approximation.

(b) In a similar fashion, ln 5x 5 ln~3 · 412x!. By logarithm property L3, ln 5x 5
x ln 5, and by properties L1 and L3, ln~3 · 412x! 5 ln 3 1 ~1 2 x!ln 4. There-
fore, the given equation is equivalent to

x ln 5 5 ln 3 1 ~1 2 x!ln 4.

We now have a linear equation in x. Solve it as follows:

x ln 5 5 ln 3 1 ln 4 2 x ln 4

x~ln 5 1 ln 4! 5 ln 3 1 ln 4

x 5
ln 3 1 ln 4
ln 5 1 ln 4

5
L1

ln 12
ln 20

< 0.8295.

Therefore, the exact solution is ln 12
ln 20 and 0.8295 is the approximation. b

FIGURE 23
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Notice that ln 12
ln 20 cannot be simplified further in the exact form solution of

Example 5. In particular, ln 12
ln 20 is not equal to ln 12

20 , since ln 12
ln 20 < 0.8295 and

ln 12
20 < 20.5108.

cEXAMPLE 6 Another exponential equation Solve the equation
ex 1 e2x 5 4.

SolutionStrategy: Note that the
strategy of Example 5 is not Follow the strategy and multiply both sides by ex.
helpful, since ln~ex 1 e2x!

e2x 1 exe2x 5 4ex or ~ex!2 2 4ex 1 1 5 0.does not simplify. Multiply
through by ex to get a

Use the quadratic formula to solve for ex,quadratic equation in ex. Use
the quadratic formula to

ex 5 2 1 Ï3 and ex 5 2 2 Ï3.solve for ex, and then take
logarithms to solve for x. Apply the ln function to both sides of each and use identity (2) to get

ln ex 5 ln~2 1 Ï3! or x 5 ln~2 1 Ï3! < 1.317

ln ex 5 ln~2 2 Ï3! or x 5 ln~2 2 Ï3 ! < 21.317.

The exact solutions are ln~2 1 Ï3! and ln~2 2 Ï3!. Decimal approximations are
1.317 and 21.317, respectively. b

cEXAMPLE 7 Inverse functions Graph the functions f ~x! 5 3x, g~x! 5
log3 x, and y 5 x in the same decimal window. Find at least two pairs of points on
the graphs of f and g that are reflections of each other in the line y 5 x. What do
the graphs suggest about the domain and range of f and g?

Solution
To graph y 5 log3 x, we use the change of base formula and enter Y 5 LN X/LN 3. The
graphs of all three are shown in Figure 24.

From the figure, it looks as if the graph of g is the reflection of the graph of f in
the line y 5 x. For partial verification, we trace along the graph of y 5 3x and find
points A~0, 1! and B~1, 3!. On the graph of y 5 log3 x are the points C~1, 0!, the
reflection of point A, and D~3, 1!, the image of B. b

Exponential functions are said to “grow faster” than any polynomial function.
We are not prepared to prove such a general statement, but it is illustrative to see
how unexpected the intersections of polynomial and exponential functions may be,
as suggested in the next example.

cEXAMPLE 8 Hidden intersections Let f ~x! 5 2x and g~x! 5 x 3.

(a) Graph f and g in the @21, 6# 3 @21, 10# window. To the right of the visible
intersection, which graph appears to be growing faster? Use an x-range of
@21, 12# and keep increasing the y-range until you find another intersection.

(b) Find the “hidden intersection,” (one decimal place) by setting 2x 5 x 3 and
taking the natural logarithm of both sides.

(c) Discuss alternative ways to use technology to find the intersection in part (b).

FIGURE 24
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Solution

(a) In the specified window, there is an intersection near (1.4, 2.7), and then the
cubic function rises much faster than the exponential. Trying larger and larger
y-ranges, it isn’t until we get to something near 1000 that the exponential
function “catches up.” Tracing, the intersection is close to (9.9, 980). From this
point on, the exponential graph grows faster.

(b) When we take the natural logarithm of both sides of the equation 2x 5 x 3 and
apply properties of logarithms, we get the equation, x ln 2 5 3 ln x, for which
we have no direct way of solving. Nevertheless, graphical tools are available.
Graphing Y1 5 X LN 2 and Y2 5 3 LN X in @21, 10# 3 @21, 7# gives a picture some-
thing like Figure 25. The intersection Q is near (9.94, 6.89). The “hidden
intersection” of the original graphs is given by x < 9.94, for which y <
29.94 < 982 and ~9.94!3 < 982.

(c) Among the many alternative approaches using a graphing calculator, we could
locate graphically the root of either the equation 2x 2 x 3 5 0 or of x ln 2 2
3 ln x 5 0, or, if our calculator has one, we could use a solve routine (men-
tioned in Example 10 of Section 4.1) for any of the above equations. Any of
the solve routines require a starting guess. In this case, we must indicate that
we want the solution near 9.9, which we will find is approximately
9.9395351414. In summary, we conclude that the equation 2x 5 x 3 has two
roots, x1 < 1.4 and x2 < 9.9. b

Applications

Exponential and logarithmic functions are used to model many natural phenom-
ena. The following section is devoted entirely to such applications. Here we discuss
just one example.

The sounds we hear Logarithmic functions are used in modeling the sounds we
hear. Loudness of sound is a sensation in the brain. We cannot measure it directly,
but there is a related physically measurable quantity: the intensity of the sound
wave. Sound waves travel through the air, and these wave vibrations force the
eardrums to vibrate, producing a sound sensation. The intensity I of a sound wave
is measured in watts per square meter ~ w

m 2!.
The intensity of a barely audible sound wave, about 10212 w

m 2 , corresponds to
pressure vibrations less than a billionth of the atmospheric pressure at sea level.
The human ear is very sensitive. A sound wave of intensity of 1 w

m 2 would damage
the eardrum.

The human ear does not respond to sound intensity in a linear fashion. If the
intensity doubles, we do not hear the sound as twice as loud. The sound level b is
logarithmically related to the intensity I.

b~I! 5 10 logS I
I0
D 5 10~log I 2 log I0! (3)

where I is the measured intensity and I0 is the intensity of sound we can just barely
hear, 10212 w

m 2 . The sound level b is measured in decibels (dB), a unit named for
Alexander Graham Bell.

FIGURE 25
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For a sound just at the hearing threshold, I is I0, so

b~I! 5 10 logSI0

I0
D 5 10 log 1 5 10 · 0 5 0.

Thus 0 dB measures the threshold hearing level. At an intensity of 10 I0,
b~10 I0! 5 10 log 10 5 10. Similarly, if I is 100 I0, then the sound level is given
by b~100 I0! 5 10 log 100 5 10 · 2 5 20. Multiplying the intensity by a factor of
10 only doubles the loudness of the sound we hear.

cEXAMPLE 9 Adding trumpets Four trumpets are playing at the same
time, each at an average loudness of 75 dB. What is the resulting sound level?

Solution
If b~I1! denotes the loudness level of one trumpet, then Equation (3) can give the
corresponding intensity I1.

b~I1! 5 10 logSI1

I0
D 5 10 log I1 2 10 log I0.

Since I0 5 10212, log I0 5 212. Since b~I1! 5 75, we have

75 5 10 log I1 1 120 log I1 5 24.5 and I1 5 1024.5.

The intensity of sound for one trumpet is 1024.5 so four trumpets have a sound
intensity of 4 · I1, or 4 · 1024.5. Thus

b~4 · I1! 5 10 logF4 I1

I0
G 5 10 logF4SI1

I0
DG

5 10 log 4 1 10 logSI1

I0
D 5 10 log 4 1 75 < 81.02

Therefore, the loudness of the four trumpets is about 81 dB. A fourfold increase in
sound wave intensity increases the loudness level by less than 10 percent. This is
why a solo instrument can be heard in a symphony concert even when the full
orchestra is playing at the same time. b

EXERCISES 4.4

Check Your Understanding

Exercises 1–5 True or False. Give reasons.

1. log 16 , ln 5

2. ln~Ï2 1 Ï5! 5
1
2

~ln 2 1 ln 5!

3. For all positive numbers c and d,
ln~c 1 d! 5 ln c 1 ln d.

4. The graph of y 5 log x is above the graph of y 5 ln x
for all x . 1.

5. The graph of y 5 ln x is above the graph of y 5 log3 x
for every x . 1.

Exercises 6–10 Fill in the blank so that the resulting
statement is true.

6. The number of integers between ln 4 and 5ln 25 is
.

7. The sum of the integers between ln 4 and 2ln 25 is
.

8. If S 5 $x _ ln 0.5 # x # 5ln 25%, then the smallest
positive integer that is not in S is .

9. The graph of y 5 ln~x 3 1 x 2 2 4x 1 6! has turning
points in Quadrants .

10. The local minimum point (2 decimal places) for the
graph of y 5 2 1 ln~x 3 1 x 2 2 4x 1 4! is .

Develop Mastery

Exercises 1–8 Logarithmic Evaluations Evaluate. Give
the result rounded off to four decimal places. If your calcu-
lator indicates an error, explain why.

1. (a) ln 5 (b) log 15.6

2. (a) ln Ï3 (b) log~1 1 Ï3!
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3. (a)
ln 3
ln 5

(b) ln S3
5D (c)

ln 3 1 ln 4
ln 5

4. (a) ln Ï0.5 (b) Ïln 0.5 (c) ~0.5! ln 0.5

5. (a) ln Ï2 (b) Ïln 2 (c) 2~ln Ï2!

6. (a) log3 7 (b) log8 0.8 (c) log4~3 2 Ï10!

7. (a) log5~ln 7! (b) log3~ln 0.3! (c) log8 2Ï3

8. (a) log2~ln 4! (b) log5~ln 0.4! (c) log3 3Ï3

Exercises 9–12 Simplify. Express your result in exact
form and give a two-decimal-place approximation.

9. (a) e ln Ï5 (b) e2ln Ï5

10. (a) e2ln Ï6 (b) e22~ln 13!

11. (a) ln eÏ3 (b) ln
6Ïe

12. (a) ln e2Ï7 (b) ln
7Ïe

Exercises 13–18 Compare Logarithm Values Enter 5,
, , or . in the blank to get a true statement.

13. log2 3 log3 2 14. log5 15 log2 5

15. log5 25 log3 9

16. log2 12 log12 60

17. log0.5 5 log3 0.04

18. log5 0.3 log3 0.5

Exercises 19–20 Comparing Large Numbers Of the
three numbers a, b, and c, which one is the (a) largest?
(b) smallest? (Hint: If your calculator cannot handle such
large numbers, then compare ln a, ln b, and ln c. Explain
why you can conclude that if ln u , ln v then u , v.)

19. a 5 2333, b 5 3210, c 5 5144,

20. a 5 2485, b 5 4243, c 5 7172

Exercises 21–24 Comparing Graphs Draw graphs of f
and g. See Technology Tip. Are the graphs identical? Ex-
plain.

21. f ~x! 5 ln x 1 ln~x 1 2!, g~x! 5 ln@x~x 1 2!#

22. f ~x! 5 ln x 2 ln~x 2 2!, g~x! 5 ln
x

x 2 2
23. f ~x! 5 2 ln x, g~x! 5 ln x 2

24. f ~x! 5 ln~2x!, g~x! 5 ln x 1 ln 2

Exercises 25–28 Composition Graphs (a) Draw graphs
of f 8 g and g 8 f. Are the graphs identical? (b) What is the
domain of f 8 g? of g 8 f ?

25. f ~x! 5 log x, g~x! 5 10x

26. f ~x! 5 ln x, g~x! 5 ex

27. f ~x! 5 1 1 ln x, g~x! 5 ex21

28. f ~x! 5 2ln x, g~x! 5 e2x

Exercises 29–32 Exponential Function Inverses
(a) Find a formula for f 21. (b) Draw graphs of f , f 21, and
y 5 x on the same screen. If the graphs intersect, find the
coordinates of the point(s) of intersection (1 decimal place).

29. f ~x! 5 e2x 1 2 30. f ~x! 5 3 1 1020.2x

31. f ~x! 5 4.1012x 32. f ~x! 5 2e12x

Exercises 33–36 Logarithmic Function Inverses
(a) Draw a graph of f. Does it suggest that f is one-one?
(b) Find a formula for f 21. (c) Draw a graph of f 21 and
give its domain and range.

33. f ~x! 5 ln~x 2 1! 34. f ~x! 5 ln x 2 1

35. f ~x! 5 ln
x

x 2 1
, x . 1

36. f ~x! 5 ln~x 2 2 2x!, x . 2

Exercises 37–49 Exponential and Logarithmic Equa-
tions Solve. Express the result in exact form and also give
a three- decimal-place approximation.

37. 3 ln x 2 1 5 0 38. 2 ln x 2 1 5 0

39. ln~3x 2 2! 1 ln 5 5 1

40. log~3x 2 1! 2 log x 5 21

41. 2 log x 2 2 log~x 2 1! 5 1

42. 2 ln x 2 ln~2x 1 1! 5 1

43. 3x 5 4

44. e2x 5 0.56 45. 3x 2 ln 4 5 0

46. ex 5 3 · 4x 47. e2x 1 1 5 ln 8

48. 42x 2 ln 5 5 0 49. 52x 5 6 · 7x

Exercises 50–53 Intercept Points For the graph of the
equation, find the x- and y-intercept points algebraically.
Round off to two decimal places as needed. Use a graph as
a check.

50. y 5 ln~x 1 1! 2 1 51. y 5 2 · 4x 2 5

52. y 5 ln~x 1 2! 2 ln~x 1 1! 2 1

53. y 5 3 · 2x 2 52x

Exercises 54–57 Graphs (a) Use appropriate transla-
tions of a core graph to sketch the graph of y 5 f ~x!. Label
the x-intercept points. (b) Use the graph to help find the
solution set for f ~x! $ 0.

54. f ~x! 5 ln~x 2 1! 2 1 55. f ~x! 5 ln~x 1 2!

56. f ~x! 5 ex 2 2 57. f ~x! 5 e2x 2 2

Exercises 58–59 Disguised Quadratic Equations First
express the equation in quadratic form and then solve for x.

58. ex 2 2e2x 2 1 5 0 59. 5x 1 10 · 52x 5 7
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Exercises 60–63 Disguised Quadratic Equations Solve.
Express the result in exact form and give a three-decimal-
place approximation. (Hint: Consider quadratic equations.)
Check graphically.

60. ~ln x!2 2 2 ln x 2 3 5 0 61. ~ln x!2 5 ln x

62. e2x 1 2ex 2 3 5 0 63. e2x 1 4ex 1 4 5 0

Exercises 64–66 Find the solution set (1 decimal place).
See Example 8.

64. 2x 5 x 2 65. 2x 5 x 4

66. 2x 5 x 5

67. Hidden Root Find the largest root (1 decimal place)
of 2x 5 x 7 See Example 8.

68. (a) Hidden Root Solve 2x 5 x 10 using techniques
similar to that used in Example 8 (1 decimal place).
You can find two roots by drawing graphs of y 5 2x

and y 5 x 10 on the same screen.
(b) Find the third root by applying ln to both sides and

then solving the resulting equation.

69. See Exercise 68. One of the roots of 2x 5 x 10 is approx-
imately 58.8. If you were to draw a graph of y 5 2x (or
y 5 10x), what size graph paper would be needed to
find the point for x 5 58.8 if the scale on your graph
paper is one tenth of an inch on both the x and y axes?
Compare your answer with the distance from the earth
to the sun, 93 million miles.

Exercises 70–79 Solution Set Find the solution set.
Solve algebraically and then use a graph to support your
answer.

70. (a) e2x 5 23 (b) ln~2x! 5 23

71. 2 log x 5 log 2x

72. ln~ex 1 1! 5 ln~e2x 1 1! 1 x

73. x log x 5
x 4

1000
~Hint: Take the log of each side.!

74. x ln x 5 x 2e3 ~Hint: Take the ln of each side.!

75. (a) x log 3 5 3 (b) x ln x 5 e4

76. log~x 2 1 3! 2 2 log x 5 1

77. ~log5 x!~logx 7! 5 log5 7 ~Hint: Use the change-of-base
formula.!

78. ~log2 x!~logx 5! 5 log2 5 ~See Exercise 77.!

79.
1

log2 x
1

1
log3 x

5
1

log6 x
~See Exercise 77.!

Exercises 80–83 The Sounds We Hear

80. How many times more intense is a 70 dB sound than
(a) a 60 dB sound? (b) a 40 dB sound?

81. The loudness level near a lawn mower is 90 dB. What is
the corresponding intensity in w

m 2 ?

82. The average loudness level of one trombone is about
70 dB.
(a) What is the loudness level when 76 trombones are

playing at the same time?
(b) What is the percentage increase in the loudness

level from one trombone to 76 trombones?

83. What is the loudness level of 110 cornets playing simul-
taneously if the average loudness level of each is 75 dB?
What is the percentage increase in loudness level over
that of one cornet?

84. Fruit Flies The number N of fruit flies in a colony
after t days of breeding is given by

N 5
320

1 1 7e20.17t

(a) How many fruit flies are there initially?
(b) Draw a calculator graph using @0, 60# 3 @40, 350#.

Find the number of days it will take for N to be 200.
(c) Describe the end behavior of this function. That is,

what happens to N as t A `?

Exercises 85–86 Looking Ahead to Calculus In cal-
culus we define a function, called the hyperbolic sine, by
sinh x 5 1

2 ~ex 2 e2x!. The graph of the hyperbolic sine is
shown in the diagram. The graph shows that the sinh func-
tion is one–one and hence has an inverse.

85. If f ~x! 5 sinh x, find an equation that describes f 21.
(Hint: Use the algorithm in Section 2.7.)

86. The function g~x! 5 ln~Ïx 2 1 1 1 x! has an inverse.
Use the algorithm in Section 2.7 to find an equation
that describes g21. Compare with Exercise 85.
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4.5 M O D E L S F O R G R O W T H , D E C A Y , A N D C H A N G E

I find that I may have emphasized the need to escape from the devils of
mathematics to embark on the pleasures of the real world. But it works both
ways, and sometimes the devils of the real world drive one into the pleasures
of studying mathematics.

Cathleen S. Morawetz

Exponential and logarithmic functions are used to model many real-world pro-
cesses, some of which we mentioned in earlier sections. In this section we look at
additional applications.

I developed a proficiency Exponential Growth
[in junior high school] in

When scientists measure population size, they see regular changes. Whether theysimple algebra that lasted
for a long time and has study fish, bacteria, or mammals, they observe that the rate of change is propor-
been very useful. My tional to the number of organisms present; with more bacteria in a culture, colonies
mother gave me her

grow faster (as long as there is adequate food). A similar kind of growth occurs incollege algebra book. I
a financial setting with compound interest. The amount of interest depends on thelearned from it how to
amount of money invested, and a larger investment grows faster.solve word problems,

although I remember We learn in calculus that exponential functions can model any kind of growth
distinctly that I never really for which the rate of change is proportional to the amount present. Hence this kind
understood them. I could

of growth is called exponential growth.do only the problems that
To express exponential growth mathematically, suppose A~t! denotes thefollowed the pattern of the

amount of substance or the number of organisms present at time t. Then A~t! isexamples in the book. My
view is that if you have a given by
firm grasp of technique,

A~t! 5 Cekt,you can then concentrate
on theory without having

where C and k are constants. When t is 0, the formula gives A~0! 5 Cek · 0, orto think about the
A~0! 5 C. Hence, for any exponential growth, C is the amount present at the timetechnical details.

Ralph P. Boas, Jr. measurement begins, when t is 0; we replace C by A0.

Exponential growth formula

Suppose the rate of change of some substance or quantity is proportional to
the amount present, then the amount or number A~t! at time t is given by

A~t! 5 A0ekt (1)

where A0 is the initial amount (the amount present when t is 0), and k is a
positive constant determined by the particular substance.

In many problems the constant k is determined experimentally. For instance,
a scientist may find that the number of bacteria in a culture doubles every 72
minutes. This information is enough to determine the value of k, as shown in the
following example.

cEXAMPLE 1 Exponential growth A sample culture medium containsStrategy: Use Equation (1)
with A0 5 500 and approximately 500 bacteria when first measured, and 72 minutes later the number
A(1.2) 5 1000, since 72 has doubled to 1000.
minutes is 1.2 hours. Find k.

(a) Determine a formula for the number A~t! at any time t hours after the initial
measurement.

(b) What is the number of bacteria at the end of 3 hours?
(c) How long does it take for the number to increase tenfold to 5000?
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Solution

(a) Follow the strategy. When t is 1.2, Equation (1) becomes

1000 5 500ek~1.2!.

Divide by 500, take the natural logarithm of both sides, and solve for k.

2 5 e1.2k, ln 2 5 ln e1.2k 5 1.2k, k 5
ln 2
1.2

< 0.578.

Replacing k by 0.578 and A0 by 500 gives the desired equation.

A~t! 5 500e0.578t (2)

(b) When t is 3, A(3) 5 500e0.578(3) 5 500e1.734 < 2832, so at the end of 3 hours
there are approximately 2800 bacteria in the culture.

(c) To find t when A(t) is 5000, substitute 5000 for A(t) in Equation (2) and solve
for t.

5000 5 500e0.578t 10 5 e0.578t

ln 10 5 ln e0.578t 5 0.578t

t 5
ln 10
0.578

< 3.98

It takes about 4 hours for the number of bacteria to increase tenfold.

Graphical Draw a graph of A(x) 5 500e0.578x in @0, 5# 3 @500, 5100#. Then
trace and zoom as needed to see that when x 5 3, A 5 2832, and when A 5 5000,
x 5 3.98. b

Compound and Continuous Interest

If money is invested in an account that pays interest at a rate r compounded n times
a year, the growth is not described by Equation (1). We need another formula.
When the annual interest rate is given as a percentage, we express r as a decimal;
for a rate of 6 percent we write r 5 0.06.

Compound interest formula

Suppose A0 dollars are invested in an account that pays interest at rate r
compounded n times a year. The number of dollars A~t! in the account t
years later is given by

A~t! 5 A0S1 1
r
nD

nt

. (3)

Compound interest is paid only at the end of each compounding period. If
interest is compounded quarterly, then the interest is credited at the end of each
three-month period. To apply Equation (3) for other values of t, we should replace
the exponent nt by the greatest integer @nt#.

As the number of times a year that interest is compounded increases, we
approach what is called continuous compounding. To see what happens to A~t! as

n becomes large ~n A `!, replace r
n by x and rewrite the exponent nt as ~n

r !~rt!, or
~1

x!~rt!, so Equation (3) becomes

A~t! 5 A0@~1 1 x!1yx#rt. (4)
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Now, as n A `, r
n A 0, so x A 0. We are interested in what happens to the expression

~1 1 x!1yx as x A 0. This is equivalent to the problem we considered in Section 4.1.
See Exercise 38, where you are asked to show that ~1 1 x!1yx A e as x A 0. Thus,
when interest is compounded continuously at rate r for t years, compound interest
becomes exponential growth. Equation (4) becomes A~t! 5 A0ert.

Continuous interest formula

Suppose A0 dollars are invested in an account that pays interest at rate r
compounded continuously. Then the number of dollars A~t! in the account t
years later is given by

A~t! 5 A0ert. (5)

cEXAMPLE 2 Compound interest Suppose $2400 is invested in an ac-
count in which interest is compounded twice a year at the rate of 8 percent.

(a) How much is in the account at the end of ten years?
(b) How long does it take to double the initial investment?
(c) Answer the same questions if the money is compounded continuously.
(d) Draw graphs of Y1 5 2400 (1.04) ` (2X) (interest compounded twice a year) and

Y2 5 2400 e ` (.08X) (continuous compounding) on the same screen @0, 12# 3
@2400, 5500#. How soon does the continuous interest curve become visibly
higher? Trace and zoom as needed to answer questions (a) and (b).

SolutionStrategy: For (a) and (b),
replace A0 by 2400, r by Follow the strategy.
0.08, and n by 2 in Equa-

A~t! 5 2400~1 1 0.04!2t 5 2400~1.04!2t, so A(t) 5 2400~1.04!2t.tion ~3!, then use the result-
ing equation. For (c), replace

(a) In ten years, t is 10, soA0 by 2400 and r by 0.08 in
Equation ~5!, then use the A~10! 5 2400~1.04!20 < 5258.70resulting equation.

At the end of ten years the account will be worth $5258.70.
(b) Solve the following for t:

4800 5 2400~1.04!2t, 2 5 ~1.04!2t,

ln 2 5 ln~1.04!2t 5 2t ln 1.04, or t 5
ln 2

2 ln 1.04
< 8.8.

The $2400 investment doubles in about 8 years and 10 months, but the account
will not be credited with the last interest until the end of the year.

(c) Using Equation (5) instead of Equation (3),

A~t! 5 2400e0.08t.

In ten years, A~10! 5 2400e0.8 < 5341.30, so continuous interest returns
nearly $83 more on a $2400 investment than semiannual compounding over
that time. To see how long it takes to double the investment, solve for t:

4800 5 2400e0.08t t 5
ln 2
0.08

< 8.66.

The investment doubles in 8 years and 8 months.
(d) The graphs of the two functions are indistinguishable for the first half of the

time interval (until x is about 6) even though when we trace, we can see that
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continuously compounded interest yields about $36 more when x 5 6. We can
get the same answers from tracing along the graphs that we obtained above. It
may help to adjust your window as suggested in the following Technology Tip, and
in addition, to see how the interest is actually added to the account—at the end
of each accounting period—graph Y1 5 2400 (1.04) ` Int (2X) in dot mode rather than
connected mode. b

TECHNOLOGY TIP r “Nice-pixel” windows

If you feel that nice pixel coordinates are helpful in reading information from a
graph, use an x-range that is a multiple of your decimal window range. In the
example above, we want something that includes @0, 12#. On the TI-82 and
Casio fx–7700, the decimal window goes from 24.7 to 4.7, a total of 9.4
units or 94 tenths. If we multiply the number of pixel columns by 1.5, we have
9.4 3 1.5 5 14.1, so @22, 12.1#, works well on the TI-82. Similarly, @22,
12.25# is good on the TI-81, and @0, 12.6# for the TI-85 or Casio fx-9700,
@21, 12# on the HP-38 and HP-48. The y -range must include @2400, 6200#.

Exponential Decay

Certain materials, such as radioactive substances, decrease with time, rather than
increase, with the rate of decrease proportional to the amount. Such negative
growth is described by exponential functions, very much like exponential growth
except for a negative sign in the exponent.

Exponential decay formula

Suppose the rate of decrease of some substance is proportional to the amount
present. The amount A~t! at time t is given by

A~t! 5 A0e2kt (6)

where A0 is the initial amount (the amount present when t is 0), and k is a
positive constant determined by the particular substance.

cEXAMPLE 3 Radioactive decay Strontium-90 has a half-life of 29 years.
Beginning with a 10 mg sample, (a) determine an equation for the amount A~t! after
t years and (b) find how long it takes for the sample to decay to 1 mg. (c) Check your
result in part (b) by drawing a calculator graph of A~t! in @0, 100# 3 @0, 8# and
zooming in as needed.

Strategy: First, replace A0 Solution
by 10 in Equation (6), then

(a) Follow the strategy. A~t! 5 10e2kt, and in 29 years, half the sample will remain,in the resulting equation use
so A~29! 5 5. Substitute 29 for t and 5 for A, soA~29! 5 5 and solve for k.

Using this value of k in
Equation (6) gives the decay 5 5 10e229k or e229k 5

1
2

, so 229k 5 lnS1
2D .equation for strontium-90.

k 5

lnS1
2D

2 29
5

2 ln 2
2 29

< 0.0239.

Therefore, the decay equation for strontium-90 is A~t! 5 10e20.0239t.



(96, 1)

A(t) = 10e– 0.0239t
[0, 100] by [0, 8]
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(b) To find when A~t! is 1, replace A~t! by 1 and solve the resulting equation for t.

1 5 10e20.0239t, lnS 1
10D 5 ln e20.0239t 5 20.0239t,

t 5

ln S 1
10D

20.0239
< 96.

It takes 96 years for 90 percent of the original amount of strontium-90 to
decay.

(c) The graph of A~t! 5 10e20.0239t is shown in Figure 26. Observe that the func-
tion is decreasing. If we zoom in near the point where A~t! 5 1, we find that
t < 96. b

Hatchee Reservoir Revisited

The contamination of Hatchee Reservoir described in the chapter introduction is a
classic case of exponential decay, where the water flowing through the reservoir
flushes out half of the pollutants every fifteen days. According to Equation (6), the
amount A~t! of the toxic chemical left after t days is given by A~t! 5 A0e2kt, where
we must determine the constant k.

cEXAMPLE 4 Will Hatchee be clean by July 4? Find the constant k in the
equation A~t! 5 A0e2kt and determine how much of the toxic chemical will be left
on July 4.

Solution
In fifteen days, t 5 15, and so A~15! 5 0.5A0. Substituting these values into the
equation for A, we have 0.5A0 5 A0e215k. Dividing by A0 and taking the natural
logarithm of both sides, we can solve for k:

0.5 5 e215k

ln 0.5 5 215k

k 5 ~ln 0.5!y~215! < 0.0462.

We store the entire display for computing, but we have A~t! < A0e20.0462t.
As a check, when t 5 60 (June 30), the formula gives A~60! < 0.0625A0,

confirming the simple analysis we gave in the introduction that 6.25% of the
original contamination would remain on June 30. We can now determine the
pollution level on July 4, when t 5 64: A~64! < 0.0520A0. Thus just over 5% will
remain on July 4. City officials will have to decide whether the risk outweighs town
tradition. Since the pollution level is predicted to be so near the declared safe level,
it might pay the city to invest in more testing to see how accurately the mathemat-
ical model predicts the measured pollution level. b

Carbon Dating

Radioactive decay is used to date fossils. The method involves the element carbon.
Carbon-12 is a stable isotope, while carbon-14 is a radioactive isotope with a
half-life of approximately 5700 years. Fortunately for us, the concentration of C14

in the air we breathe and the food we eat is extremely small (about 1026 percent).

FIGURE 26
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Although C14 disintegrates as time passes, the amount of C14 in the atmosphere
remains in equilibrium because it is constantly being formed by cosmic rays. All
living things regularly take in carbon, and the proportion of C14 in living organisms
reflects the proportion in the atmosphere. When an organism dies, however, the C14

is not replenished and the decay process decreases the ratio of C14 to C12. By
measuring this ratio in organic material, it is possible to determine the number of
years since the time of death. The technique is known as carbon dating (see the
Historical Note, “Exponential Functions, Dating, and Fraud Detection”).

cEXAMPLE 5 Dating Crater Lake A tree felled by the eruption that created
Crater Lake in Oregon was found to contain 44 percent of its original amount of
carbon-14. Use 5700 years as the half-life of carbon-14 and determine the age of
Crater Lake.

Strategy: Crater Lake was Solution
formed when the tree died, Follow the strategy.
so find how long the tree has

A~t! 5 A0e2ktbeen dead. Use Equation (6)
and when t is 5700, A~t! is
A0

2 . Solve for k. Substitute 1
2

A0 5 A0e25700k or
1
2

5 e25700k

this value in Equation (6) to
get the decay equation for

Take natural logarithms and use the fact that ln~1
2! 5 2ln 2:carbon-14. Now replace A~t!

by 0.44A0 and solve the re-
2ln 2 5 ln e25700k or 2ln 2 5 25700ksulting equation for t.

or k 5
ln 2
5700

< 0.0001216.

Therefore, the decay equation for carbon-14 is

A~t! 5 A0e20.0001216t (7)

Since 44 percent of the original amount of carbon-14 still remained when the
tree was discovered, find the value of t for which A~t! is (0.44)A0. Substitute
(0.44)A0 for A~t! in Equation (7):

~0.44!A0 5 A0e20.0001216t or 0.44 5 e20.0001216t

ln 0.44 5 ln e20.0001216t or ln 0.44 5 20.0001216t

t 5 2
ln 0.44

0.0001216
< 6751.

Crater Lake was formed approximately 7000 years ago. b

TECHNOLOGY TIP r What about A0?

The formula for A~t! in Example 5 involves the initial amount, A0. If we want
to use graphical methods to solve the problem, once we have the decay
equation, we can take any constant for the initial amount, say A0 5 1. Then
to find the value of t when 44% of the initial amount remains, trace along the
curve A~t! 5 e20.0001216t and find the t-value for which A~t! < .44.
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HISTORICAL NOTE EXPONENTIAL FUNCTIONS, DATING, AND FRAUD DETECTION

The next example presents another illustration of exponential decay.

cEXAMPLE 6 Atmospheric pressure Standard atmospheric pressure at sea
level is 1035 g/cm2. Experimentation shows that up to about 80 km (< 50 mi), the
pressure decreases exponentially. The atmospheric pressure (in g/cm2) at an alti-
tude of h kilometers is given by

P~h! 5 1035e20.12h (8)

Find (a) the atmospheric pressure at 40 km, and (b) the altitude where the atmo-
spheric pressure drops to 20 percent of that at sea level.

Solution

(a) From Equation (8), P~40! 5 1035e~20.12!~40! < 8.5. Hence the atmospheric
pressure at 40 km (<25 mi) is only 8.5 g/cm2, less than 1 percent of the
pressure at sea level.

(b) Find the value of h for which P~h! is 20 percent of the pressure at sea level.
Replace P~h! in Equation (8) by (0.2)(1035) and solve for h.

The discovery of radiocarbon
dating in 1949 by Willard F. Libby
opened new ways to learn about the
past. The half-life of carbon-14
allows dependable dating of organic
material up to a range of 10,000 or
20,000 years.

Potassium allows dating on a
much longer scale, albeit less
precisely. Each of our bodies
contains about a pound of
potassium, including a miniscule
fraction of radioactive potassium-40,
which is changing (into argon gas)
at a rate of about 500 atoms per
second. Potassium-argon dating
established the age of the fossil
hominid Lucy at over 3 million years.

In 1908 bits of bone that comprised part of a
human skull were found in a gravel pit in
Piltdown, Sussex, England. Four years later part
of an apelike jawbone showed up in the same
location. Thus was born Piltdown Man, one of the
strangest puzzles in human paleontology.

Joining a human cranium with an apelike jaw

raised problems for students of
human evolution and fueled a
vigorous controversy that raged for
years. Not until 1953 did fluorine
dating (based on the fact that bones
and teeth absorb fluorine from soil
and groundwater at a constant rate)
finally show that the cranium and
jawbone did not belong together.
The newly discovered radiocarbon
dating showed that the skull dated
from near Chaucer’s time (about
600 years earlier—hardly
prehistoric), and the jaw was even
younger. It had belonged to an
orangutan from the East Indies.

The whole Piltdown affair was
perhaps the greatest hoax in the

history of science. Professionals and amateurs
alike (including Sir Arthur Conan Doyle, creator
of Sherlock Holmes) became embroiled in the
disputes. The identity of the perpetrators remains
unresolved, but progress in the method of science,
including mathematical dating analyses, helped to
uncover the fraud.

Bust of Piltdown Man
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~0.2!~1035! 5 1035e20.12h, e20.12h 5 0.2,

20.12h 5 ln 0.2, h 5
ln 0.2
20.12

< 13.4.

Since h < 13.4, at an altitude of 13.4 km (<8.3 mi, not quite 44,000 ft), the
atmospheric pressure drops to 20 percent of the atmospheric pressure at sea
level. b

In the previous section we saw an example of an application of logarithms to
measure sound levels. The next two examples also illustrate models that apply
logarithms.

Measuring Earthquakes

An earthquake produces seismic waves whose amplitude is measured on a seis-
mograph. Charles Richter, an American geologist, recognized the great variation in
amplitudes of earthquakes and proposed a logarithmic scale to measure their
severity. The magnitude M~A! of an earthquake with amplitude A is a number on
the Richter scale given by

M~A! 5 logSA
A0
D , (9)

where A0 is a standard amplitude.

cEXAMPLE 7 Comparing earthquakes How many times larger was the
amplitude of the Alaskan earthquake on March 28, 1964, which measured 8.6 on
the Richter scale, than the amplitude of a relatively minor aftershock that measured
4.3?

SolutionStrategy: Use Equation (9).
Let A1 and A2 be the two Follow the strategy.
amplitudes, and replace
M~A1!, M~A2!, by 8.6 and

8.6 5 logSA1

A0
D and 4.3 5 logSA2

A0
D .4.3, respectively. Find A1

and A2 in terms of A0.
Write each equation in exponential form and solve for A1 and A2.

A1 5 A0108.6 and A2 5 A0104.3.

Solve the second equation for A0 and substitute into the first equation,

A0 5 A21024.3, so A1 5 ~A21024.3!108.6 5 104.3A2 < 19,953A2.

The amplitude A1 of the 8.3 magnitude earthquake is nearly 20,000 times larger
than the amplitude of the 4.3 aftershock, which explains the enormous amount of
damage done by the original earthquake. b

Acidity Measurement

Chemists determine the acidity of a solution by measuring the hydrogen ion con-
centration (denoted by @H1#, in moles per liter). Such concentrations are very small
numbers. To deal with numbers in a more familiar range, the quantity denoted by
pH essentially puts hydrogen ion concentration on a logarithmic scale.



pg245 [R] G1 5-36058 / HCG / Cannon & Elich cr 11-7-95 QC

4.5 Models for Growth, Decay, and Change 245

Formula for determining acidity of a solution

For a solution with hydrogen ion concentration of @H1# moles per liter, the
corresponding pH value is given by

pH 5 2log@H1#. (10)

If the pH number for a solution is less than 7, then the solution is called acidic;
if the pH is greater than 7, then the solution is called basic. Solutions with pH equal
to 7 are called neutral. For a solution with 1021 moles of hydrogen ions per liter
(@H1# 5 1021), the pH is 2log 1021 5 2(2)1 5 1; such a solution is very
strongly acidic (even one-tenth of a mole of hydrogen ions indicates lots of freely
reacting ions in the solution). At the other end of the scale, if @H1# 5 10213, then
pH 5 2log(10213) 5 13, indicating a strongly basic solution.

cEXAMPLE 8 Fruit juice acidity A certain fruit juice has a hydrogen ion
concentration of 3.2 3 1024 moles per liter. Find the pH value for the juice and
decide whether it is acidic or basic.

Solution
Given that @H1# 5 3.2 3 1024, substitute into Equation (10):

pH 5 2log~3.2 3 1024! 5 2log~0.00032! < 3.5.

A pH of less than 7 indicates that the juice would be classified as acidic. b

EXERCISES 4.5

Check Your Understanding

Exercises 1–6 If $1000 is invested in an account that
earns interest compounded continuously at an interest rate
that doubles the investment in value every 12 years, then
select from the choices below the amount that is closest to
the total value of the investment after the indicated period
of time. As in the text A~t! denotes the amount of money in
the account t years after the investment is made.
(a) $1400 (b) $1500 (c) $2000
(d) $2800 (e) $3000 (f) $4000
(g) $6000 (h) $7000 (i) $8000

1. A~24! 5 . 2. A~36! 5 .

3. A~6! 5 . 4. A~18! 5 .

5. The interest earned during the first 18 years is .

6. The interest earned during the years from t 5 12 to
t 5 24 is .

Exercises 7–10 A radioactive substance has a half-life of
30 days. Select from the list below the choice that is closest
to the amount of the substance that remains after the indi-
cated period of time. A0 denotes the number of grams of the
substance when t is 0, and A~t! denotes the number of grams
t days later.
(a) 0.25A0 (b) 0.35A0 (c) 0.50A0

(d) 0.70A0 (e) 0.75A0 (f) 0.80A0

7. A~60! 5 . 8. A~15! 5 .

9. A~45! 5 .

10. The amount of the substance that decays during the first
60 days is .

Develop Mastery

Exercises 1–2 Number of Bacteria

1. The number of bacteria in a culture doubles every 1.5
hours. If 4000 are present initially,
(a) How many will there be three hours later?
(b) Four hours later?
(c) How long does it take for the number to increase to

40,000?

2. If the number of bacteria in a sample increases from
1000 to 1500 in two hours, how long does it take for the
number of bacteria
(a) to double? (b) to triple?

Exercises 3–5 Population Growth

3. The world population in 1968 was 3.5 billion; in 1992
it was 5.5 billion. Assume exponential growth.
(a) Predict the population in the year 2000.
(b) When will the population reach 7 billion?
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4. Assuming an annual population increase of 1.5 percent
since 1968 (when the world population was 3.5 billion)
(a) Show that n years after 1968, the population P~n! is

(3.5)(1.015)n billion.
(b) Determine the population for 1992. How does your

calculation agree with the information in Exer-
cise 3?

5. In 1960 the population of the United States was 180
million; in 1970 it was 200 million. Assume an expo-
nential rate of growth and predict the population for the
year 2000.

Exercises 6–12 Compound Interest Assume interest is
compounded continuously and that all interest rates are
annual.

6. Suppose $1000 is invested in an account that earns 8
percent interest.
(a) How much interest is in the account 10 years later?
(b) How long does it take the money to double?
(c) To triple?

7. Suppose $1000 invested in a savings account increases
over three years to $1200. What rate of interest is being
paid?

8. An investment of $800 in a savings certificate that pays
10 percent interest has grown to $2000. How many
years ago was the certificate purchased?

9. An investment doubles in 8 years. What is the rate of
interest?

10. How long does it take for an investment to double if the
rate of interest is
(a) 8 percent? (b) 12 percent? (c) r percent?

11. Suppose you invest $1000 in a savings account at 5
percent interest, and at the end of 6 years you use the
accumulated total to purchase a savings certificate that
earns 6 percent interest. What is the value of the savings
certificate 6 years later?

12. An annuity pays 12 percent interest. What amount of
money deposited today will yield $3000 in 8 years?

Exercises 13–18 Radioactive Decay

13. A radioactive isotope, radium-226, has a half-life of
1620 years. A sample contained 10 grams in 1900. How
many grams will remain in the year
(a) 2000? (b) 3000?

14. Radioactive lead, lead-212, has a half-life of 11 days.
How long will it take for 20 pounds of lead-212 to decay
to 8 pounds?

15. Another isotope of lead, lead-210, has a half-life of 22
years. How much of a 10-pound sample would remain
after 10 years?

16. Radioactive iodine-131 is a component of nuclear fall-
out.
(a) If 10 mg of iodine-131 decays to 8.4 mg in 2 days,

what is the half-life of the isotope?
(b) In how many days does the 10 mg sample decay to

2 mg?

17. After two years, a sample of a radioactive isotope has
decayed to 70 percent of the original amount. What is
the half-life of the isotope?

18. A 12 mg sample of radioactive polonium decays to 7.26
mg in 100 days.
(a) What is polonium’s half-life?
(b) How much of the 12 mg sample remains after six

months (180 days)?

Exercises 19–22 Carbon Dating Use the carbon dating
information discussed in this section.

19. A piece of petrified wood contains 40 percent of its
original amount of C14. How old is it?

20. If the Dead Sea Scrolls contain about 80 percent of
their original C14, how old are they?

21. How old is a fossil skeleton that contains 85 percent as
much C14 as a living person?

22. If the Piltdown cranium (the Historical Note,
“Exponential Functions, Dating, and Fraud Detection”)
was found to contain 93 percent of the C14 found in a
modern skeleton, what is the approximate age of the
cranium?

Exercises 23–25 Earthquake Comparisons

23. A 1933 earthquake in Japan registered 8.9 on the
Richter scale, the highest reading ever recorded. Com-
pare its amplitude to that of the 1971 earthquake in San
Fernando, California, which measured 6.5.

24. The famous San Francisco earthquake of 1906 regis-
tered 8.4 on the Richter scale. Compare its amplitude
with that of the 1976 earthquake in Guatemala, which
measured 7.9.

25. If an earthquake in Ethiopia had an amplitude 100
times larger than an earthquake that measured 5.7 on
the Richter scale, what would the Ethiopian earthquake
measure?

Exercises 26–27 Atmospheric Pressure

26. Example 6 contains a formula for the atmospheric pres-
sure P~h! (in g/cm2) at an altitude of h km. If h is
measured in miles and pressure is measured in lb/in2,
then the corresponding equation is P~h! 5 14.7e20.19h.
(a) Find the atmospheric pressure at an altitude of 25

miles.
(b) At what altitude is the atmospheric pressure one-

tenth of that at sea level?
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27. Use the equation for atmospheric pressure in Exam-
ple 6 to find the altitude at which the atmospheric pres-
sure is 100 g/cm2.

28. A satellite is powered by a radioactive isotope. The
power output P~t! (measured in watts) generated in t
days is given by P~t! 5 50e2ty250.
(a) How much power is available at the end of a year

(365 days)?
(b) What is the half-life of the power supply?
(c) If the equipment aboard the satellite requires

10 watts of power to operate, what is the opera-
tional life of the satellite?

Exercises 29–30 Acidity

29. The hydrogen ion concentration for a sample of human
blood is found to be 4.5 3 1028 moles per liter. Find
the pH value of the sample. Is it acidic or basic?

30. Find the pH value for
(a) vinegar, @H1# 5 6.3 3 1024

(b) milk, @H1# 5 4 3 1027

(c) water, @H1# 5 5.0 3 1028

(d) sulphuric acid, @H1# 5 1.

31. Oil is being pumped from a well. If we assume that
production is proportional to the amount of oil left in
the well, then it can be shown that the number of barrels
of oil, A~t!, left in the well t years after pumping starts,
is given by A~t! 5 Ce2kt, where C and k are constants.
When t is 0 it is estimated that the well holds 1 million
barrels of oil, and after six years of pumping, 0.5 mil-
lion barrels remain. It is not profitable to keep pumping
when fewer than 50,000 barrels remain in the well.
What is the total number of years during which pump-
ing remains profitable?

32. The population of Taunton is growing exponentially at
an annual rate of 5 percent.
(a) Show that after t years the population increases

from 13,000 to N (in thousands) given by N 5
13~1.05!t.

(b) In how many years will the population double?
(c) In how many years will the population triple?

33. Looking Ahead to Calculus A 500 gallon tank of
brine starts the day with 150 pounds of salt. Fresh water

CHAPTER 4 REVIEW

Test Your Understanding

True or False. Give reasons.

1. ln x is positive for every positive x.

2. ln x 2 is defined for every real number x.

3. ln 1 5 e.

runs into the tank at the rate of 5 gallons per minute and
the well-stirred mixture drains at the same rate. In cal-
culus it can be shown that the number of pounds, A~t!,
of salt still in the tank t minutes later is given by
A~t! 5 150e20.01t.
(a) How many pounds of salt remain in the tank after

30 minutes?
(b) How many minutes does it take to reduce the

amount of salt in the tank to 50 pounds?

34. In Example 3 we developed an equation for the amount
A~t! of strontium-90 (half-life 29 years) left after t
years, starting with an initial amount A0: A~t! 5
A0e20.0239t. Show that A~t! is also given by A~t! 5
A0~22ty29!. (Hint: In Example 3 k 5 ln 2

29 , so A~t! 5
A0e2~t ln 2!y29.)

35. Spreading a Rumor A rumor is spreading about the
safety of county drinking water. Suppose P people live
in the county and N~t! is the number of people who have
not yet heard the rumor after t days. If the rate at which
N~t! decreases is proportional to the number of people
who have not yet heard the rumor, then N~t! is given by
N~t! 5 Pe2kt, where k is a constant to be determined
from observed information. In Calaveras County, popu-
lation 50,000, suppose 2000 people have heard the ru-
mor after the first day (when t is 1).
(a) How many people will have heard the rumor after

10 days?
(b) After how many days will half of the population

have heard the rumor?

36. Use the equation in Exercise 35. If 10 percent of a
county population of 20,000 have heard the rumor after
the first two days, then how many people will have
heard the rumor after three additional days?

37. Hatchee Reservoir Contamination In Example 4
suppose the pollutant level decreases by one half every
10 days. What percentage of the toxic chemical will be
present on
(a) May 21? (b) July 4?

38. Draw a calculator graph of y 5 ~1 1 x!1yx. Use the
graph to see what happens to y when x A 0.

4. ln e 5 1.

5. ~ln x!2 5 2~ln x! for every x . 0.

6. If x and y are positive numbers, then ln~ x
y! 5 ln x

ln y .

7.
1
2

~ln x 2! 5 ln x for every positive x.
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8. For any real numbers x and y, 3x 1 3y 5 3x1y.

9. For any real number x, ex11 5 ex 1 e.

10. For every real number x, 4x 5 22x.

11. If f ~x! 5 3xy2 and g~x! 5 ~Ï3!x, then f ~x! 5 g~x! for
every real number x.

12. For every real number x, e2x is positive.

13. The domain of ln~x 2 1! is $x _ x . 0%.

14. The solution set for ex21 , 1 is $x _ x , 1%.

15. There is only one real number x that satisfies
ln~x 1 2!2 5 ln~x 2 1 4!.

16. If x is any number between 0 and 1, then ln x is negative.

17. The graph of f ~x! 5 ex crosses the x-axis at (0, 1).

18. e2ln x 5
1
x

for every positive number x.

19. There is no number x for which e2x 5 ex.

20. log(5 1 2) 5 log 5 1 log 2.

21. log 5 1 log 2 5 1.

22. The solution set for ~ln x!2 5 ln x is the set $1, e%.

23. e0 5 0.

24. log~ 1
10! 5 21.

25. For every x $ 0, 22x $ 32x.

26. The formula f ~x! 5 ~23!x does not define an exponen-
tial function.

27. For every real number x, 2x # 3x.

28. e ln~25! 5 25.

29. The graph of y 5 1 1 ln x crosses the x-axis at S1
e

, 0D.

30. The equation ln x 1 ln~x 1 1! 5 0 has no solutions.

31. ln x 1 ln~x 2 1! 5 ln@x~x 2 1!# when x . 1.

32. For every real number x, 2x 1 2x 5 2x11 .

33. If log2 x 5 3, then x 5 8.

34. (a) 20 5 1 (b) ~22!0 5 1
(c) 022 5 0 (d) 00 5 1

35. There is no real number x for which ln x 5 21.

36. The formula g~x! 5 ~Ï5 2 2!x defines g as an expo-
nential function.

37. The formula g~x! 5 ~2 2 Ï5!x defines g as an expo-
nential function.

38. The graph of y 5 ln~x 1 2! crosses the x-axis at
(21, 0).

39. ~x 2 2 1!0 5 1 for every real number x.

40. ln ~2x! is undefined for any real number x.

41. The equation e2x 1 1 5 0 has no solution.

42. A root of e2x 2 1 5 0 is 0.

43. The function f ~x! 5 22x is a decreasing function.

44. The graph of the function f ~x! 5 ex 1 1 lies above the
line y 5 1.

45. The range of the natural exponential function is R.

46. The smallest prime number greater that 33 is 23.

47. The sum of all of the integers between ln 3 and ln 500
is 20.

48. The graph of every exponential function contains the
point (0, 1).

49. If b . 1, then logb x is an increasing function.

50. (a) log2 4 . log4 2 (b) (log2 4)(log4 2) 5 1

51. For every positive x, ln~2x! 5 2ln x.

52. For every positive x, lnS1
xD 5

1
ln x

.

53.
ln 5
ln 3

5 ln 5 2 ln 3.

54.
3Ïx is a real number only for x $ 0.

55.
4Ïx is a real number only for x $ 0.

56. 2~3x! 5 ~23!x for every real number x.

57. To draw a graph of y 5 ex12, translate the graph of
y 5 ex horizontally 2 units to the left.

58. If f ~x! 5
1

1 1 2x , then f is a decreasing function.

59. For every real number x,
3x

1 1 3x is a number between 0

and 1.

60. The graph of y 5
32x

1 1 32x is the same as the graph of

y 5
1

1 1 3x .

61. The graph of y 5 ex 1 e2x is symmetric about the y-
axis.

62. If f ~x! 5 ex 1 e2x, then ~ f ~x!!2 5 2 1 f ~2x!.

63. If f ~x! 5 1 1 e2x, then f is an increasing function.

64. The graph of y 5 1 1 e0.5x and x 1 y 5 3 intersect in
the second quadrant.

65. The domain of f ~x! 5 ln~3 2 x! 1 ln~x 1 1! is
$x _ x . 0%.

66. If f ~x! 5 1 2 ln x, then f has an inverse.

67. The graph of f ~x! 5 ln~x 3 1 x 2 2 3x 1 4! has no
turning points.

68. If f ~x! 5 ex 2 4 and g~x! 5 ln~x 1 4!, then f and g
are inverses of each other.
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Exercises 69–74 A graph is shown. Select from the fol-
lowing list the function corresponding to the graph.

(a) f ~x! 5 ln x (b) f ~x! 5 ln~x 2 2!
(c) f ~x! 5 ln~x 1 2! (d) f ~x! 5 ln x 1 1
(e) f ~x! 5 ex11 (f) f ~x! 5 22x 1 1
(g) f ~x! 5 e ln x (h) f ~x! 5 ln ex

(i) none of the above

69.

70.

71.

72.

73.

74.

Review for Mastery

Exercises 1–9 Exact Form Evaluations Evaluate and
give the result in exact form.

1. 5~521 1 522! 2. ~49 · 721!21 3. log3Ï27

4. ln Ïe 5. ln(log 10) 6. e2ln 7

7. 1022~log 7! 8. log3S 3

Ï27
D

9. log Ï40 2 log 2

Exercises 10–15 Approximations Give an approxima-
tion rounded off to three decimal places.

10. log 6 11. ln 47 12. log(ln 5)

13. log~e 2 1! 14. e 1 e21 15. ep

16. What is the product of the smallest and the largest
integers between e2 and e3?

17. How many prime numbers are in the set
$x _ e , x , e2%?

Exercises 18–19 Manipulating Radicals

18. (a) If b 5 Ï2 and

c 5
ÏÏ5 1 2 2 ÏÏ5 2 2

ÏÏ5 2 1
,

use your calculator to get approximations for b
and c.

(b) Is b 5 c? Justify your conclusion.

19. If c 5
Ï3~Ï2 1 Ï6!

3 1 Ï3
find a simpler expression for c.

(Hint: First find c 2.)
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Exercises 20–23 Function Evaluations Evaluate f ~x!
at the given values of x. Give the result rounded off to two
decimal places.

20. f ~x! 5 xex; 21, Ï2

21. f ~x! 5 x ln~x 2 1!; 3, Ï3

22. f ~x! 5 log3 x; 5, Ï5

23. f ~x! 5 ex 2 e2x; 21, p

Exercises 24–32 Exact Form Solutions Solve algebra-
ically. Give the result in exact form.

24. 52x11 5 Ï5 25. log~2x 1 1! 5 1

26. log5~5x21! 5 2 27. log7~2x 2 1! 5 1

28. 9x 5 27122x

29. ln x 1 ln~x 1 1! 5 ln 2 30. 1 1 log x 5 0

31. ln x 2 ln~x 2 1! 5 1 32. x 1 ln ex 5 2

Exercises 33–41 Decimal Approximations Solve alge-
braically. Give the result rounded off to two decimal places.

33. ln~2x 1 1! 5 1 34. ex 5 1012x

35. 5x 5 3~2x! 36. 3x23 5 4

37. 3ex 2 4 5 0

38. log x 1 log~x 2 1! 5 1

39. ln ~x 2 e! 1 ln ~x 2 1! 5 1

40. ex 5 ln 2 41. e2x 1 ex 2 2 5 0.

Exercises 42–47 Domain Determine the domain of f.
Check with a calculator graph.

42. f ~x! 5 ln~x 2 2!

43. f ~x! 5 ln~x 2 2 2x!

44. f ~x! 5 ln ex21

45. f ~x! 5 ln~ex 2 1!

46. f ~x! 5 ln@x~x 2 1!#

47. f ~x! 5 ln x 1 ln~x 2 1!

Exercises 48–53 Domain, Range Use a graph to help
determine the domain and range.

48. y 5 ln~x 2 1! 49. y 5 1 1 ln x

50. y 5 e2x 51. y 5 1 1 e2x

52. y 5 e ln x 53. y 5 x 2e2ln x

Exercises 54–57 Intercept Points Use a graph to find
the x-intercept point for the graph of f.

54. f ~x! 5 ln x 1 ln~x 2 1!

55. f ~x! 5 ex 2 2

56. f ~x! 5 ex 2 e2x 2 1

57. f ~x! 5 ln~2x 2 4!

58. Is there a real number x such that
(a) 32x 5 1? (b) 32x 5 21?
(c) ex 1 1 5 0? (d) ln~2e2x! 5 1?
Give reasons.

59. Is the graph of y 5 ln x 1 ln~x 2 1! the same as the
graph of y 5 ln~x 2 2 x!?

60. From a graph of y 5 1 1 ln x, find the x-intercept
point, and the solution set for the inequality 1 1
ln x , 0.

61. Show that
1

log2 x
1

1
log3 x

1
1

log4 x
5 logx 24 for every

positive number x not equal to 1.

62. Draw a graph of f ~x! 5 ln~x 2 2 6x 1 9.5!
(a) How many zeros does f have?
(b) Find the zeros (1 decimal place).

Exercises 63–64 Local Minima Find the exact coordi-
nates of the local minimum point for the graph of f. Check
graphically.

63. f ~x! 5 log2 ~x 2 2 4x 1 12!

64. f ~x! 5 log3 ~x 2 2 2x 1 10!

Exercises 65–68 Find Inverse (a) Find a formula for
f 21. (b) Draw graphs of f and f21 on the same screen. If the
graphs intersect, find the coordinates of the point of inter-
section (1 decimal place).

65. f ~x! 5 4 2 ln x

66. f ~x! 5 4 2 log3 x

67. f ~x! 5 1 1 2x11

68. f ~x! 5 e12x 2 3

Exercises 69–71 Solve the equation (1 decimal place).

69. 3 1 ln x 5 x

70. 4 1 log3 x 5 x

71. ex 2 2 5 x

72. The equation 2x 5 x 6 has three roots, one is negative
and the other two are positive. Find the largest root
(1 decimal place).

73. Describe a strategy for finding the largest root of
3x 5 x 6.

74. Solve the equation algebraically in exact form. Use a
graph to support your solution. Explain why the solu-
tions in (a) and (b) are identical.
(a) log2~x 2 2 4x 1 5! 5 1
(b) log2_ x 2 2 4x 1 5 _ 5 1

75. A sum of $800 is invested in a savings account that
earns 5 percent interest compounded continuously.
(a) How much is in the account at the end of 10 years?
(b) How long will it take for the account to reach

$5000?

76. How much money should be invested in an annuity that
earns 10 percent interest compounded continuously to
have an investment worth $5000 in 8 years?
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77. Radioactive iodine-131 has a half-life of 8 days. What
percentage of a sample will remain after 3 days? After
20 days?

78. A fossil tree has 75 percent as much carbon-14 as a
living tree. How old is the fossil tree?

79. The population of a city increases at the rate of 8 per-
cent yearly. Assuming exponential growth, in how
many years will the population double?

80. Two firecrackers produce a sound of 90 dB. What
would be the loudness level of one alone?

81. The following table lists measured intensity values for
some commonly heard sound sources. Complete the
table by entering the corresponding loudness levels. Re-
call Equation (3) of Section 4.4, I0 5 10212. Extended
exposure to sounds of loudness levels exceeding 90 dB

usually results in permanent ear damage and hearing
loss.

Source of Loudness
Sound Intensity (w/m2) Level (dB)

Whisper 1 3 10210

Busy downtown
traffic 1 3 1025

Siren
(at 30 meters) 1 3 1022

Indoor rock
concert 1

Jet plane
(at 30 meters) 100
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IN CHAPTER 2 WE INTRODUCED the concept of functions. Chapters 3 and 4 explored
important special functions, namely polynomial, exponential, and logarithmic
functions. Equally important in both applications and theoretical mathematics are
the trigonometric functions we introduce in this chapter.

Trigonometry (meaning “triangle measurement”) has a long and remarkable
history. Some of its roots and applications go back to antiquity, but it continues to
find new applications through the space age and beyond. Trigonometry has pro-
vided tools for surveying and navigation for thousands of years. Today it is built into
sophisticated devices that, for example, help satellites navigate among the planets
or determine how fast the spreading ocean floor is pushing continents apart.

Partly because it has served so many different uses, trigonometry may appear
somewhat schizophrenic in its presentation. Triangle and circle measurement com-
monly use degree measure, while all modern applications of trigonometry that
describe periodic phenomena—from tides to orbiting satellites to the wave nature
of quantum physics—require functions of real numbers, not degrees. In Sec-
tion 5.1 we introduce both modes of angle measure because it is important to
become familiar with both. In Section 5.2 the trigonometric functions are also
defined in both modes.

TRIGONOMETRIC AND
CIRCULAR FUNCTIONS

5.1 Angles and Units of Measure

5.2 Trigonometric Functions and the Unit Circle

5.3 Evaluation of Trigonometric Functions

5.4 Properties and Graphs

5.5 Inverse Trigonometric Functions

253
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5.1 A N G L E S A N D U N I T S O F M E A S U R E

. . . mathematics, just as all other scientific branches, is developed in the
process of examining, verifying, and modifying itself.

Yi Lin

The study of plane geometry considers all geometric figures as sets of points in aI intended to take either plane. An angle, for instance, is the union of two rays with a common endpoint. In
physics or mathematics trigonometry we talk about angles of a triangle as the union of two line segments
. . . and intended to

that have a common endpoint. More critically, however, the measure of an anglebecome a high school
involves the notion of rotation. For most purposes, we consider an angle as beingteacher. I found myself

very excited by a course generated by rotating a ray in the plane about its endpoint, from an initial position
called Physical to a final position. The initial position is called the initial side and the final position
Measurements. We kept is called the terminal side of the angle. The point about which the ray rotates is
measuring things to more

called the vertex of the angle. An angle is the union of two rays together with aand more decimal places by
rotation.more and more ingenious

methods. The measure of an angle is described by the amount of rotation. An angle has
Frederick Mosteller positive measure if the rotation is counterclockwise, and negative measure if the

rotation is clockwise. For brevity, we say the angle is positive if its measure is
positive. Figure 1 illustrates the labeling of angles and rotation. The curved arrow
indicates the direction and amount of rotation. Angles A and B are positive while
angle is negative. The rotation in angle B is greater than one revolution.

Units of Angular Measure

Your calculator operates both in degree mode and in radian mode, reflecting two
different ways of measuring angles. The modes are related by their measures of one
complete revolution. The measure of one revolution is 360 degrees, or 2p radians.

Degree measure. In geometry, angles are measured most often in degrees, min-
utes, and seconds, or decimal fractions of degrees. Degree measure is part of our
legacy from Babylonian mathematics, with numeration based on multiples and
fractions of 60. Units of time (hours, minutes, seconds) have the same historical
basis.

Figure 2 illustrates several angles and their degree measures. For brevity, we
write, for example, A 5 908 to denote “the measure of angle A is 908.”

FIGURE 1



A = 90°


B = 45°


C = 450°


D = – 180°




1 radian

r

r

r

2 radians
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Degrees, minutes, and seconds are related by the following:

1 degree, written 18, is
1

360
of a complete rotation.

1 minute, written 19, is
1

60
of a degree.

1 second, written 10, is
1

60
of a minute, or

1
3600

of a degree.

Your calculator may allow you to enter angles in degree–minute–second (DMS)
form (see your instruction manual), but you can also use the relations above to
change between DMS and decimal forms, as in the next example.

cEXAMPLE 1 DMS to decimal form Express 368169230 in decimal form
and round the result to three decimal places.

Solution
169 is 16

60 of a degree, and 230 is 23
3600 of a degree, so we have

368169230 5 S36 1
16
60

1
23

3600D8
< 36.2738. b

cEXAMPLE 2 Decimal form to DMS Express 64.248 in degrees, minutes,
and seconds.

Solution
First convert the decimal part, 0.248, into minutes. Since 18 is 609,

0.248 5 ~0.24!~609! 5 14.49.

Next convert the 0.49 into seconds.

0.49 5 ~0.4!~600! 5 240.

Therefore, 64.248 is 648149240. b

Radian measure. The radian measure of an angle is determined as a ratio of arc
length to radius. That is, if we have a segment of length equal to the radius and lay
it out along the circle, the central angle is 1 radian. An arc length of two radii (or
a diameter of the circle) measures a central angle of 2 radians. See Figure 3. Since
the total arc length of a circle (its circumference) is 2pr, the radian measure of one
revolution is 2p radians.

Greek letters such as u (theta) and f (phi) are often used to refer to angles. For
an arbitrary angle u, take a circle of a radius r with center at the vertex, with the
initial side meeting the circle at A and the terminal side at B. Think of a point P
moving around the circle from A to B. The directed distance s that P travels is the
directed arc length associated with u (see Figure 4.) For counterclockwise rotation,
s is positive; for clockwise rotation, s is negative. If the rotation is greater than one
revolution, the arc length is greater than 2pr (positive or negative), so s can be any
real number. The radian measure of u is defined as the ratio of s to r. Note that this
definition is independent of any particular circle.

FIGURE 2

FIGURE 3
An arc length of one radius

measures 1 radian
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Definition: radian measure of an angle

Suppose u is any angle and C is a circle of radius r with its center at the
vertex of u. If s is the directed arc length associated with u, then the radian
measure of u is s

r ; that is,

u 5
s
r

.

In taking the ratio of two lengths, units cancel; thus radian measure is simply
a real number (no units). If, for example, u is an angle such that in a circle of radius
2 centimeters, the associated arc length is 2.6 centimeters (see Figure 5). Then the
measure of u in radians is given by

u 5
s
r

5
2.6 cm
2 cm

5 1.3.

The units cancel, and we write simply u 5 1.3. We could emphasize that the radian
measure of u is 1.3 by writing u 5 1.3 radians, but our normal convention is that
radians need not be written. When the measure of an angle is given as a real
number, it is understood that the measure is radians.

cEXAMPLE 3 Radian measure of central angles In Figure 6, a and b are
central angles of a circle of radius 2. The lengths of the subtended arcs are sa 5 3.6
for a and sb 5 13.6 for b. Determine the measures of a and b in radians.

Solution

a 5
sa

r
5

3.6
2

5 1.8

The measure of a is 1.8 radians.

b 5
sb

r
5

13.6
2

5 6.8

The measure of b is 6.8 radians. The measure of b is greater than one revolution
(2p < 6.28), as the arrow in the figure indicates. b

Degree–Radian Relationships

In many cases we may have the measure of an angle in degrees when we need the
radian measure, or vice versa. This requires a technique for conversion. Since one
complete rotation is measured by either 3608 or 2p radians, we have the necessary
equivalence. The basic relationship 3608 5 2p radians connects degree and radian
measures.

Degree–radian conversions

1808 5 p radians. (1)

18 5
p

180
radians or 18 < 0.017453 radians,

1 radian 5 S180
p
D8

or 1 radian < 57.2968.

See Figure 7 for equivalent measures of selected angles.

FIGURE 4
Directed arc length s is the
distance P travels along the

circle from A to B.

FIGURE 5

FIGURE 6



(c)



= 90°p
2



2 = 360°p

(a)  (d)



= 60°p
3

 (b)

p = 180°



= 30°p
6 = 45°p

4



= 60°p
3 = 90°p

2 = 180°p



1 radian 2 radians 3 radians 4 radians

5 radians 6 radians
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Most of us are familiar with degree measure, and because radian measure is so
important in calculus, we need to learn some convenient equivalences. There are
a few angles that are used so often, we need to recognize them immediately in both
degree and radian measure:

p 5 1808,
p

2
5 908,

p

3
5 608,

p

4
5 458,

p

6
5 308.

For most of us, a visual reminder of these relations is helpful, as in Figure 8.
In addition to thinking in terms of fractions of p radians, you need to develop

a feeling for radian measure expressed simply as numbers. For example, 1 radian
is about 57.38, almost 608. Similarly, an angle of 3 radians is very nearly a straight
angle (remember that 3.14 < p 5 1808). See Figure 9. Right angles are so com-
mon that the decimal approximation of py2 as 1.57 will become very familiar.

cEXAMPLE 4 Degree–radian conversion Draw a diagram that shows the
angle and then find the corresponding radian measure. Give the result both in exact
form and as a decimal approximation rounded off to two decimal places.

(a) a 5 2108 (b) b 5 5858 (c) g 5 21508

Solution
Diagrams in Figure 10 show the angles. To convert from degree measure to radian
measure, multiply by p

180 .

FIGURE 7
Degree–radian measure for some familiar angles.

FIGURE 8
Degree and radian measure for some familiar angles.

FIGURE 9
Integer multiples of 1 radian.
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(a) a 5 2108 5 210S p

180D 5
7p

6
< 3.67

(b) b 5 5858 5 585S p

180D 5 S13p

4 D < 10.21

(c) g 5 21508 5 2150S p

180D 5 2
5p

6
< 22.62 b

cEXAMPLE 5 Radian–degree conversion If the radian measure of u is
2.47, find its degree measure rounded off to one decimal place and then to the
nearest minute.

Strategy: To get the degree Solution
measure, multiply by 180

p . Follow the strategy.
Convert the decimal part of
a degree to minutes by mul- 2.47 radians 5 2.47S180

p
D8

< 141.52057548.tiplying by 60.

Rounded off to one decimal place, 2.47 radians < 141.58; to the nearest minute,
2.47 radians < 1418319. Hence, u is approximately 1418319. b

Applications of Radian Measure: Arc Length and Area

In a circle a given central angle between 0 and 2p determines a portion of the circle
called a sector, as indicated by the shaded region shown in Figure 11. For the
sector shown in the figure with central angle u, suppose the length of the subtended
arc is s and the area of the sector is A. The ratios of u, s, and A to the respective
measures 2p , 2pr, and pr 2 for the entire circle are equal, that is,

u

2p
5

s
2pr

,
u

2p
5

A
pr 2 ,

s
2pr

5
A

pr 2 .

Solving for s and A ,

s 5 ru, A 5
1
2

r 2u, A 5
1
2

rs.

Arc length and the area of a circular sector

Suppose u is a central angle of a circle of radius r. Let s denote the length of
the subtended arc and let A denote the area of the sector. If u is measured in
radians, then s and A are given by

s 5 ru (2)

A 5
1
2

r 2u A 5
1
2

rs (3)

FIGURE 10

FIGURE 11



r = 3.6

= 150°u
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r

30°
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A =
px2
12

p
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cEXAMPLE 6 Arc length/area of circular sector The radius of a circle is
3.6 centimeters and the central angle of a circular sector is 1508. Draw a diagram
to show the sector and find the arc length and the area of the sector.

Strategy: Equations ~2! and Solution
~3! require u to be in radi- The sector is the shaded region in Figure 12. Following the strategy,
ans. First convert 1508 to
radians and then use Equa-

u 5 1508 5 150S p

180D 5
5p

6
.tions ~2! and ~3!.

Substitute 3.6 for r and
5p

6
for u in Equations ~2! and ~3!

s 5 3.6S5p

6 D 5 3p < 9.42,

A 5
1
2

~3.6!2S5p

6 D 5 5.4p < 16.96.

Round off to two significant digits to get an arc length of 9.4 cm and an area of
17 cm2. b

cEXAMPLE 7 Area as a function Given a circular sector with central angle
of 308. (a) Give a formula for the area A of the sector as a function of the radius
r. Draw a graph of A~r! in the window @0, 20# 3 @0, 50#. (b) Evaluate A when
r 5 12.7 (one decimal place). (c) Find r when A 5 25.6 (one decimal place).

Solution

(a) Since the formula for area ~Equation ~3!! requires radian measure for the
central angle, we use 308 5 py6, and the area (see Figure 13a) is given by

A~r! 5
p

12
r 2

Graphing Y 5 p X2y12 in the specified window gives us a calculator graph as shown
in Figure 13b, clearly part of a parabola.

(b) Tracing on the calculator graph does not allow us to read with sufficient
accuracy the value of A when r 5 12.7. We can zoom in for more accuracy, or
we can return to the home screen and evaluate p (12.7)2y12 . Either way, we get an
area of approximately 42.2.

(c) If pr 2y12 5 25.6, then r 5 Ï~12!~25.6!yp < 9.9. b

cEXAMPLE 8 Circular motion Assume that the moon travels around the
earth in a circular path of radius 239,000 miles and that it makes one complete
revolution every 28 days.

(a) Find a formula for the distance D~x! (in thousands of miles) that the moon
travels in x days. Draw a calculator graph. How far does the moon travel (b) in
10 days? in 21 days and 6 hours? (c) How many days does it take for the moon
to travel a million miles? A billion miles?

FIGURE 12

FIGURE 13
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HISTORICAL NOTE MEASUREMENT OF THE CIRCUMFERENCE OF THE EARTH

Solution

(a) The distance traveled in one revolution is 2pr, or 478,000p miles
(< 1.50 million), every 28 days. One day’s distance is 2pry28, where the
radius is 239 thousand miles, from which the number of thousands of miles is
given by

D~x! 5
239p

14
x.

A calculator graph in @0, 30# 3 @0, 1600# is shown in Figure 14.
(b) Either from the graph or from the formula, D~10! < 536,000 miles. Six hours

is a quarter of a day; in 21 days, 6 hours, D~21.25! < 1,140,000 miles.

One of the earliest and most
dramatic applications of
trigonometry was made by
Eratosthenes a little before 200 B.C.
As his name suggests, Eratosthenes
was of Greek descent, but he spent
his life in Egypt during the reign of
Ptolemy II and later became the
head of the greatest scientific
library in the ancient world at
Alexandria.

Travelers reported that at
Syene (the modern city Aswan), the
sun cast no shadow at noon on the
summer solstice (the longest day of
the year). Eratosthenes reasoned,
then, that at Syene on that date, the
sun’s rays were coming directly toward the center
of the Earth. Alexandria was supposed to be
directly north of Syene. By measuring the angle
of the sun’s rays at Alexandria at noon on the
same day, Eratosthenes realized that he could use
geometric relationships to find the circumference
of the Earth.

In the diagram, A represents Alexandria and
B, Syene. The ratio of the distance from A to B,
the arc length s, to the entire circumference C
must equal the ratio of angle u to the entire
central angle (a complete revolution).

Symbolically,

s
C

5
u

One revolution

By the best estimates of the day,
the distance from Alexandria to
Syene was 5000 stadia, a distance
estimated from travel by camel
caravans by surveyors trained to
count paces of constant length.
Eratosthenes measured angle u at
Alexandria to be 1

50 of a complete
revolution, leading to the equation,

5000
C

5
1

50
,

from which he calculated the circum-
circumference of the earth to be

C 5 50 · 5000 5 250,000 stadia.

Comparison with modern measurements is
difficult because the measuring unit, the stadium,
varied in size, but Eratosthenes’ estimate would
compare to something near 24,000 miles. Several
compensating errors probably contributed to the
truly remarkable accuracy of his figure, but the
real genius Eratosthenes lay in his analysis of the
problem and his recognition that geometric figures
can tell us something about the nature of the
world that we can learn in no other way.

FIGURE 14
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(c) A million miles is a thousand thousand ~106 5 103103!, so we want to solve for
x when D~x! 5 1000: x 5 14 · 1000y~239p! < 18.6 days, less than three
weeks. A billion miles is 109y103 5 106 thousands. When D~x! 5 106, x 5
14,000,000y~239p! < 18,600 days. Assuming 365 days in a year, it will take
more than 51 years for the moon to travel a billion miles in circling the
earth. b

cEXAMPLE 9 Making a paper cup Draw a circle of radius 4 on a piece of
paper. Cut from a point A on the circle to the center O. You can make a conical cup
by sliding OA to any other radius OB, effectively cutting out a sector with central
angle x 5 /AOB. See Figure 15.

(a) Using the circumference of the cone given by C~x! 5 4~2p 2 x!, as in the
diagram, find a formula for the radius r~x! at the top of the cone and the height
h~x!.

(b) Express the volume V~x! as a function of x and draw a calculator graph.
(c) Find the approximate value of x giving the maximum volume. What is the

maximum volume?

Solution

(a) For the top of the cup, C 5 2pr, so

r~x! 5 C~x!y2p 5
4~2p 2 x!

2p
5

2
p

~2p 2 x!.

Looking at a cross-section of the cup, r and h are legs of a right triangle with
hypotenuse 4 (the radius of the original circle), so r 2 1 h 2 5 42.

h 2 5 16 2
4

p 2 ~2p 2 x!2 5 16 2
4

p 2 ~4p 2 2 4px 1 x 2!,

FIGURE 15
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or

h 2 5
4~4px 2 x 2!

p 2 .

Thus, h~x! 5
2
p

Ï4px 2 x 2.

(b) The volume of a cone is a third of the volume of the cylinder with the same
base, or V 5 1

3 pr 2h, so we have

V~x! 5
p

3
~r~x!!2h~x! 5

p

3
4

p 2 ~2p 2 x!2 2
p

Ï4px 2 x 2.

Thus,

V~x! 5
8

3p 2 ~2p 2 x!2Ï4px 2 x 2, 0 , x , 2p .

(c) Graphing V in @0, 10# 3 @0, 30# gives the graph shown in Figure 16. Tracing
and zooming to find the high point, we find that the maximum volume is about
25.8 cubic inches when x is about 1.15 radians, or about 668. A volume of 25.8
cubic inches is just over 14 ounces. We suggest that you make a cone with
x < 668 and observe that your cone is not standard. Since that is the shape
with the maximum volume and the least waste (overlap), why do you suppose
paper cups are not made to hold the maximum volume? b

Linear and Angular Speed

There are two kinds of speeds associated with rotational motion. To introduce the
basic ideas, consider an example. Suppose a bicycle wheel is rotating at a constant
rate of 40 revolutions per minute (40 rpm). One measure of speed, angular speed,
gives the rate of rotation, frequently denoted by the Greek letter v. The bicycle
wheel’s angular speed is 40 rpm by one measure. Since one revolution is equivalent
to 2p radians, the angular speed can also be expressed as 40~2p! or 80p radians per
minute, or 4800p radians per hour.

Suppose the diameter of the bicycle wheel is 26.4 inches, so that its radius r is
13.2 inches or 1.1 feet. In 1 minute a point on the circumference turns through an
angle u equal to 80p radians, and the distance s traveled by point on the circumfer-
ence in 1 minute is

s 5 ru 5 ~1.1!~80p! 5 88p .

Hence, the point travels 88p feet in 1 minute. The linear speed of a point on the
circumference is 88p ft

min < 276 ft/min.

Relationship between linear and angular speeds. For a particle moving in a
circular path at a uniform rate, the linear and angular speeds are obviously related.
Suppose that such a particle P moves from point A to point B along a circle of radius
r, as indicated in Figure 17. If the central angle AOB is u, the distance (arc length)
from A to B is s, and P moves from A to B in time t, then the linear and angular
speeds are

v 5
s
t

and v 5
u

t
.

FIGURE 16

FIGURE 17
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Since s 5 ru (where u is measured in radians),

v 5
s
t

5
ru
t

5 rSu

tD 5 rv

Linear and angular speed relationship

For a particle moving in a circular path of radius r at a uniform rate, the
linear speed v and angular speed v are related by the equation

v 5 rv. (4)

Linear speed and angular speed are sometimes called linear velocity and
angular velocity, but we reserve the term velocity for directed speeds. Velocity is
a vector quantity, meaning that it has both a magnitude and a direction (see
Section 7.5). In uniform circular motion, the magnitude of the linear velocity
vector is the linear speed defined above, in a direction tangent to the circular path
of motion, as indicated by the arrow in Figure 18.

cEXAMPLE 10 Linear and angular speed The wheel of a grindstone with
a radius of 8 inches is rotating at 300 rpm.

(a) Find the angular speed in radians per second.
(b) Find the linear speed of a point on the circumference of the wheel in feet per

second.
(c) For a certain job, it is desirable to have the linear speed of the grinding edge of

the wheel at 30 ft/sec. What change in angular speed (in revolutions per
minute) is required?

Solution
Given that r is 8 inches and v is 300 rpm, follow the strategy and express r and v
in units of feet and seconds.

r 5 8 in 3 S 1 ft
12 inD 5

2
3

ft

and

v 5
300 rev

min
3 S2p rad

rev D 3 S1 min
60 secD 5 10p rad/sec

(a) The angular speed is 10p rad
sec .

(b) Using Equation ~4!,

v 5 rv 5 S2
3D~10p! 5

20p

3
< 20.9.

Hence, the linear speed of a point on the grinding edge of the wheel is
20.9 ft/sec.

(c) For v to be 30 ft
sec , specify rv 5 30, or

v 5
30
r

5
30

2
3

5 45 rad/sec.

Strategy: First convert r
and v to units that are con-
sistent with feet per second.

FIGURE 18
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To express v in revolutions per minute, convert radians per second.

v 5 45
rad
sec

3 S 1 rev
2p radD 3 S60 sec

min D 5
1350 rev

p min
< 430 rpm

For a linear speed of 30 ft/sec, the wheel speed must increase to about 430 rpm,
almost half again as fast as the present angular speed. b

Does this answer make sense? Always ask yourself if a solution is reasonable and
make an independent check or a simple estimate, if possible. In Example 10, for
instance, we found in part (b) that when v is 300 rpm, the speed is near 20 ft/sec.
Therefore, in part (c) an angular speed of 30 ft/sec should correspond to about 3

2 of
300 rpm, giving an estimate of about 450 rpm. The result of 430 rpm in part (c) is
entirely reasonable.

EXERCISES 5.1

Check Your Understanding

Exercises 1–5 True or False. Give reasons.

1. An angle of 22
7 radians is equal to an angle of 1808.

2. An angle of 1808 is greater than an angle of 3.16 radi-
ans.

3. The sector of a circle with a central angle of 1 radian
and radius r cm has an area of 1

2 r 2 cm2.

4. If the central angle u of a circle measures 1 radian, then
the length of the arc subtended by u is equal to the
length of the radius.

5. Assume that the planets travel in circular orbits about
the sun. If the planet Venus takes 225 days for one
revolution about the sun and the Earth takes 365 days,
then the angular speed of Venus is less than the angular
speed of the Earth.

Exercises 6–10 Fill in the blank so that the resulting
statement is true.

6. An angle of
5p

4
is equal to an angle of degrees.

7. An angle of 2108 is equal to an angle of radians.

8. In a circular sector, if s 5 48 and r 5 24, then
u 5 radians.

9. In a circular sector, if s 5 12 and u 5 608, then
r 5 .

10. An angular speed of 5 rpm is equal to rad
min .

Develop Mastery

Unless otherwise specified, results given as decimal approx-
imations should be rounded off to the number of significant
digits consistent with the given data.

Exercises 1–4 Draw a diagram to show the angle. Include
a curved arrow to indicate the amount and direction of
rotation from the initial side to the terminal side.

1. (a) A 5 2408 (b) B 5 7208 (c) C 5 22108

2. (a) A 5 5408 (b) B 5 21358 (c) C 5 678309

3. (a) A 5
2p

3
(b) B 5 2

7p

4
(c) C 5 1.8

4. (a) A 5
5p

3
(b) B 5 23p (c) C 5 22.36

Exercises 5–6 Sketch an angle u that satisfies the inequal-
ity. Include a curved arrow and also illustrate the range of
position for the terminal side with dashed rays.

5. (a)
p

2
, u , p (b) 2p , u , 2

p

2
(c) 1.7 , u , 2.5

6. (a)
3p

4
, u , p (b) 2

5p

5
, u , 2p

(c) 0.79 , u , 1.05

Exercises 7–8 DMS to Decimal Express the angle as a
decimal number of degrees rounded off to three decimal
places.

7. (a) 238389 (b) 1438169230 (c) 2958319

8. (a) 578349 (b) 2418159510 (c) 2738439

Exercises 9–10 Find the radian measure of the angle and
give the result in both exact form (involving the number p)
and decimal form rounded off to two decimal places.

9. (a) 608 (b) 3308 (c) 228309 (d) 1058

10. (a) 908 (b) 4508 (c) 678309 (d) 21658
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Exercises 11–12 Radians to Degrees Express the angle
in decimal degree form, rounded off, if necessary, to one
decimal place.

11. (a)
2p

3
(b)

5p

12
(c) 4p (d) 3.6

12. (a)
7p

4
(b)

11p

12
(c) 25p (d) 5.4

Exercises 13–16 Ordering Angles Order angles a, b,
and g from smallest to largest (as, for example, a ,
g , b).

13. a 5 478249, b 5 47.488, g 5 0.824

14. a 5 1548359, b 5 154.328, g 5 2.705

15. a 5
22
7

, b 5
355
113

, g 5 p

16. a 5 1208369, b 5 120.538, g 5
21
10

Exercises 17–20 Triangle Angles Two of the three an-
gles A, B, and C of a triangle are given. Find the third angle.
Remember that the sum of the three angles of any triangle is
equal to 1808 (or p).

17. A 5 588, B 5 738

18. B 5 378419, C 5 848379

19. A 5
p

4
, C 5

5p

12
20. A 5

2p

3
, B 5

p

15

Exercises 21–26 Arc Length, Area The radius r and
the central angle u of a circular sector are given. Draw a
diagram that shows the sector and determine (a) the arc
length s and (b) the area A for the sector.

21. r 5 24, u 5 308 22. r 5 32.1, u 5 96.38

23. r 5 164, u 5 2568 24. r 5 47, u 5
3p

5

25. r 5 36, u 5 4.3 26. r 5 16.2, u 5
7p

8

27. The radius of a circular sector is 12.5 centimeters and
its area is 182 square centimeters. Find the central
angle (a) in radians and (b) in degrees.

28. What is the radius of a circular sector with central angle
37.58 and area 6.80 square feet?

29. Assume that the Earth travels a circular orbit of radius
93 million miles about the sun and that it takes 365 days
to complete an orbit.
(a) Through what angle (in radians) will the radial line

from the sun to the Earth sweep in 73 days?
(b) How far does the Earth travel in its orbit about the

sun in 73 days?

30. The diameter of a bicycle wheel is 26 inches. Through
what angle does a spoke of the wheel rotate when the
bicycle moves forward 24 feet? Give your result in radi-
ans to two significant digits.

31. What is the measure in degrees of the smaller angle
between the hour and minute hands of a clock (a) At
2:30? (b) At 2:45?

32. At what times to the nearest tenth of a minute between
1:00 and 2:00 is the smaller angle between the hour and
minute hands 158?

33. The minute hand of a clock is 6 inches long.
(a) How far does the tip of the hand travel in 15 minutes?
(b) How far does the tip of the hand travel between

8:00 A.M. and 4:15 P.M. of the same day?

34. (a) What is the linear speed (in inches per hour) of the
tip of the minute hand in Exercise 33?

(b) What is the linear speed of a point 1 inch from the
tip of the minute hand?

35. What is the angular speed in radians per minute of
(a) the hour hand of a clock?
(b) the minute hand?

36. Nautical Mile A nautical mile is the length of an arc
of a great circle subtended on the surface of the Earth by
an angle of one minute (19) at the center of the Earth.
Assuming that the Earth is a sphere of radius 3960
miles, a nautical mile is equal to how many ordinary
miles (5280 ft)?

37. Speed in Knots A ship is traveling along a great circle
route at a speed of 20 knots.
(a) How fast is it moving in miles per hour?
(b) How far does it travel in 4 hours in nautical miles?

In ordinary miles?
(c) Through what angle does a line from the center of

the Earth to the ship revolve in 4 hours? (Hint: If
you are not familiar with the word “knots,” look it
up in the dictionary.)

38. A circular sector with central angle 908 is cut out of a
circular piece of tin of radius 15 inches. The remaining
piece is formed into a cone (see Example 9). Find the
volume of the cone.

39. Repeat Exercise 38 reducing the central angle of the
sector cut out of the piece of tin to 608.

40. A circular piece of tin of radius 12 inches is cut into
three equal sectors, each of which is then formed into a
cone.
(a) What is the height of each cone?
(b) What is the volume of each cone?
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41. In Example 9 find the value of x (2 decimal places) for
which V 5 20.7 cubic inches.

42. Looking Ahead to Calculus Using calculus, we can
show that the x-value in Example 9 giving a maximum
volume is a root of the equation

3x 2 2 12px 1 4p 2 5 0.

Solve for x. Does this agree with the value of x found in
Example 9?

43. In the diagram C is the center and AD is a diameter of
the circle with radius 24 cm. /BCD measures 608. Find
in exact form the area of (a) nABC, (b) circular sector
BCD, (c) the shaded region.

44. A satellite travels in a circular orbit 140 miles above the
surface of the Earth. It makes one complete revolution
every 150 minutes.
(a) What is its angular speed in revolutions per hour

and in radians per hour?
(b) What is its linear speed? Assume that the radius of

the Earth is 3960 miles.

45. The face of a windmill is 4.0 meters in diameter and a
wind is causing it to rotate at 30 rev/min. What is the
linear speed of the tip of one of the blades (in meters per
minute)?

46. Assume that the moon follows a circular orbit about the
Earth with a radius of 239,000 miles and that one rev-
olution takes 27.3 days. Find the linear speed (in miles
per hour) of the moon in its orbit about the Earth.

47. Assume that the Earth travels about the sun in a circular
orbit with a radius of 93 million miles and that one
revolution takes 365 days. Find the linear speed (in
miles per hour) of the Earth in its orbit about the sun.

48. Two pulleys, one with a radius of 4 inches and the other
with a radius of 12 inches, are connected by a belt (see

the diagram). If the smaller pulley is being driven by a
motor at 8 rev/min,
(a) determine the angular speed of the larger pulley (in

revolutions per minute).
(b) What is the linear speed of a point on the belt?

49. The diameter of a bicycle wheel is 26 inches. When the
bicycle moves at a speed of 30 mph, determine the
angular speed of the wheel in revolutions per minute.

50. To measure the approximate speed of the current of a
river, a circular paddle wheel with a radius of 3 feet is
lowered into the water just far enough to cause it to
rotate. If the wheel rotates at a speed of 12 rev/min,
what is the speed of the current in miles per hour?

51. The blade of a rotary lawnmower is 34 cm long and
rotates at 31 rad/sec.
(a) What is the blade’s angular speed in revolutions per

minute?
(b) What is the linear speed (in kilometers per hour) of

the tip of the blade?

52. A record was set in rope turning with 49,299 turns in
5 hours and 33 minutes.
(a) What is the average angular speed of the rope in

revolutions per minute?
(b) Assuming that the rope forms an arc so that its

midpoint travels in a circular path of radius 3.5 feet,
what is the average linear speed (in feet per minute)
of the midpoint of the rope?

(c) How far (in miles) did the midpoint travel during
the record-setting turning session?



. 0u

P( )u

u

0

1

(a)

x

y

A(1, 0)

, 0u

P( )u

u

0 1

(b)

A(1, 0)
x

y

pg267 [R] G1 5-36058 / HCG / Cannon & Elich cr 11-16-95 QC1

5.2 Trigonometric Functions and the Unit Circle 267

5.2 T R I G O N O M E T R I C F U N C T I O N S A N D T H E U N I T C I R C L E

Since Plato, it has not been uncommon to regard mathematics as composed of
divine, eternal, perfect, absolute, certain, infallible, immutable, necessary,
a priori, exact, and self-evident truths or ideal forms existing in their own
world.

W. G. Holladay

Chapter 3 was devoted to polynomial functions and Chapter 4 to exponential andSomehow I obtained
logarithmic functions. Now we introduce a third major class of functions called thesome popular books on

mathematics, and about a trigonometric functions. Evidence of the importance of trigonometric functions
year later I was helping my appears on scientific calculators, which have keys that allow evaluation of trigono-
brother and sisters with metric functions and their inverses. Similarly, computer programming languages
their math homework.

have built-in capabilities to handle the same functions.When Sylvia started college
Historically, trigonometry was developed to solve problems in navigation, agri-and was taking

trigonometry, she would culture, and surveying using triangles. The very word trigonometry refers to trian-
ask me for help. I would gle measurement. The use of triangles is still vitally important throughout physics,
read the section and then engineering, and other disciplines, but what one author called the “ingenious and
figure out how to do the

enduring usefulness” of trigonometric functions depends on much broader applica-problems.
tions, many of which have no relation at all to triangles. Analysis of wave motionPaul Cohen
in electronics, engineering, and quantum mechanics requires trigonometric func-
tions as does the study of economic cycles and other cyclical phenomena.

Leonhard Euler is responsible for the modern concept of a function, which he
introduced in his book Introductio in Analysin Infinitorum (1748). His ideas have
continued to gain importance through the centuries, and we define the trigonomet-
ric functions in much the same way as Euler did, by the use of the unit circle.

The Unit Circle

The circle with its center at the origin and a radius of 1 is called the unit circle. Its
equation is

x 2 1 y 2 5 1.

We define trigonometric functions in terms of coordinates of points on the unit
circle. The point A~1, 0! is called the initial point. Starting at point A, think of a
point moving around the unit circle along an arc of length u. P~u! is called the
terminal position point. Each real number u determines P~u! uniquely according
to the following. See Figure 19.

FIGURE 19
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Let u be any given real number.

If u . 0, then P~u! is the point reached by moving counterclockwise on the
unit circle a distance of u units from A~1, 0!.

If u , 0, then P~u! is the point reached by moving clockwise along the unit
circle a distance of 2u units from A~1, 0!.

If u 5 0, then P~u! is point A~1, 0!.
As the position point P moves around the unit circle, the ray OP rotates

through a central angle, /AOP. The radian measure of /AOP is the ratio of arc
length to radius, and in the unit circle, r 5 1. Thus, when the arc length is some
number u, the radian measure of /AOP is given by

/AOP 5
u

r
5

u

1
5 u.

That is, on the unit circle, arc length and the central angle are measured by the
same number. Therefore we can think about the location of P~u! in either of two
ways:

(i) P~u! is the point obtained by moving around the unit circle the directed
distance u from A~1, 0!.

(ii) P~u! is the point where the terminal side of /AOP of radian measure
u meets the unit circle.

As a position point moves around the unit circle, we want to visualize a triangle
moving along with it. If P~u! is not on one of the coordinate axes, a perpendicular
dropped from P~u! to the x-axis forms a right triangle with a hypotenuse of the unit
radius OP. The triangle thus formed is called a reference triangle for u. Figure 20
shows several position points with shaded reference triangles.

To make things more concrete, we suggest that you visualize in your mind how
the reference triangle changes shape as P~u! moves around the circle. Beginning at
A~1, 0!, the reference triangle starts very flat, becomes isosceles at u 5 py4, gets
taller and skinnier as P~u! nears the y-axis (where the reference triangle disap-
pears), and then reappears on the other side. After P~u! crosses the negative x-axis,
the reference triangle lies below the x-axis until P~u! has made a complete circuit
around to A~1, 0! again, as suggested in Figure 20.

Since the distance around the unit circle is the circumference of the circle,
which is 2p , we can easily identify the coordinates of P~u! for a number of values
of u. The distance around a quarter-circle is 2p

4 , or p
2 . If we label the points B~0, 1!,

C~21, 0!, and D~0, 21! where the unit circle meets the coordinate axes, then we
know that P~p

2 ! is point B, and P~2p
2 ! is point D (see Figure 21a). Similarly, the arc

length along the circle from A to C, in either direction, is p and so both P~p! and
P~2p! are point C as in Figure 21b.

FIGURE 20
Position points and associated reference triangles.
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When we know that the coordinates of a particular P~u! are, say ~x1, y1!, then
P~u! 5 ~x1, y1!. Thus, for the points shown in Figure 21,

PSp

2D 5 ~0, 1! PS2
p

2D 5 ~0, 21! P~p! 5 P~2p! 5 ~21, 0!.

It is clear that point A~1, 0! is the terminal position for u 5 0, that is, P~0! 5 ~1, 0!,
but notice also ~1, 0! 5 P~2p! 5 P~24p! going around counterclockwise once or
clockwise twice. In fact, P~u! 5 ~1, 0! whenever u is an even multiple of p , that is,
for every value of u in the set

$0, 62p , 64p , . . . %.

In addition to the points on the coordinate axes, there are other special points
on the unit circle for which we can identify the coordinates of P~u! in exact form.
To do this it is helpful first to recall some information concerning certain right
triangles.

Special Right Triangles

When one of the angles of a triangle is 908, the triangle is a right triangle. We will
often indicate that the length of a side of a triangle is k by the phrase “the side is
(or equals) k.” Two special right triangles occur frequently in trigonometry.

The 458–458 right triangle is related to a square. If the square has side s, then
its diagonal (the hypotenuse of two triangles) is Ïs 2 1 s 2 or Ï2 s (see Figure 22).

The 308–608 right triangle is related to an equilateral triangle. The key rela-
tionship is that the shorter leg is half the length of the hypotenuse (which is the
side of the equilateral triangle). If the hypotenuse is s, the short leg is 1

2 s, and by the
Pythagorean theorem, the other leg is Ï3

2 s (see Figure 23).

Special right triangles

In a 458–458 right triangle, if each leg has length a, then the hypotenuse has
length Ï2a.

In a 308–608 right triangle, if the hypotenuse has length c, then the shorter
leg is c

2 and the longer leg is Ï3
2 c. The hypotenuse is always twice as long as

the shorter leg.

FIGURE 21

FIGURE 22

FIGURE 23
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cEXAMPLE 1 Using 45 8–45 8 triangles Find the coordinates of P~p
4! and

of P~ 2 5p
4 !.

Solution
The first step should always be to draw a diagram to locate the given points on the
unit circle. Recall that p

2 is a right angle, so p
4 is 458. Thus, P~p

4! is on the line y 5 x,
and P~25p

4 ! is five-eighths of the way around the circle in the clockwise direction,
that is, P~25p

4 ! is in the second quadrant on the line y 5 2x (see Figure 24). If we
draw perpendiculars from the two position points to the x-axis, we have 458–458
reference triangles, as shown in color in the diagrams. The hypotenuse of each
triangle is 1, so the legs have length 1

Ï2
. Therefore,

PSp

4D 5 S 1

Ï2
,

1

Ï2
D.

In the second quadrant, the x-coordinate is negative, so

PS25p

4 D 5 S2
1

Ï2
,

1

Ï2
D. b

cEXAMPLE 2 A 30 8–60 8 reference triangle Draw a diagram and find the
coordinates of P~7p

6 !.

Solution
Follow the strategy. Point P~7p

6 ! is shown in Figure 25. As in Example 1, draw a
perpendicular to the x-axis and get a right triangle, in this case a 308–608 triangle.
The short leg is 1

2 and the other leg is Ï3
2 . In the third quadrant both coordinates are

negative, so

PS7p

6 D 5 S2
Ï3

2
, 2

1
2D. b

Quadrantal and Coterminal Numbers

Since we can identify distances around a unit circle with the measure of central
angles, we can also use the language of angles to describe certain numbers and
distances. If, for a given value of u, point P~u! is in the first quadrant, then we say

Strategy: Consider 7p
6 as

p 1 p
6 . To locate P~7p

6 ! on
the unit circle, move coun-
terclockwise from A~1, 0! an
arc of p (one-half rotation)
plus p

6 , giving P~7p
6 ! in the

third quadrant and a
308–608 reference triangle.

FIGURE 24
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that u is in the first quadrant, and similarly for the other quadrants. For instance,
if u is 2.34, since p

2 < 1.57 and p < 3.14, we have p
2 , 2.34 , p , so 2.34 is in the

second quadrant. When P~u! is located on one of the coordinate axes, we say that
u is a quadrantal number, meaning that u is not in any quadrant. For example, 0,
p
2 , and 23p

2 are quadrantal numbers.
Because we think of P~u! as the terminal position of a moving point, two

numbers are said to be coterminal if they have the same terminal position point.
That is, numbers u1 and u2 are coterminal if P~u1! 5 P~u2!. In general, the set of
numbers coterminal with any given u1 is $u1 1 k · 2p _ k is any integer%.

Trigonometric Functions

The first two trigonometric functions we encounter, the sine and cosine, are defined
directly in terms of the unit circle and a position point. The remaining trigonomet-
ric functions are built from the sine and cosine.

Sine and cosine functions. Every real number u determines a unique point P~u!
on the unit circle, and so the coordinates of P~u! are also uniquely determined. That
means that both the x- and y-coordinates of P~u! are functions of u. These func-
tions, the cosine and sine, are often called circular, or trigonometric functions.

Definition: cosine and sine functions

Suppose u is any real number and P~u! is the corresponding terminal position
point on the unit circle. Then the functions cosine and sine are defined by

cosine (u) is the x-coordinate of P (u),
sine (u) is the y-coordinate of P (u).

We abbreviate cosine ~u! by cos u, and sine ~u! by sin u. If follows that every
point on the unit circle has coordinates of the form

P (u) 5 (cos u, sin u).

Reference triangles and circular functions. Traditional definitions of trigono-
metric functions use ratios of sides of right triangles. There are all sorts of
mnemonic devices (such as SOHCAHTOA, whose first three letters are a reminder,
“Sine: Opposite over Hypotenuse”) for remembering such definitions. Reference
triangles relate our definition of circular functions to the triangle definitions, using

FIGURE 25
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a very handy convention: we label the legs of a reference triangle by their signed
lengths. That is, the labels on the legs of the reference triangle are the same as the
coordinates of P~u!. See Figure 26. Since the hypotenuse of a reference triangle in
the unit circle is always 1, sin u, the y-coordinate of P~u!, is also equal to ratio of
the vertical leg to the hypotenuse, the same relation as suggested by “Opposite over
Hypotenuse.”

Exact form evaluation and irrational numbers. Because sine and cosine are
defined as coordinates of a terminal position point on the unit circle, we can
evaluate these functions exactly for any point whose coordinates we know exactly.
There is a profound irrationality in trigonometric functions, however, that we
cannot avoid. Except for positions on the coordinate axes and those values of u for
which the reference triangle is one of the special triangles above (458–458 or
308–608), no trigonometric functions of rational multiples of p are rational num-
bers. We know, for example, that the point Q~25

13 , 12
13! is a point on the unit circle

because its coordinates satisfy the equation x 2 1 y 2 5 1. It follows that for the arc
length u shown in Figure 26, we have cos u 5 25

13 and sin u 5 12
13 . Since u is a

number whose trigonometric functions are rational, u is not a rational multiple of
p . We have no way of finding a value for u without a calculator; we will see how
to use a calculator for that purpose later in this chapter.

cEXAMPLE 3 The function sign Determine the sign (positive or negative)
of (a) sin 3.6 (b) cos ~2 p

5!.

Solution
Draw central angles of 3.6 and 2 p

5 , as shown in Figure 27. From the figure,
(a) sin 3.6 (the y-coordinate) is negative and (b) cos~2p

5 ! (the x-coordinate) is
positive. b

Other trigonometric functions. In addition to the cosine and sine, there are four
other trigonometric functions, each of which we define in terms of cosine or sine:
tangent, cotangent, secant, and cosecant, abbreviated, respectively, by tan, cot,
sec, and csc.

Definition: trigonometric functions

Suppose u is any real number, and the corresponding position point P~u! has
coordinates ~x, y! on the unit circle. The six trigonometric functions of u are

cos u 5 x sin u 5 y tan u 5
sin u

cos u
5

y
x

sec u 5
1

cos u
5

1
x

csc u 5
1

sin u
5

1
y

cot u 5
cos u

sin u
5

x
y

Domain and range. Because P~u! is defined for every real number u, the cosine
and sine are also defined for all real numbers. Hence, the domain for both functions
is the set of all real numbers. Furthermore, since cos u and sin u are coordinates
of points on the unit circle, the range of both functions is the interval @21, 1#. That
is, for every real number u, 21 # cos u # 1 and 21 # sin u # 1.

Cosine: Domain is R (all real numbers); range is @21, 1#.

Sine: Domain is R (all real numbers); range is @21, 1#.

Strategy: (a) With no units
indicated, 3.6 must be radi-
ans. Since 3.6 . p (<3.1),
3.6 radians is about one-half
radian (<308) more than p ,
so P~3.6! is in QIII.
(b) 2p

5 is less than a rota-
tion of p

2 in the negative di-
rection, so P~2p

5 ! is in QIV.

FIGURE 26

FIGURE 27
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Each of the other four trigonometric functions involves the reciprocal of one
coordinate of P~u!. Thus, the tangent, cotangent, secant, and cosecant all have
restricted domains. Each is defined for all real numbers except those for which the
denominator is 0. For instance, tan u 5 sin u

cos u , so tan u is not defined when cos u is
zero, such as when u is p

2 or 3p
2 ~or any odd multiple of p

2!. For each quadrantal
number, exactly two trigonometric functions are undefined.

cEXAMPLE 4 Exact form evaluation Evaluate all trigonometric functions
of u where u is (a) 5p

6 (b) 2 2p
3 .

Solution
Always begin with a diagram.

(a) Since 5p
6 5 p 2 p

6 , the reference triangle is the 308–608 triangle shown in

Figure 28a. Therefore, the coordinates of the point P~5p
6 ! are ~2Ï3

2 , 1
2!. From the

definition of trigonometric functions,

cos
5p

6
5 x, so cos

5p

6
5 2

Ï3
2

sin
5p

6
5 y, so sin

5p

6
5

1
2

tan
5p

6
5

y
x

, so tan
5p

6
5 2

1

Ï3
cot

5p

6
5

x
y

, so cot
5p

6
5 2Ï3

sec
5p

6
5

1
x

, so sec
5p

6
5 2

2

Ï3
csc

5p

6
5

1
y

, so csc
5p

6
5 2

(b) The number 22p
3 corresponds to a clockwise rotation of 2p

3 , or 1208. When we
draw a perpendicular to the x-axis, the reference triangle is a 308–608 triangle
as shown in Figure 28b. Both x and y values for P~22p

3 ! are negative, so P~2 2p
3 !

is ~21
2 , 2Ï3

2 !. From the definitions of the trigonometric functions,

cosS2
2p

3 D 5 2
1
2

sinS2
2p

3 D 5 2
Ï3

2
tanS2

2p

3 D 5 Ï3

secS2
2p

3 D 5 22 cscS2
2p

3 D 5 2
2

Ï3
cotS2

2p

3 D 5
1

Ï3
b

FIGURE 28
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By using reference triangles and symmetry, we can get the coordinates of all
the points shown in Figure 29. In the preceding section we stressed the importance
of learning to think in radians. You should be able to see in your mind’s eye the
reference triangle for each nonquadrantal point, but the figure is an excellent
reference and we recommend its use.

cEXAMPLE 5 Using Figure 29 Evaluate all trigonometric functions of 11p
4 .

Solution
Since 11p

4 is greater than 2p , find a coterminal number. Note that 11p
4 2 2p 5 3p

4 ,
so 11p

4 is coterminal with 3p
4 . From Figure 29, read the coordinates P~3p

4 ! 5
~ 21

Ï2
, 1

Ï2
!; P~11p

4 ! has the same coordinates. Using the coordinates of P~11p
4 ! in

the definitions of the trigonometric functions,

cos
11p

4
5 2

1

Ï2
sin

11p

4
5

1

Ï2
tan

11p

4
5 21

sec
11p

4
5 2Ï2, csc

11p

4
5 Ï2 cot

11p

4
5 21. b

EXERCISES 5.2

Check Your Understanding

Exercises 1–5 True or False. Give reasons.

1. If both sin u and cos u are negative, then tan u is also
negative.

2. There is no number u for which cos u is negative and
sec u is positive.

3. There is no number u for which sin u . 1.

4. The point ~25
13 , 12

13! is not on the unit circle.

5. If u is any number in the interval ~2p
2 , 0!, then

cos u , 0.

Note on Notation Although we used the symbol u in
defining the trigonometric functions ~suggesting an angle!, it
is important to understand that u-values are real numbers
and that we can use any other symbol as well; y 5 sin u,
y 5 sin t, and y 5 sin x all represent the same function.

FIGURE 29
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Exercises 6–7 Fill in the blank so that the resulting state-
ment is true.

6. If sin u , 0 and cos u . 0, then P~u! must be in Quad-
rant .

7. If cos u , 0 and sec u , 0, then P~u! could be in
Quadrants .

Exercises 8–10 Enter ,, ., or 5 in the blank.

8. cos
3p

4
cos

5p

4
.

9. tan
3p

4
sin

p

6
.

10. sin 3 cos 3.

Develop Mastery

Exercises 1–10 Point on Unit Circle (a) Draw a dia-
gram to show the approximate location of P~u! on the unit
circle and also show the reference triangle. (b) Determine
the sign (positive or negative) of sin u, cos u, and tan u.

1. u 5
p

3
2. u 5

3p

4
3. u 5 2

p

6

4. u 5
9p

4
5. u 5 2

7p

6
6. u 5 2

2p

3

7. u 5 22 8. u 5 2.6 9. u 5
9
4

10. u 5 2
5
4

Exercises 11–16 Quadrantal Numbers Locate P~u! on
the unit circle for the quadrantal number u. Evaluate all of
the trigonometric functions that are defined for u.

11. u 5
5p

2
12. u 5 24p 13. u 5 23p

14. u 5 7p 15. u 5 2
15p

2
16. u 5

3p

2

Exercises 17–24 Reference Triangle The reference tri-
angle is one of the special right triangles described in this
section. Sketch the reference triangle and evaluate all six
trigonometric functions for u.

17. u 5
5p

6
18. u 5

5p

3
19. u 5

7p

4

20. u 5 2
3p

4
21. u 5 2

11p

6
22. u 5

11p

4

23. u 5
13p

3
24. u 5 2

13p

6

Exercises 25–36 Describe the set of all real numbers t
satisfying the given condition. Figure 29 may be helpful.

25. cos t 5 1 26. tan t 5 1 27. sec t 5 2

28. sec t 5 22 29. cot t 5 Ï3 30. sin t 5 0

31. cot t 5 21 32. csc t 5 1

33. sin t 5
1

2
, cos t , 0

34. cos t 5
2Ï3

2
, sin t . 0

35. tan t 5 21, cos t , 0

36. sec t 5 22, sin t , 0

37. Evaluate in exact form sin t, cos t, and tan t for each
value of t between p

2 and p shown in Figure 29. Use
complete sentences to write your answers; for instance
cos 2p

3 5 21
2 , not just 2 1

2 .

38. Follow the instructions in Exercise 37 for p , t , 3p
2 .

Exercises 39–42 Quadrant Determine the quadrant or
quadrants in which P~t! lies, where both inequalities are
satisfied.

39. cos t . 0, sin t , 0 40. tan t . 0, cos t , 0

41. sec t , 0, cos t , 0 42. csc t , 0, sin t , 0

Exercises 43–46 Sign Determine the sign (positive or
negative). First draw a diagram to show the quadrant in
which the terminal position point is located.

43. (a) cos 3 (b) cot 3

44. (a) tanS8p

5 D (b) secS8p

5 D
45. (a) sec~22.3! (b) tan~22.3!

46. (a) csc~20.01! (b) cos~20.01!

Exercises 47–50 Function Values For the terminal po-
sition point P~t!, find all trigonometric functions of t. First
show that P~t! is a point on the unit circle.

47. P~t! 5 S2
3
5

,
4
5D

48. P~t! 5 S2
8

17
,

15
17D

49. P~t! 5 S 7
25

, 2
24
25D

50. P~t! 5 S1
4

,
Ï15

4 D
Exercises 51–56 Point on Unit Circle If P~t! is a termi-
nal position point on the unit circle, find (a) all possible
values of x or y and (b) cos t and sin t.

51. P~t! 5 S1
2

, yD 52. P~t! 5 Sx,
1
3D

53. P~t! 5 ~x, 2x! 54. P~t! 5 ~x, x 1 1!

55. P~t! 5 ~2y, y! 56. P~t! 5 Sy
2

, yD



Equilibrium
position

y

Displaced y units

(1, 0)

(0, – 1)

u

y = mx – 1

P(0)u

y

x
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Exercises 57–61 Find all numbers t that satisfy the con-
ditions.

57. sin t 5 sin
7p

6
and 2

p

2
, t , 0

58. sin t 5 cos
3p

4
and

3p

2
, t , 2p

59. cos t 5 cos
5p

6
and p , t , 2p

60. cos t 5 sin
3p

4
and p , t , 2p

61. sin t 5 sin
p

2
and 22p , t , 0

Exercises 62–65 Find the smallest positive number t sat-
isfying the conditions.

62. cos t 5 2
1
2

and tan t , 0

63. cot t 5 1 and sin t , 0

64. sec t 5 2 and sin t , 0

65. tan t 5 1 and cos t . 0

Exercises 66–69 Find cos t and sin t if the terminal posi-
tion point P~t! on the unit circle satisfies the conditions.

66. The x-coordinate of P~t! is 3
5 and P~t! is in the fourth

quadrant.

67. The y-coordinate of P~t! is 2 3
4 and P~t! is in the third

quadrant.

68. The y-coordinate of P~t! is 2 Ï2
2 and the x-coordinate of

P~t! is positive.

69. The x-coordinate of P~t! is 2 3
5 and t is between 0 and p .

Exercises 70–73 For the given values of t, evaluate
(sin t)2 1 (cos t)2. Based on your answers, make a guess
about the value of the expression (sin t)2 1 (cos t)2 for any
number t.

70. t 5
p

4
; t 5

5p

6
71. t 5

p

3
; t 5 2

5p

4

72. t 5
p

2
; t 5

27p

6
73. t 5

3p

2
; t 5

25p

6

Exercises 74–77 For the given value of u, evaluate
(a) sin 2u (b) 2 sin u (c) 2 (sin u)(cos u). Based on your
answers, make a guess about sin ~2u! for any number u.

74. u 5
p

4
75. u 5

25p

4
76. u 5

5p

6

77. u 5
p

2

78. A weight is suspended on a spring and rests in equi-
librium position. It is then pulled downward and al-
lowed to oscillate. The formula that gives the displace-

ment y from the equilibrium position t seconds after
release is

y 5 3 cos~4pt!, where y is in inches.

Find the displacement for each of the following times.

(a) t 5 0 (b) t 5
1
8

(c) t 5
1
4

(d) t 5
3
8

(e) t 5
1
2

79. Give a verbal description of the oscillation motion in
Exercise 78.

80. Repeat Exercise 78 with a formula that includes a
damping effect due to friction: y 5 3e2t cos ~4pt!.

81. The unit circle and Pythagorean triples In the dia-
gram, the line y 5 mx 2 1, where m . 1, intersects
the unit circle x 2 1 y 2 5 1 at (0, 21) and in the first
quadrant at P~u!.

(a) To find P~u!, replace y by mx 2 1 in the equation
x 2 1 y 2 5 1 and solve for x. Then use
y 5 mx 2 1 to find y. Show that P~u! is

S 2m
1 1 m2 ,

m2 2 1
m2 1 1D.

(b) If m is a rational number, m 5
a
b

, where a and b are

positive integers and a . b, then show that P~u! is

S 2ab
a2 1 b 2 ,

a2 2 b 2

a2 1 b 2D.

(c) Since P~u! satisfies x 2 1 y 2 5 1, show that
~2ab!2 1 ~a2 2 b 2! 5 ~a2 1 b 2!2 giving 2ab,
a2 2 b 2, and a2 1 b 2 as Pythagorean triples where
a and b are any positive integers, a . b.

(d) Find Pythagorean triples for a 5 7, b 5 3 and for
a 5 12, b 5 5. Find others of your own choice.



u
x

y

Initial side

Terminal
side

u = – 0.4

(b)

u

x

y

Initial side coincides
with terminal side

(c)

u = – 4ppu

x

y

Initial side

Terminal
side

u = 6.8

(a)
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5.3 E V A L U A T I O N O F T R I G O N O M E T R I C F U N C T I O N S

The importance of the limit concept in mathematics lies in the fact that many
numbers are defined only as limits. This is why the field of rational numbers,
in which such limits may not exist, is too narrow for the needs of mathematics.

Courant and Robbins

The values of the six trigonometric functions at any real number u are determined
Initially I thought I was by the coordinates of the terminal position P~u! on the unit circle. Except for
going to become a chemist comparatively few values of u, however, we have no direct way to find a simple
because in the little high form for the coordinates of P~u!. In Section 5.2 we learned how to evaluate the
school that I was going to,

trigonometric functions for all angles that are coterminal with integer multiples ofit was not clear that any
p
6 or p

4 . Representatives of all such angles appear in Figure 29.other scientific careers
were open. I had read a In this section we consider the problem of evaluating the trigonometric func-
book . . . which said that tions for arbitrary angles. We begin by considering angles in standard position. If
chemistry was a great field. we know the coordinates in exact form for a point on the terminal side of such an
It was only after I went to

angle, then we show how to find exact values for all trigonometric functions of thecollege that I shifted to
angle. For most angles, however, the calculator is the most convenient way tomathematics.

Saunders MacLane evaluate the trigonometric functions. This section concludes with a discussion of
calculator evaluations.

Angles in Standard Position

An angle in standard position has its vertex at the origin and the positive x-axis
as its initial side (see Figure 30). The advantage of having an angle in standard
position is that all trigonometric functions of the angle are determined by the
coordinates of any point, other than the origin, on the terminal side.

FIGURE 30

Suppose Q~a, b! is an arbitrary point on the terminal side of angle u in standard
position. The point where the terminal side of u intersects the unit circle is P~u!. To
see how to get the coordinates of P~u! from the coordinates of Q~a, b!, draw a
perpendicular from Q to the x-axis. We get a triangle OQR that is similar to the
reference triangle for P~u!, triangle OPS (see Figure 31). We label the legs of
triangle OQR with the coordinates of Q~a, b! to remind us of appropriate signs in
the various quadrants. We call nOQR a reference triangle for the standard position
angle u.



x

y

u

0

1

b

Q(a, b)

P(u)u

zOQz = r = a2 + b2

a    b
r    r(     ),

S R

a
Unit
circle

x

y

u

1

– 1

Q(– 1, 1)

P(u)u

2

(a)

O

x

y

u

1

(b)

1 �
2

–

P(u) =
( , )

u
1 �
2

1 �
2

–

O

1 �
2
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Definition: reference triangle for standard position angle

Given a nonquadrantal angle u in standard position and any point Q on the
terminal side of u, draw a perpendicular from Q to the x-axis. If R is the foot
of the perpendicular and O is the origin, then the right triangle OQR is a
reference triangle for u.

The legs of the reference triangle are labeled with the signed
coordinates of Q.

The length of the hypotenuse of triangle OQR is the distance from the origin
to Q, the positive number given by r 5 Ïa2 1 b 2. Since triangles OQR and OPS
in Figure 31 are similar, corresponding sides are in proportion. If P~u! 5 ~x, y!,
then we have

b
r

5
y
1

, y 5
b
r

a
r

5
x
1

, x 5
a
r

Thus, the coordinates of P~u! are given by

P~u! 5 ~x, y! 5 Sa
r

,
b
rD.

Figure 31 shows a first-quadrant angle, but the same relations hold for any angle
in any quadrant. For instance, see Figure 32.

Once we have the coordinates of the terminal position P~u! on the unit circle,
we immediately have the values for the trigonometric functions at u. The cosine and
sine of u are the coordinates of P~u!, the remaining four functions are defined as
in Section 5.2.

Trigonometric functions of an angle in standard position

Suppose u is an angle in standard position, and Q~a, b! is any point on the
terminal side of u, other than the origin. The distance r from the origin to Q
is Ïa2 1 b 2, and the trigonometric functions of u are given by

cos u 5
a
r

sin u 5
b
r

tan u 5
b
a

sec u 5
r
a

csc u 5
r
b

cot u 5
a
b

.

(1)

It may help you remember these definitions to think in terms of the x-
coordinate and y-coordinate rather than a and b. The cosine is expressed as the
x-coordinate divided by r, etc. It is understood, also, that the tangent and secant are
undefined when a 5 0 (when the terminal side is on the y-axis), and that the
cosecant and cotangent are undefined when b 5 0 (when the terminal side is on the
x-axis).

cEXAMPLE 1 Point on terminal side Let u be an angle in standard posi-
tion with Q~23, 4! on the terminal side. Evaluate all trigonometric functions at u.

FIGURE 31

FIGURE 32



x

y

5
4

– 3 O

Q(– 3, 4)

u

u

u

cos = –

sin =

tan = –

3�
5

4�
3

4�
5

u

x

y

1

S

O

sin f = –

cos f =

tan f = –

2   �
53

2�
7

7   �
53

7   �
53

f

f

f

f

2   �
53

–

2   �
53

–7   �
53

Q = ( , )

x

y

7

– 24

25

cos f = –

sin f =

tan f = –

24�
25

7�
24

7�
25

u

u

u

u

Q(– 24, 7)
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SolutionStrategy: Draw a diagram
with a reference triangle by Follow the strategy. Figure 33 shows a reference triangle for u. First, we find r.
dropping a perpendicular

r 5 Ï~23!2 1 ~4!2 5 Ï25 5 5.from Q to the x-axis. Find
the distance r 5 _ OQ _ and

With 23 for a, 4 for b, and 5 for r, use Equation ~1! to getuse the formulas in Equa-
tion (1).

cos u 5
a
r

5 2
3
5

sin u 5
b
r

5
4
5

tan u 5
b
a

5 2
4
3

sec u 5
r
a

5 2
5
3

csc u 5
r
b

5
5
4

cot u 5
a
b

5 2
3
4

b

cEXAMPLE 2 Point on terminal side Let f be the angle shown in standard
position in Figure 34 whose terminal side contains the point Q~ 7

Ï53
, 22

Ï53
!. Find

cos f, sin f, and tan f.

Solution
First, draw a perpendicular from Q to the x-axis to obtain a reference triangle, OQS
(see Figure 34). Next, determine r.

r 5 ÎS 7

Ï53
D2

1 S2
2

Ï53
D2

5 ÎS49
53D 1 S 4

53D 5 1.

Since r is 1, point Q is on the unit circle, so

cos f 5
7

Ï53

sin f 5 2
2

Ï53

tan f 5 2
2
7

b

cEXAMPLE 3 Exact form from one value If tan u 5 2 7
24 and u is in the

second quadrant, find the exact values of the other trigonometric functions of u.

Solution
Follow the strategy. Draw a diagram (Figure 35), and then find r.

r 5 Ï~224!2 1 ~7!2 5 Ï625 5 25

Therefore r is 25, and Equation ~1! gives

cos u 5
a
r

5 2
24
25

sin u 5
b
r

5
7

25
tan u 5

b
a

5 2
7

24

Strategy: Begin with a dia-
sec u 5

r
a

5 2
25
24

csc u 5
r
b

5
25
7

cot u 5
a
b

5 2
24
7

bgram that shows u and a ref-
erence triangle. For a point
Q~a, b! on the terminal side
of u, tan u 5 b

a . The fraction
27
24 can be written as 7

224 .
Choose Q as (224, 7).

FIGURE 33

FIGURE 34

FIGURE 35
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Calculator Evaluation of Trigonometric Functions—Modes

Before calculators, evaluation of trigonometric functions required tables of some
sort. Literally lifetimes of computation were invested in the production of tables of
sufficient accuracy for scientific calculations. Now, the touch of a calculator key
gives instant access to more accurate information than was ever available previ-
ously. Develop Mastery Exercises 70 and 71 illustrate how calculators can be
programmed to evaluate the sine and cosine functions.

Graphing calculators have keys labeled SIN, COS, TAN, and they operate in distinct
modes as well, to accomodate angles measured in either degrees or radi-
ans. Technically, we could think of two different sets of trigonometric functions,
one for angles measured in degrees and the other for angles measured in radians.
We avoid the need for such a distinction by adopting the following convention.

Mode convention

All evaluation is done in radian mode unless a degree symbol is specified.

sin 30 means the sine of 30 radians (almost five revolutions)

sin 308 means the sine of 30 degrees.

Modes. There is nothing more frustrating than going through a long series of
calculations and then discovering that all your numbers are wrong (or meaningless)
because your calculator is in the wrong mode. Most calculators have a MODE key from
which you can select the correct mode for a particular computation. The following
Technology Tip gives suggestions on setting modes for different calculators.

Mode settingTECHNOLOGY TIP r

Texas Instruments Press MODE. On the Mode screen, the third line is Radian Degree.
Use arrow keys, highlight your choice, and ENTER.
Hewlett-Packard The screen always shows when you are in radian mode by
RAD in the upper left corner. Set radian mode on the Modes screen. Highlight
the ANGLE MEASURE line, CHOOS, make your selection, OK, and return to the Home
screen.
Casio The initial screen shows the mode in use. To change, from the home
screen DRG (above 1) displays the menu. The first two choices set Deg, Rad mode.
Press F1 or F2 and EXE.

Evaluating trigonometric functions. Since calculators have keys only for the
sine, cosine, and tangent functions, we evaluate the remaining trigonometric func-
tions as reciprocals as for instance: cot x 5 1

tan x .

WARNING: the functions above the trigonometric function keys (SIN21, and so
on) are inverse function keys, not reciprocals. tan21 x 5/ 1

tan x .
Before going further, make sure you know how to evaluate trigonometric

functions in both modes. Check all of the calculator evaluations in the following
table on your calculator.



y

x

P(1.85) ≈
(– 0.28, 0.96) 

1.85

(1, 0)

(a)



y

x

P(– 9) ≈
(– 0.91, – 0.41) 

– 9 (1, 0)

(b)
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Evaluate Mode Enter Display Comments

sin 30 Rad sin 30 20.9880

sin 308 Deg sin 30 0.5

tan(22) Rad tan(22) 2.1850 Change sign, not subtract

cos
2p

3
Rad cos(2p /3) 20.5 See Technology Tip

sec
2p

3
Rad 1/cos(2p /3) 22

cotSp

3D8
Deg 1/tan(p /3) 54.7073 Sp

3D8
is just larger than 18

TECHNOLOGY TIP r Always use enough parentheses to be sure

Calculators differ, but most will evaluate cos 2py3 as cos 2p divided by 3, giving
1
3 . If you want cos 2p

3 , you must use parentheses, as in the table above. The
HP–48 is an exception, since you first evaluate 2py3 and then apply the cosine
function to the result.

cEXAMPLE 4 Calculator approximations Draw a rough sketch that shows
P~u! on the unit circle, and give a five-decimal-place approximation for all six
trigonometric functions of (a) t 5 1.85 and (b) t 5 29.

Solution
Follow the strategy and draw the diagrams shown in Figure 36. Using a calculatorStrategy: For a rough

sketch of P~1.85! and in radian mode, evaluate the six trigonometric functions when u is 1.85 and then
P~29!, remember that half a when u is 29.
revolution is measured by p
( just over 3), so that 1.85 is cos 1.85 < 20.27559 sin 1.85 < 0.96128 tan 1.85 < 23.48806
a little more than p

2 . Thus sec 1.85 < 23.62858 csc 1.85 < 1.04028 cot 1.85 < 20.28669
P~1.85! is in the second

cos~29! < 20.91113 sin~29! < 20.41212 tan~29! < 0.45232quadrant. Since 9 is slightly
less than 3p~<9.42! and 3p sec~29! < 21.09754 csc~29! < 22.42649 cot~29! < 2.21085
is 2p 1 p , move clockwise b
from (1, 0) one complete
revolution and then slightly
less than half a revolution.
Hence, P~29! is in the third
quadrant.

FIGURE 36



c = hyp
b

a = opp 
    = adj b

a

b = adj 
    = opp b

a

a

y

x

(b)

(b, a)

a = opp 
    = adj 

c = hyp

b
a b = adj 

    = opp b

b

a

a

(a)
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Right Triangle Trigonometry

Our original definition of trigonometric functions made use of coordinates of points
on the unit circle. We also saw that the trigonometric functions can be defined using
coordinates of any point on the terminal side of an angle in standard position. In
many situations we want trigonometric functions of acute angles in right triangles.

In working with right triangles we do not want to be dependent on any partic-
ular orientation of the triangle. Figure 37a shows a right triangle with acute angles
a and b, and legs labeled a and b. Since side a is opposite angle a, we denote it by
opp a, and similarly opp b indicates side b, the side opposite angle b. The hy-
potenuse c is labeled hyp. By placing the triangle in a coordinate system with leg
b along the positive x-axis and angle a in standard position (see Figure 37b), we see
that the point with coordinates ~b, a! is on the terminal side of angle a at a distance
c from the origin. Hence the definitions on page 278 apply and we can express the
trigonometric functions of a in terms of opp a, adj a, and hyp.

FIGURE 37

Definition: trigonometric functions of an acute angle

Suppose a is an acute angle of a right triangle. The trigonometric functions
of a are

sin a 5
opp a

hyp
cos a 5

adj a

hyp
tan a 5

opp a

adj a

csc a 5
hyp

opp a
sec a 5

hyp
adj a

cot a 5
adj a

opp a

In a similar manner, for angle b we have

sin b 5
opp b

hyp
cos b 5

adj b

hyp
tan b 5

opp b

adj b
.

In Figure 37a, in addition to the right angle, we refer to a, b, a, b, and c, as parts
of the triangle.

Given information about some parts of a right triangle, we can use trigonomet-
ric functions to determine other parts. The process of using given data to solve for
remaining parts is called solving the triangle. In virtually all instances, to solve a
triangle we look for trigonometric functions that relate known information to a



B

A C

c a

b = 12

= 40°a

b

B

12.4

50° h

D
A

C
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single unknown, giving us equations that we can solve for the desired quantities. We
illustrate with an example that is typical of the applications of right triangles we
explore in more depth in Section 7.1.

cEXAMPLE 5 Solving a right triangle In the right triangle in Figure 38,
b is 12, and a is 408. Find b, a, and c.

Solution
Since the sum of the acute angles of a right triangle is 908, b 5 90 2 a 5
908 2 408 5 508. To find the lengths of the unknown sides, look for trigonometric
functions that involve just one of the unknowns. In this case,

cos 408 5
adj
hyp

5
12
c

and tan 408 5
opp
adj

5
a
12

.

Solving for c and a, respectively,

c 5
12

cos 408
< 15.66 and a 5 12 tan 408 < 10.07.

Rounding off to two significant digits, c is 16 and a is 10. b

Strategy: Use an altitude of cEXAMPLE 6 Area of a circular segment The central angle of a circular
nABC to find its area K1, sector is 508, and the radius is 12.4 inches as shown in Figure 39. Find the area K1
and subtract K1 from the of nABC and the area K of the shaded region.
area K2 of the sector of the
circle. Solution

Follow the strategy. Let CD be the altitude from C, of length h. In right triangle
BCD, sin 508 5 hy12.4, or h 5 12.4 sin 508.

K1 5
1
2

h~12.4! 5
1
2

~12.4!2 sin 508 < 58.89 < 59 in2.

For the circular sector, we need the radian measure of the central angle:
508 5 50 ~ p

180! 5 5 p
18 radians. Using the formula for the area of a circular sector

from Section 5.1,

K2 5
1
2

r 2u 5
1
2

~12.4!2 5p

18
< 67.09 < 67 in2.

Finally, the area of the shaded circular segment is given by

K 5 K2 2 K1 < 8.2 in2. b

cEXAMPLE 7 Rotating wheel A wheel of radius 2 is rotating in a counter-
clockwise direction at a uniform angular speed v of 12 rev/min. Take a coordinate
system with the origin at the center of rotation and designate a point P on the
circumference of the wheel.

(a) If P is located at (2, 0) at time t 5 0, find formulas to give the coordinates of
P~x, y! at any time t in seconds.

(b) Give the coordinates of point P to two decimal places at times t 5 1, 2, 4, and
5 seconds.

FIGURE 38

FIGURE 39
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Solution
First, draw a diagram. Since t is in seconds, express the angular speed in units of
radians per second.

v 5 12
rev
min

5
12 rev

min
·

2p rad
1 rev

·
1 min
60 sec

5
2p

5
rad
sec

Therefore, in t seconds the radial line OP will rotate through an angle u where u
is 2p

5 t.

(a) From the reference triangle OPS in Figure 40, cos u 5 x
2 so x 5 2 cos u 5

2 cos ~2p
5 t!. Similarly, y 5 2 sin~2p

5 t!.
(b) If t 5 1, then x 5 2 cos~2p

5 ! < 0.618, y 5 2 sin~2p
5 ! < 1.902. Hence at 1

second, point P is at (0.62, 1.90). When t 5 2, x 5 2 cos~4p
5 ! < 21.62, y 5

2 sin~4p
5 ! < 1.18, so P is at (21.62, 1.18). Similarly, when t 5 4, P is at

(0.62, 21.90), and when t is 5, P is at (2, 0), back to the starting point. b

Relating trigonometric functions of any angle and right triangle trigonome-
try. On page 272 we defined trigonometric functions of any angle u by using
coordinates of a point on the unit circle (see Figure 41a). On page 278 we defined
trigonometric functions of u in terms of coordinates of an arbitrary point Q on the
terminal side of u (Figure 41b). In both cases, for nonquadrantal angles we use the
reference triangle, the right triangle formed by dropping a perpendicular from a
point Q on the terminal side to the x-axis. If we label the sides of the reference
triangle with the signed-number coordinates of Q, then we can read all trigonomet-
ric functions of u (including signs) from the right triangle definitions for the
reference triangle (Figure 41c).

FIGURE 41

Relating reference and right triangle definitions

For any nonquadrantal angle u with a point Q on the terminal side, if a is
the acute angle at the origin in the reference triangle and the legs of the
reference triangle are labeled with the signed-number coordinates of Q, then
the trigonometric functions of u are the same as the corresponding right
triangle functions for a in the reference triangle.

FIGURE 40
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HISTORICAL NOTE TRIGONOMETRIC TABLES

EXERCISES 5.3

Check Your Understanding

Exercises 1–5 True or False. Give reasons.

1. If point (3, 4) is on the terminal side of u, then (23, 24)
is on the terminal side of 2u.

2. If point (22, 4) is on the terminal side of u, then so is
(21, 2).

3. The smallest integer that is greater than tan 5 is 23.

4. If point (1, 1) is on the terminal side of u, then u must
be equal to p

4 .

5. The number tan~1 1 9p! is negative.

Exercises 6–10 Fill in the blank so that the resulting state-
ment is true.

6. If u 5 3, then the terminal side of u is in Quadrant
.

7. If u 5 24, then the terminal side of u is in Quadrant
.

8. If the terminal side of u is in Quadrant III, then the
terminal side of u 2 p is in Quadrant .

9. In a right triangle labeled as in Figure 37, if a 5 3 and
b 5 7, then sin a 5 .

10. In Exercise 9, cos b 5 .

The urgent need for accurate
trigonometric calculations arose
from astronomy and navigation.
After all, 1 degree of longitude is

1
360 of the circumference of the
earth. To a navigator out in the
middle of the unknown, even a
minute ( 1

60 of a degree) covers a big
chunk of ocean.

Claudius Ptolemy of Alexandria
laid out principles of astronomy
and geography in the second
century A.D. that remained the
supreme authority for well over a
thousand years. Some of his views of
the world were surprisingly modern;
it was his idea to divide the equator
into 360 equal parts or degrees. So great was the
authority of men like Ptolemy that people were
unwilling to challenge what was written even
when it was contradicted by direct experience.

By the end of the sixteenth century, explorers
were pushing ever farther into the unknown and
had to rely increasingly on celestial navigation.
Astronomers also needed more accurate

trigonometric calculations. At that
time, sines and cosines were not
functions, they were lengths of
chords in a circle. Larger circles
had larger sines, so to increase
accuracy, users increased the size
of the radius.

Napier criticized some of his
contemporaries for using a radius
of only 1 million, writing “the
more learned put 10,000,000,
whereby the difference of all sines
is better expressed.” Prodigious (and
tedious) efforts went into calculating
trigonometric tables. Rheticus
(1514–1576) began to compile
15-place tables, an effort that

wasn’t completed until 20 years after his death.
Valuable as the tables may have been, their

use still involved horrendous problems. Just think
of multiplying and dividing three or four 15-digit
numbers! There was really no alternative until
Napier’s invention of logarithms in 1614 (see the
Historical Note, “Invention of Logarithms” in
Section 4.5).

Astronomers at the Paris
Observatory in the 17th

century
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Develop Mastery

Exercises 1–16 Reference Triangle, Function Values
Point Q is on the terminal side of angle u. From a diagram
that shows Q and a reference triangle for u, evaluate the six
trigonometric functions of u in exact form.

1. Q~23, 4! 2. Q~26, 8! 3. Q~5, 12!

4. Q~25, 212! 5. Q~27, 224! 6. Q~3.5,212!

7. Q~3, 23! 8. Q~24, 2! 9. Q~22, 24!

10. Q~21, 2! 11. Q~2, 3! 12. Q~4, 21!

13. Q~Ï5, 22! 14. Q~Ï3, Ï6! 15. Q~21.5, 2!

16. Q~2.5, 26!

Exercises 17–25 Exact and Decimal Values An angle f
is specified. From a diagram that shows f and a reference
triangle, evaluate cos f, sin f, and tan f in exact form, and
also in decimal form rounded off to two places.

17. tan f 5 1
2 and f is in Quadrant III.

18. sin f 5 2
3 and f is in Quadrant II.

19. sin f 5 2
5 and cos f is negative.

20. sin f 5 2 2
5 and cos f is negative.

21. tan f 5 2 3
4 and sin f is negative.

22. cos f 5 1
10 and tan f is positive.

23. sec f 5 2 and cot f is negative.

24. cot f 5 2
3 and csc f 5

2Ï13
3

.

25. tan f 5 25 and sec f is positive.

Exercises 26–37 Decimal Approximations Give a deci-
mal approximation rounded off to three places.

26. sin 2.41 27. cos 13.5 28. tan(21.29)

29. cos 13.58 30. csc 37.28 31. cot 978239

32. sin 218379 33. tan 5 34. cotS2p

5 D
35. secS2p

7 D 36. cosS5p

8 D 37. cscS28p

11 D
Exercises 38–45 Points on Unit Circle (a) Give the co-
ordinates of point P~t! on the unit circle. Round off to two
decimal places. Show P~t! in a diagram. (b) Evaluate the six
trigonometric functions at t (rounded off to two decimal
places).

38. t 5 21 39. t 5 8 40. t 5 21.32

41. t 5
2p

5
42. t 5 Ïp 43. t 5 p 1 1

44. t 5 Ï6 45. t 5 e

Exercises 46–49 Decimal Approximations Evaluate
and round off to three decimal places. Be certain your
calculator is in radian mode.

46. (a) sin~3 1 16p! (b) cos 31

47. (a) cos~2 1 15p! (b) tan 36

48. (a) tan~2 2 9p! (b) sec 30

49. (a) sin~2 2 35p! (b) csc 40

Exercises 50–53 Right Triangles The angles (a and b)
and sides ~a, b, and c! of a right triangle are labeled as in
Figure 37.

50. If a 5 24 and a 5 488, find b and c.

51. If c 5 35 and b 5 278, find a and b.

52. If c 5 12 and a 5 4, find b.

53. If a 5 16 and b 5 658, find b and c.

Exercises 54–55 For each value of u, evaluate cos u and
sin~u 1 p

2! . Based on your results, make a guess about a
relationship between the values of cos u and sin~u 1 p

2! for
any angle u.

54. u 5
p

3
; u 5 4.5; u 5 22.6

55. u 5
5p

6
; u 5 4.8; u 5 22.9

Exercises 56–57 Evaluate expressions 1 1 ~tan u!2 and
~sec u!2. Based on your results, make a guess about a rela-
tionship between the values of the two given expressions for
any angle u.

56. (a) u 5 368; u 5 1588; u 5 22158

(b) u 5
3p

5
; u 5 3.8; u 5 26

57. (a) u 5 658; u 5 2108; u 5 21158

(b) u 5
5p

8
; u 5 4.8; u 5 27.2

Exercises 58–59 For each value of u, evaluate the expres-
sions cos~2u!, 2 cos u, ~cos u!2 2 ~sin u!2 and 2 ~cos
u!2 21. Based on your answers, which expressions appear
to be equal for any angle u?

58. (a) u 5 638; u 5 2588; u 5 21358

(b) u 5
2p
7

; u 5 4.3; u 5 21.5

59. (a) u 5 738; u 5 5108; u 5 21358

(b) u 5
5p
8

; u 5 5.3; u 5 21.2

60. (a) Compare Ï~tan t!2 2 ~sin t!2 and (sin t)(tan t) for
four different numbers t from the first and fourth
quadrants. What do your results suggest?

(b) Compare values of these expressions for four differ-
ent second- and third-quadrant numbers t. Modify
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the guess you made in part (a). How should the expres-
sion sin t tan t be changed so that the expressions are
equal for every real number t where tan t is defined?

61. In the diagram nABC is a right triangle with /CAD 5
308, /DAB 5 308 and _AD _ 5 8. Find _BD _ . Hint:
Use relationships of 308–608 triangles.

62. Solve the problem in Exercise 61 when each of the two
308 angles is replaced by 208.

63. In the diagram, AB and CD are perpendicular diame-
ters of the circle with center at O and radius 12. Find
(a) _CE _ and (b) the ratio of _AE _ to _EO _ .

64. Solve the problem in Exercise 63 if /ECO is 208.

65. Solve the problem in Example 6 for a central angle of
408 and a radius of 16.5 inches.

66. A wheel of radius 3 is rotating counterclockwise at a
uniform angular speed of 2 rev/min. Take a coordinate
system with the origin at the center of rotation and
designate a point Q on the circumference of the wheel.

(a) If Q is located at (3, 0) when t is 0, find equations
that give the coordinates of Q~x, y! at any time t in
seconds.

(b) Give the coordinates (to two decimal places) of
point Q when t is 10, 20, 25, and 40 seconds.

67. Repeat Exercise 66 with a wheel of radius 4 whose
uniform angular speed is 4 rev/min, with point Q lo-
cated at (4, 0) when t is 0.

68. One end of a spring is anchored to the ceiling and a
weight is attached to the other end. When the weight is
at rest, it is in equilibrium position, however, if the
weight is pulled downward and released, it oscillates.
Its displacement d (in millimeters) at any time t seconds
after release is given by the equation d 5 40 cos~1.5 t!.
What is the displacement (to three significant digits) of
the weight when t is (a) 1 second, (b) 2 seconds, (c) 4
seconds?

69. In Exercise 68, if friction is taken into account, we get
a damping effect and the formula for the displacement
becomes d 5 40 e2t cos~1.5 t!. Find the displacement
when t is (a) 1 second, (b) 2 seconds, (c) 4 seconds.

Exercises 70–71 Looking Ahead to Calculus In cal-
culus the sine and cosine functions can be expressed as
infinite series as follows, where (x is in radians):

sin x 5 x 2
x 3

6
1

x 5

120
2 · · ·

and

cos x 5 1 2
x 2

2
1

x 4

24
2 · · · .

70. For small values of x, the functions obtained by taking
the first few terms of each series can be used to get
good approximations of the sine and cosine. Thus let

S~x! 5 x 2
x 3

6
and C~x! 5 1 2

x 2

2
1

x 4

24
.

Complete the table (rounding off to four decimal
places).

x 0.1 0.2 0.3 0.4 0.5 0.6

sin x

S~x!

71. Repeat Exercise 70 using cos x and C~x! in place of
sin x and S~x!, respectively.
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5.4 P R O P E R T I E S A N D G R A P H S

Why does nature require a nontrivial and yet entirely manageable amount of
mathematics for the successful description of such a large part of it?

P. W. C. Davies

The trigonometric functions are defined in terms of the coordinates of the point P~t!
as it moves around the unit circle. All the properties of the trigonometric functions
ultimately derive from this fact. Since we need to understand trigonometric func-
tions thoroughly, we devote this section to an examination of their properties and
graphs, with particular emphasis on what the graphs can tell us about functional
behavior.

We make extensive use of calculator graphs, but because it is so important to
understand the basic properties of trigonometric functions, we keep remindingI was, and have always
ourselves of their unit circle definitions.remained, a problem solver

rather than a creator of
Graphsideas. I cannot, as Bohr and

Feynman did, sit for years We begin with the graph of the sine function, y 5 sin x. From the fact that the
with my whole mind

coordinates of P~t! on the unit circle are (cos t, sin t), we need only consider howconcentrating upon one
the coordinates change as P~t! moves around the unit circle. The point P~t! makesdeep question. I am

interested in too many a complete trip around the circle as t increases from 0 to 2p . If we know what
things. happens to both coordinates on the interval @0, 2p#, essentially we know the

Freeman Dyson behavior of both sine and cosine functions.
The symbol t in (cos t, sin t) suggests the possibility of parametric equations.

Graphing two curves parametrically allows us to see the unit circle being traced out
at the same time we see the graph of y 5 sin x being drawn. Many books show a
graph such as Figure 42. We want you to see more than the finished graph; we want
you to see the graphs in action. Graph these curves on your calculator and watch
them being drawn (simultaneously if possible). Then trace, watching what happens
as you jump from one curve to the other.

Unit circle and sine graphTECHNOLOGY TIP r

In parametric mode, enter X1 5 COS T, Y1 5 SIN T for the unit circle x 2 1 y 2 5 1,
and X2 5 T, Y2 5 SIN T for the sine function y 5 sin x. Set the t-range as @0, 2p#
or @0, 6.28# with t-step of .1. We want an equal scale window, and you may
want to experiment, but we like the following. For the TI-82 (or 81), or Casio
7700, try @21.4, 6.1# ~or @21.5, 6.1#! 3 @22.5, 2.5#. For the TI-85, HP–38,
HP– 48, or Casio 9700, try @22, 6.2# 3 @22, 2#.

When you GRAPH, you should see the curves in Figure 42, with the two sets
of axes superimposed. As you trace, you should be able to see the portion of
the sine curve corresponding to each quadrant as labeled in Figure 42, as
P~t! goes around the unit circle, stopping to jump from one curve to the
other.
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Sine Wave, Fundamental Cycle, and Periodic Functions

As t continues on from 2p , or back through negative values from 0, P~t! just
repeats its circuit around the unit circle, so the sine curve repeats its values
precisely, extending in both directions from what we see in Figure 42. A larger
portion of the graph of the sine function appears in Figure 43. The full graph of the
sine function is called a sine wave. The portion shown in Figure 42, that corre-
sponds to one complete circuit of P~t!, is called a fundamental cycle of the sine
curve.

A function f is called periodic if there is some number p such that f ~x 1 p! 5
f ~x! for every x in the domain of f; the smallest such positive number p is called the
period of f. For the trigonometric functions, after the point P~t! makes a complete
trip around the unit circle, it retraces its path exactly, returning to the same point
after every revolution. The coordinates of P~t! are the same as the coordinates of
P~t 1 2p!, which implies that sin~t 1 2p! 5 sin t for every real number t, that
sin~t 1 4p! 5 sin~t 2 2p! 5 sin t, and so on. The same relations hold for the

FIGURE 42
Fundamental cycle for y 5 sin t

FIGURE 43



[– 15, 15] by [– 1.5 x 1.5]
y = sin x

pg290 [V] G2 5-36058 / HCG / Cannon & Elich rps 10-26-95 QC

290 Chapter 5 Trigonometric and Circular Functions

cosine function as well. Thus we have the following.

Period of sine and cosine

The sine and cosine functions are both periodic, with period 2p .

sin~t 1 2p! 5 sin t
cos~t 1 2p! 5 cos tJ for every real number t.

From a fundamental cycle of the sine curve, we get the rest of the graph of
y 5 sin x by repeating the fundamental cycle in both directions. To see more of the
sine wave, return to function mode and graph y 5 sin x in a window such as
@27, 7# 3 @21.5, 1.5#. This allows us to see just a little more than two fundamen-
tal cycles. Now, if we increase the horizontal range to @215, 15#, the calculator
squeezes more than four fundamental cycles onto the screen, as in Figure 44.

TECHNOLOGY TIP r Trigonometric window

Most graphing calculators have an automatic setting for a trigonometric
window. You should become familiar with yours, whether or not it is
a window you like for viewing trigonometric functions. On TI calculators
the window is set from the ZOOM menu by Z TRIG. On the HP-48G, the ZOOM menu
is only accessible from the screen after drawing a graph. Then ZOOM NXT NXT

shows the menu with Z TRIG. On Casio calculators, simply enter Graph y 5 sin (no x)
and EXE, or from the Range screen, press F2.

Drawing calculator graphs of sine curves also reminds us of some limitations
of calculators. When graphing y 5 sin x with larger and larger x-ranges, at first we
see very smooth fundamental cycles repeated, but then the cycles become more
jagged. Remember that the graphing calculator draws a graph by dividing up the
x-range, computing a function value for each pixel-column, and then connecting
pixels in adjacent columns. The calculator is sampling the graph and showing us the
sampled points. When the x-range becomes larger, the sample points are more
widely spaced. To see this effect in action, follow the instructions in the next
Technology Tip.

TECHNOLOGY TIP r Sampling graphs

Begin by graphing the function y 5 sin px in @25, 5# 3 @21.5, 1.5#. You
should see exactly five fundamental cycles of a sine wave, a little jagged, but
certainly recognizable as a sine curve. Now increase the x-range to
@210, 10#, and then to @220, 20#. On this screen, it wouldn’t be obvious to
an uninformed observer that we are really seeing a sine curve.

To see the sampling most dramatically, we want to squeeze in just the
right number of fundamental cycles, and it differs from calculator to
calculator. We want to refer to a special x-range @A, B# for your calculator:

TI-81: @247, 48#; TI-82: @247, 47#;

TI-85 and Casio: @263, 63#; HP: @265, 65#.

Increase your x-range to @A 1 2, B 2 2# and graph, then to @A 1 1, B 2 1#
and graph. If these graphs had not been seen in order, it is unlikely that a

FIGURE 44
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person would recognize the graphs as sine curves. What we are seeing is
sometimes called a “resonance” phenomenon, where only a few points are
taken from each fundamental cycle. Finally, draw a graph in the interval
@A, B#. Explain what you see. Hint: try tracing, and remember what we know
about P~t!. How much of the graph is missing between successive pixels?

Graph of the Cosine Function

Since the cosine function is also defined in terms of the coordinates of the point
P~t!, we expect its graph to be closely related to the graph of the sine function. To
see how closely related these two curves are, graph y 5 sin x and y 5 cos x on the
same screen. See Figure 45.

From the graphs in Figure 45, we see that the cosine curve is also a sine wave,
meaning that it has exactly the same shape and period. A fundamental cycle of the
cosine curve is, as for the sine curve, a portion of the graph corresponding to one
revolution of P~t!. The cosine curve “lags behind” the sine curve by a distance p

2 in
the sense of Figure 46. In equation form, the relation is expressed as cos~t 2 p

2! 5
sin t, for every t.

FIGURE 45
Graphs of y 5 sin x and y 5 cos x.

FIGURE 46

cosSt 2
p

2D 5 sin t for every t.
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Reduction Formulas

The equation cos~t 2 p
2! 5 sin t is called a reduction formula. Reduction for-

mulas play a significant role throughout trigonometry. Other important relations
could be read from the graphs in Figure 45, but most can be seen more easily from
the unit circle.

The key to using a unit circle for reduction formulas is finding congruent
reference triangles. As an example, the graphs in Figure 45 suggest that the sine
curve is symmetric about the origin, while the cosine is symmetric about the y-axis.
Using terminology from Chapter 2, it appears that the sine is an odd function and
the cosine is an even function, or in equation form, for every real number t,

sin~2t! 5 2sin t and cos~2t! 5 cos t.

In the following example we justify these claims.Strategy: Draw a unit circle
diagram that shows angles t
and 2t, with reference tri- cEXAMPLE 1 Reduction formulas Show that for any real number t,
angles for each, then com-

sin~2t! 5 2sin t and cos~2t! 5 cos t.pare coordinates of P~t! and
P~2t!.

Solution
Because on the unit circle P~t! 5 (cos t, sin t) and P~2t! 5 ~cos~2t!, sin~2t!!, we
want to relate the coordinates of P~t! and P~2t!. Begin with an arbitrary P~t! in
Figure 47. P~2t! is located the same distance around the unit circle in the opposite
direction. The reference triangles are clearly congruent, so P~t! and P~2t! have the
same x-coordinates and their y-coordinates are equal but have opposite signs. You
may find it helpful to draw diagrams that show different P~t!, P~2t! pairs. If P~t!
has coordinates ~a, b!, then P~2t! 5 ~a, 2b!. Expressing the coordinates in terms
of cosine and sine,

Hcos t 5 a
sin t 5 b

and Hcos~2t! 5 a
sin~2t! 5 2b

Therefore cos~2t! 5 cos t and sin~2t! 5 2sin t. b

Since the sine is an odd function and the cosine is even, we can classify the
other trigonometric functions similarly.

cEXAMPLE 2 Even-odd functions Find formulas that relate f ~2t! and f ~t!,
for the tan, cot, sec, and csc functions.

Solution
From Example 1 and the equations defining the other trigonometric functions in
terms of sine and cosine,

tan~2t! 5
sin~2t!
cos~2t!

5
2sin t
cos t

5 2tan t

cot~2t! 5
cos~2t!
sin~2t!

5
cos t

2sin t
5 2cot t

sec~2t! 5
1

cos~2t!
5

1
cos t

5 sec t

csc~2t! 5
1

sin~2t!
5

1
2sin t

5 2csc t b

FIGURE 47
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Example 2 demonstrates that the cosine and secant functions are even and the
other four trigonometric functions are odd.

cEXAMPLE 3 More reduction formulas From a unit circle diagram that
shows P~t! and P~t 1 p!, find reduction formulas for cos~t 1 p!, sin~t 1 p!, and
tan~t 1 p!.

Strategy: For any position Solution
point P~t!, point ~t 1 p! is Look at Figure 48. P~t! and P~t 1 p! are end points of a diameter, so their
diametrically opposite, so if coordinates have opposite signs. Thus, if P~t! 5 ~a, b!, then P~t 1 p! 5 ~2a, 2b!.
P~t! has coordinates ~a, b!

Thereforethen P~t 1 p! has coordi-
nates ~2a, 2b!. Hcos t 5 a

sin t 5 b
and Hcos~t 1 p! 5 2a

sin~t 1 p! 5 2b

This gives the reduction formulas

cos~t 1 p! 5 2cos t and sin~t 1 p! 5 2sin t

For tan~t 1 p!,

tan~t 1 p! 5
sin~t 1 p!

cos~t 1 p!
5

2sin t
2cos t

5
sin t
cos t

5 tan t. b

Periods of the Trigonometric Functions

The cosine and sine functions have period 2p . The reciprocals of these two func-
tions, the secant and cosecant, must have the same period. While it is also true that,
for every real number t in the domain of the tangent, tan~t 1 2p! 5 tan t, 2p is not
the smallest positive number for which the tangent repeats. It turns out that the
period of the tangent function is p . From Example 3, tan~t 1 p! 5 tan t for every
t in the domain of the tangent function. From the graph of the tangent function (see
Figure 50), we can see that the period of the tangent function is p .

Since the cotangent function is the reciprocal of the tangent function, it must
have the same period as the tangent, so the period of the cotangent is also p .
Table 1 summarizes these results.

TABLE 1 Periods of the trigonometric functions

Function Period Function Period

Sine 2p Cosecant 2p

Cosine 2p Secant 2p

Tangent p Cotangent p

Graphs of the Other Trigonometric Functions

For the graphs of the sine and cosine functions, we paid close attention to the
coordinates of P~t! as it moves around the unit circle. The remaining four trigono-
metric functions are all defined as quotients involving the sine and cosine. From our
work with quotients of polynomials, we realize that whenever the denominator of
a quotient is zero, the graph of the quotient will have a vertical asymptote. The
graphs of the other trigonometric functions all have periodically occurring asymp-
totes.

FIGURE 48
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ppp p


y

t
p
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(b) y = csc t
odd; period 2pp

pp 2pp– pp
0

wpg294 [V] G2 5-36058 / HCG / Cannon & Elich cr 11-16-95 QC1

294 Chapter 5 Trigonometric and Circular Functions

The tangent function is of sufficient importance that it merits a key of its own
on calculators; the cotangent is treated as the reciprocal of the tangent. You should
draw the graph of y 5 tan x in your trigonometric window, and then add the graph
of y 5 cot x (5 1ytan x). The graph of the cotangent may be thought of as the
tangent graph reflected in the x-axis and shifted horizontally p

2 units right or left.
That is, cot x 5 2tan~x 6 py2!; see Figure 49.

The cosecant and secant are reciprocals of the sine and cosine, respectively, so
we can obtain their graphs as we did for reciprocals in Section 3.4. In particular,
since the graphs of y 5 sin x and y 5 cos x lie entirely between the horizontal
lines y 5 1 and y 5 21, the graphs of their reciprocals are always on or outside
the horizontal strip bounded by those lines. The graphs of y 5 csc x and y 5 sec x,
with their reciprocal functions, are shown in Figure 50.

cEXAMPLE 4 Another reduction formula

(a) Verify that calculator graphs of y 5 sin~ x 1 p
2! and y 5 cos x are identical.

(b) Use a unit circle diagram to establish the appropriate reduction formula.

Solution

(a) The graphs of both functions look like the one in Figure 51. To verify that the
graphs are identical, recall the suggestions in the Technology Tip in Sec-
tion 4.4.

(b) Drawing a diagram in a unit circle, reference triangles for the angles x and
x 1 p

2 are congruent. Thus in Figure 52, if we label the coordinates of P~x! as
~a, b!, then the coordinates of P~ x 1 p

2! are ~2b, a!.

sinSx 1
p

2D 5 a and cos x 5 a, so sinSx 1
p

2D 5 cos x. b

cEXAMPLE 5 Yet another reduction formula Repeat Example 4 with the
functions y 5 csc~ x 1 p

2! and y 5 sec x.

Solution

(a) For the graphs we enter Y1 5 1ySIN(X 1 py2), Y2 5 1yCOS X. Again, the graphs appear
identical.

FIGURE 50

FIGURE 49
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(b) Referring again to Figure 52, or using the reduction formula from Example 4,
we have

cscSx 1
p

2D 5 1ysinSx 1
p

2D 5 1ycos x 5 sec x. b

More Reduction Formulas

So far we have derived several reduction formulas, but there are many more.
Table 2 gives a number of the most commonly used reduction formulas, from
which many others can be derived, as Example 6 shows.

TABLE 2 Reduction formulas

2t
p

2
2 t

p

2
1 t p 2 t p 1 t

3p

2
2 t

3p

2
1 t

sin 2sin t cos t cos t sin t 2sin t 2cos t 2cos t

cos cos t sin t 2sin t 2cos t 2cos t 2sin t sin t

tan 2tan t cot t 2cot t 2tan t tan t cot t 2cot t

cEXAMPLE 6 Using Table 2 Use Table 2 to simplify csc~t 2 p
2! .

Solution

Remember that csc~t 2 p
2! 5

1
sin~t 2 p

2!
. Table 2 has sin~p

2 2 t! , but not

sin~t 2 p
2! , so first use the fact that sine is an odd function to get,

sinSt 2
p

2D 5 sinS2Sp

2
2 tDD 5 2sinSp

2
2 tD

From Table 2, sin~p
2 2 t! 5 cos t. Putting all this together,

cscSt 2
p

2D 5
1

sinSt 2
p

2D
5

1

2sinSp

2
2 tD 5

1
2cos t

5 2sec t.

Thus, csc~t 2 p
2! 5 2sec t is a reduction formula (an identity). b

Using Graphs in Problem Solving

The next two examples illustrate how helpful a graph can be in solving a problem.

cEXAMPLE 7 A hole in a sphere We want to drill a hole through a wooden
sphere of radius 6 inches, leaving a bead-shaped shell surrounding a hollow cylinder
in which flowers can be displayed. We want the largest possible cylinder. Figure 53
shows a cross-section with C at the center and angle u between the axis of the hole
and the cylinder rim. The radius of the cylinder is r and the height is h.

(a) Express r and h, and then the volume V of the cylinder, as functions of u.
(b) Draw a graph of V and find the maximum volume and the corresponding value

of u and the radius of the hole to drill.

FIGURE 51

FIGURE 52

FIGURE 53



[0, 1.5] by [0, 1000]

(0.96, 522)

[– 2p, 2p] by [– 3, 3]pp

f (x) = cos x, g(x) = xy4

[– 21, 21] by [–1.5, 1.5]

f (x) = cos x, g(x) = xy20
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Solution

(a) nABC is a right triangle with hypotenuse 6 and legs of length r and hy2, so

sin u 5
r
6

and cos u 5
hy2

6
, from which r~u! 5 6 sin u, h~u! 5 12 cos u. The

volume of a cylinder is pr 2h, so the volume we want is given by

V 5 p@r~u!#2 h~u! 5 432p ~sin u!2 cos u.

(b) We graph the volume as Y 5 432p (SIN X)2 COS X. For a suitable window, we see that
u is certainly between 0 and py2, so an x-range of @0, 1.5# should work. The
maximum y-value must be less than 432p , so we will try @0, 1000#. The
calculator graph is shown in Figure 54. The maximum volume is just over
522 cubic inches, when u < 0.96. The hole giving a maximum volume has
radius of about r~0.96! 5 6 sin(0.96) < 4.9. b

cEXAMPLE 8 Counting intersections In how many points do the graphs of
f and g intersect if f ~x! 5 cos x and (a) g~x! 5 xy4, (b) g~x! 5 xy20?

Solution

(a) A calculator graph of f and g in a trigonometric window is shown in Figure 55.
The question, of course, is whether this window shows all the intersections. We
know that the cosine function always lies between the horizontal lines y 5 1
and y 5 21. Since g is an increasing function (a line with positive slope), after
g~x! . 1 there can be no more intersections, and similarly for g~x! , 21.
Tracing along g, we verify that Figure 55a shows all intersections; there are
three.

(b) When we change the denominator of g to 20 and graph f and g in a trigonomet-
ric window, it is obvious that we do not have all intersections. Following the
same reasoning as in (a), g~x! 5 1 when x 5 20, so we must have a window
going at least to 20. We graph f and g in @221, 21# 3 @21.5, 1.5# and get the
picture in Figure 55b. There are seven intersections in Quadrant I and six in
Quadrant III, for a total of thirteen. b

FIGURE 54

(a) (b)

FIGURE 55
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EXERCISES 5.4

Check Your Understanding

Use graphs whenever helpful.

Exercises 1–5 True or False. Give reasons.

1. For every real number x, cos_ x _ 2 cos x 5 0.

2. For every real number x, sin_ x _ 2 sin x $ 0.

3. The graph of y 5 cos_ x _ is the same as the graph of
y 5 cos x.

4. The function f ~x! 5 _ sin x _ is an even function.

5. The graph of y 5 cos~p
2 2 x! is the same as the graph

of y 5 sin x.

Exercises 6–10 Fill in the blank so that the resulting
statement is true.

6. For 0 # x # p , the highest point on the graph of
y 5 2 sin~p 2 x! is .

7. The period of f ~x! 5 2 sin~px
2 ! is .

8. The period of f ~x! 5 _ sin x _ is .

9. The graph of f ~x! 5 2cos x and y 5 x intersect in
Quadrants(s) .

10. The number of points common to the graphs of
y 5 cos 2x and y 5 x

2 is .

Develop Mastery

Exercises 1–3 Use Table 2 to simplify the expression.

1. (a) sinSt 2
3p

2 D (b) cscSt 2
p

2D
2. (a) cosSt 2

p

2D (b) cotSt 2
p

2D
3. (a) tan~t 2 p! (b) secSp

2
1 tD

Exercises 4–6 Given the coordinates of a point Q~a, b! on
the terminal side of an angle u in standard position, draw a
diagram to evaluate in exact form the six trigonometric
functions of the indicated angle.

4. Q~23, 4!; u 1 p 5. Q~23, 4!; u 1
p

2

6. Q~12, 25!; u 2
p

2
Exercises 7–10 Reduction Formula Determine whether
the equation is a valid reduction formula. First draw graphs
of the left and right sides. If the graphs appear to be identi-
cal then use algebra.

7. cosS5p

2
2 tD 5 cos t 8. sin~3p 1 t! 5 2sin t

9. cosSt 2
3p

2 D 5 sin t 10. sec~t 2 3p! 5 sec t

11. Draw a calculator graph of y 5 sin px for each of the
windows suggested in the Technology Tip (“Sampling
Graphs,” page 290). Explain the appearance of the
graph of y 5 sin px for the specified window.
(Hint: In each case TRACE and look at the ~x, y! values to
see what points the calculator is trying to connect.)

12. Repeat Exercise 11 for y 5 cos px.

Exercises 13–16 Graph Without using a calculator sketch
a graph of f for x in @22p , 2p#.

13. f ~x! 5 cosSp

2
2 xD 14. f ~x! 5 sinS3p

2
1 xD

15. f ~x! 5 tan~p 1 x! 16. f ~x! 5 sec~p 2 x!

17. Draw graphs of the unit circle and y 5 sin x using para-
metric equations as suggested on page 288. Watch as
the graphs are being drawn. What point on the unit
circle is used as a starting point for the graph, and in
what direction is it traced? (Hint: Trace and use the
up–down arrow keys to see the correspondence be-
tween points on the unit circle and points on the sine
graph.)

18. Repeat Exercise 17, except draw a graph of the unit
circle and y 5 cos x.

Exercises 19–20 Graph Sketch a graph of the equation
for x in @2p , p#. Describe how to obtain the graph by basic
transformations of a graph in Figures 43, 45, 49, or 50.

19. (a) y 5 2 sin x (b) y 5 22 cos x

20. (a) y 5 2tan x (b) y 5 2csc x

Exercises 21–24 Simplify Formula Use appropriate re-
duction formulas (identities) from Table 2 to find a simpler
equation to describe the function. In each case, give the
domain of the function.

21. f ~x! 5

sinSx 2
p

2D
cos x

22. g~x! 5

cosSx 1
3p

2 D
sin x

23. f ~x! 5
tan~x 1 p!

tan x

24. g~x! 5
1
2Fsin x 2 cosSx 1

p

2DG
Exercises 25–26 Graphs with Absolute Value Draw
graphs of f and g for x in @22p , 2p#.

(a) For what values of x do the graphs coincide?
(b) Is f even or odd? Is g even or odd?
(c) Is f periodic? Is g periodic?



pg298 [V] G2 5-36058 / HCG / Cannon & Elich cr 12-1-95 MP2

298 Chapter 5 Trigonometric and Circular Functions

25. f ~x! 5 _ sin x _ , g~x! 5 sin_ x _

26. f ~x! 5 _ cos x _ , g~x! 5 cos_ x _

Exercises 27–30 Sketch a graph of f for x in @2p , p#.
(Hint: First use an appropriate reduction formula to get a
simpler equation for f ~x!. Show points that are not included
with open circles.)

27. f ~x! 5
cos~2x!

cos x
28. f ~x! 5

cosSx 1
p

2D
sin x

29. f ~x! 5
sin~x 1 p!

cos x

30. f ~x! 5
1
2Fsin x 1 cosSp

2
2 xDG

Exercises 31–34 Related Graphs Draw graphs of the
two functions on the same screen. Explain how the two
graphs are related.

31. f ~x! 5 sin x, g~x! 5 2 sin x

32. f ~x! 5 cos x, g~x! 5 22 cos x

33. f ~x! 5 sin x, g~x! 5 sinSx 2
p

2D
34. f ~x! 5 cosSx 2

p

2D, g~x! 5 sin x

Exercises 35–36 Intercept Points from Graph Use a
graph to approximate the x-intercept points in the interval
@22p , 2p# ( 1 decimal place).

35. f ~x! 5 0.5 1 sin x 36. g~x! 5 cos x 2 sin x

Exercises 37–38 Points of Intersection Draw graphs of
the two functions on the same screen. Use the graphs to
approximate the solutions to the equation f ~x! 5 g~x! in the
interval @0, p# ( 1 decimal place).

37. f ~x! 5 sin x, g~x! 5 cos x

38. f ~x! 5 cos x, g~x! 5 tan x

Exercises 39–40 Number of Intersections On the same
screen draw graphs of f and g. At how many points do the
graphs intersect? Draw as many periods of the sine or
cosine function as needed to be certain that you have all
points of intersection.
(a) g~x! 5 x

2 (b) g~x! 5 x
4 (c) g~x! 5 x

10

39. f ~x! 5 sin x 40. f ~x! 5 cos x

Exercises 41–43 Maximum Value Find the maximum
value of f in the window @0, p# 3 @21, 3#, ( 1 decimal
place).

41. (a) f ~x! 5 2 sin x 1 cos
x
2

(b) f ~x! 5 2sin x

42. (a) f ~x! 5 sin x 1 Scos
x
2D~sin x!2

(b) f ~x! 5 e sin x

43. (a) f ~x! 5 3Scos
x
2D~sin x!2 (b) f ~x! 5 x sin x

Exercises 44–46 Using Graphs Draw a graph of f for x
in @22p , 2p#. (i) If f is periodic give its period. (ii) State
the domain and range of f.

44. (a) f ~x! 5 2 1 cosSx 2
p

4D
(b) f ~x! 5 2cos x

45. (a) f ~x! 5 2 1 3 sin
x
2

(b) f ~x! 5 e sin x

46. (a) f ~x! 5 0.5 tan
px
2

(b) f ~x! 5 sin~cos x!

47. (a) Parentheses Do you get the same graph if you
enter Y1 5 (sin x)2 as for Y1 5 sin x2?

(b) Draw a graph of f ~x! 5 (sin x)2 1 (cos x)2. What do
you observe?

(c) Do the same for f ~x! 5 (sec x)2 2 (tan x)2.

Exercises 48–49 Draw graphs of f and g. Based on the
graphs, for what values of x does it appear that f ~x! 5 g~x!?

48. f ~x! 5 sin 2x, g~x! 5 2 sin x cos x

49. f ~x! 5 sin x tan x, g~x! 5 sec x 2 cos x

Exercises 50–52 Find the smallest positive root of the
equation (2 decimal places). (Hint: Graphs will help.)

50. (a) cos x 5 0.658 (b) tan x 5 Ïx

51. (a) 1 1 cos 2x 5 cos~x 2 1!
(b) sin~x 2 0.5! 5 cos x

52. (a) sin~cos x! 5 sin x (b) 1 2 ~tan x!2 5 2 sin x

53. Find the largest positive root of sin x 5 x
10 . (2 decimal

places).

Exercises 54–55 Period and Graph Determine the pe-
riod of f and then draw a graph that shows exactly two
periods. Give the window you are using for your graph.

54. f ~x! 5 cos
px
2

55. f ~x! 5 2 2 cos 2x

56. Draw the graph of y 5 sec x with y-range @0, 3# and
each of the given x-ranges.

F2
p

2
,

p

2G, F3p

2
,

5p

2 G, F7p

2
,

9p

2 G. Give two additional

windows that will show a similar graph.

57. (a) Without using a calculator, for x in @22p , 2p#, find
the points that are on the graphs of both
f ~x! 5 x sin x and g~x! 5 x. (Hint: Solve
x sin x 5 x for x.)

(b) Use graphs of f and g as a check.
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Exercises 58–60 Solution Set Find the solution set for
0 , x , p

2 ( 2 decimal places).

58. (a) cos x 5 0.25 (b) cos x , 0.25.

59. (a) sin x 5 0.64 (b) sin x , 0.64.

60. (a) tan x 5 1.5 (b) tan x , 1.5.

Exercises 61–62 (a) Are the graphs of f and g identical?
(b) If not, adjust the formula for g so that they are.

61. f ~x! 5 sin x, g~x! 5 cos~ x 1 p
2 !

62. f ~x! 5 cos x, g~x! 5 sin~ x 2 p
2 !

63. Right triangle ABC shown in the diagram is revolved
about side AC, giving a cone. If u is small, the cone is
shallow and has a small volume, if u is almost p

2 , the
cone is slender and has a small volume. Between these
extremes there must be a value of u that gives a cone of
maximum volume.

(a) Express the volume V as a function of u.
(b) Use a graph of the function to find the value of u for

which V is a maximum (1 decimal place).
(c) What is the maximum value of V?

64. Alternate Solution for Exercise 63: Solve the prob-
lem by finding a formula for V as a function of x, where
_ BC _ 5 x. Use a graph of the function to find the value
of x that gives the maximum value of V.

65. Maximum Area Points A, B, and C are on a circle of
radius 12 as shown in the diagram, where point O is the
center of the circle.
(a) Use geometry to show that a 5 2u and /ACB is a

right angle. As point C moves along the circle we
get different right triangles ABC.

(b) Of all such possible triangles find u so that the area
is a maximum.

(c) What is the maximum area?

66. Maximum Area The length of the equal sides AB and
AC of an isosceles triangle ABC is 24. Let u denote each
of the two equal angles.
(a) Draw several such triangles from small values of u

to nearly p
2 , and describe what happens to the area

of nABC.
(b) For what u is the area a maximum? (2 decimal

places).
(c) What is the maximum area?

67. In Example 7, what value of u will give a cylinder
whose volume is one-half the volume of the sphere.

68. Repeat Example 7 for a sphere of radius 4 inches.

69. Alternate Solution: Solve the problem in Example 7
by getting a formula for V as a function of r. See dia-
gram showing a cross-section of the cylinder.

70. In the diagram A is the center of a circle of radius
16 inches and /BAC 5 x radians, 0 , x , p .
(a) Find a formula that gives the area K of the shaded

region as a function of x. Use a graph to find
(b) K when x 5 2.4, and
(c) x when K 5 164 square inches (2 decimal places).

71. Polynomial Approximations In Exercises 70 and 71 of
Section 5.3 we indicated that the sine and cosine func-
tions can be approximated very closely by polynomials

S~x! 5 x 2
x 3

6
1

x 5

120
2

x 7

5040

C~x! 5 1 2
x 2

2
1

x 4

24
2

x 6

720
.



(1, 0)
x

y

x1

(cos x2, sin x2)
= (cos x2, 0.723)

(cos x1, sin x1)
= (cos x1, 0.723)

(b)

(0, 1)
x2

– 1

1

y

t

y = 0.723

p p2 p3p–

x1 x2 = – x1p px2 – 2 px1 + 2 px2 + 2

y = sin x

(a)
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In radian mode draw graphs of y 5 sin x and y 5 S~x!
on the same screen @25, 5# 3 @22, 2#. Trace and use
the arrow keys to move from one graph to the other to
find the values of x for which the two values of y agree
to at least four decimal digits.

5.5 I N V E R S E T R I G O N O M E T R I C F U N C T I O N S

Quite often @mathematicians# do not deliver a frontal attack against a given
problem, but rather they shape it, transform it, until it is eventually changed
into a problem that they have solved before.

Rózsa Péter

Given the equation sin t 5 0.723, how can we find the solution set, that is, the
number or numbers whose sine is 0.723? If we look at the graph of the sine functionIdidn’t like the symbols for
in Figure 56, it is apparent that there are infinitely many numbers whose sine issine, cosine, tangent, and
0.723. All such numbers are coterminal with one of the numbers x1 or x2 in theso on. So I invented other

symbols. Now the inverse figure. In most cases, there is little hope of finding an exact solution although we
sine was the same @symbol# could trace and zoom to approximate any of the intersection points shown in
but left-to-right reflected Figure 56a. Calculators are programmed to give an excellent approximation for
. . . NOT sin21—that was

the number x1 in Figure 56a. The calculator function is SIN21, located above thecrazy! To me sin21 meant
SIN key. When we evaluate SIN21.723 the calculator returns 0.808134999. From the1

sine , the reciprocal. So my
symbols were better. diagram in Figure 56b, we see that x2 5 p 2 x1. If we zoom in several times on

Richard Feynman the intersection at x2, we can read x2 < 2.333, in excellent agreement with
p 2 x1 < 2.333458.

The calculator function SIN21 is an inverse trigonometric function. As a func-
tion, SIN21 must pick out a single value from the set shown in Figure 56a. In this
section we want to understand inverse trigonometric functions, to learn what kinds
of values the calculator returns and to learn to find solutions the calculator does not
give.

72. Follow instructions similar to those in Exercise 71 for
y 5 cos x, y 5 C~x!.

FIGURE 56



[– 9, 9] by [– 6, 6]

x = sin y

y = sin x

y

x

y = Sin x

Range [– 1, 1]


2(   , 1)

– 1

1

(0, 0)

p

Domain [–    ,    ]
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2

p p


2

– p 
2
p


2(–   , – 1)p

(a)

y

x

y = Sin– 1 x

Domain [– 1, 1]
– 1 1


2
p


2(1,   )p

   Range [–    ,    ]
2


2

p p


2

– p


2(–1, –    )p

(b)

y

x

y = Tan x
– 1

1

(a)


4(–   , – 1)p


4(  , 1)p


2
p

2
– p

Range (– `, `)

Domain (–    ,    )
2


2

p p

y = Tan– 1 x

y

x

– 1 1

(b)

Range (– `, `)

Domain (–    ,    ) 
2


2

p p


2
p


2

– p

p 
4(1,   )


4(–1, –    )p
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Restricted Domains for Inverse Trigonometric Functions

In Section 2.7 we learned that only inverses of one–one functions are themselves
functions. To reemphasize that point, we want to look at pairs, functions and their
inverses, beginning with the sine function. The natural approach uses parametric
equations. With your calculator in parametric mode, enter the functions as follows.

HX1 5 T

Y1 5 SIN T
for y 5 sin x, HX2 5 SIN T

Y2 5 T
for the inverse.

In @29, 9# 3 @26, 6#, with a t-range of @29, 9#, the calculator graph looks like
Figure 57, where the graph of the inverse is dotted to make it easier to see.

In order for the inverse to be a function, we must restrict the domain of the sine
function to an interval where the graph is either increasing or decreasing. The most
natural choice is the interval ~2p

2 , p
2!, as shown in Figure 58. We use the name Sin x

(with a capital letter) for the restricted function in Figure 58a.
You can graph y 5 Sin x easily by staying in parametric mode and plotting

X 5 T, Y 5 SIN T, changing your t-range to ~2p
2 , p

2!, (about 21.57 to 1.57). If, however,
you don’t turn off the inverse function used for the graph in Figure 57, your screen
will show both the function and its inverse, and it is difficult to tell which is which.
To make it easier to see, we usually show the graphs of functions and their inverses
separately, as in the two panels of Figure 58. The inverse of the restricted sine is
the function y 5 Sin21 x. Since calculators are programmed to graph y 5 Sin21 x,
we do not need parametric equations; the SIN21 key does it nicely. To see this on your
calculator, graph y 5 sin21 x.

In this text, we denote the inverse of the restricted sine function either by
Sin21 x, read “inverse sine,” or by Arcsin x; they are names for the same func-
tion. Casio and Texas Instrument calculators use the label SIN21 but HP uses ASIN

for Arcsin. Both names are common, so you should become familiar with
both.

The tangent function is increasing on the interval ~2p
2 , p

2!, and so we use
a restricted tangent function, Tan x, to define the inverse tangent, Tan21 x or
Arctan x. The graphs, with domains and ranges, are shown in Figure 59.

FIGURE 57

FIGURE 58

Restricted sine function

Inverse sine function

Restricted tangent function,
y 5 Tan x

Inverse tangent function,
y 5 Tan21 x

FIGURE 59
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The cosine function presents a small problem. We can no longer use the interval
~2p

2 , p
2!, because y 5 cos x is neither increasing nor decreasing on the interval. To

get a workable interval that includes first quadrant values, we use 0 to p for the
restricted cosine function. The restricted cosine, Cos x, and its inverse, Cos21 x or
Arccos x, are graphed in Figure 60.

Inverse Function Identities

All of the relationships we observed in previous chapters between a function and
its inverse apply to Sin x and Sin21 x, and to the other pairs of inverse trigonometric
functions:

The graphs are reflections of each other in the line y 5 x.
Every point ~a, b! on one graph corresponds to the point

~b, a! on the graph of the inverse.
The domain and range are interchanged.

One of the most important characteristics of inverse function pairs is that they
“undo each other” in the sense described in Section 2.7.

f ~ f 21~x!! 5 x for all x in the domain of f 21

f 21~ f ~x!! 5 x for all x in the domain of f.

The interval where each inverse trigonometric function identity holds is given in the
box on page 306.

The identity sin~Sin21 x! 5 x suggests a way to think about the inverse trigono-
metric functions that many people find helpful:

Sin21 x is the number (or angle) whose sine is x.
As in the boxed statement below, the inverse trigonometric functions may be

thought of as picking out the single number (or angle) whose sine (or cosine, etc.)
has a given value. For example, from a 308–608 triangle sin~p

6! 5 1
2 , so we know

that p
6 is the angle whose sine is 1

2 ; that is, Sin21~1
2! 5 p

6 .
We began this section with the problem of solving sin t 5 0.723. One solution

is given by t 5 Sin21 0.723 < 0.808135. Because trigonometric functions are
periodic, there are always infinitely many solutions (if any) to an equation such as
sin t 5 0.723. To use inverse trigonometric functions intelligently, we must know
what kinds of numbers they pick out and then how to go from the single value they
give to get a solution satisfying whatever conditions may apply in a given problem.
You should make the information in the following box very familiar.

Ranges of inverse trigonometric functions

Sin21 x and Cos21 x are only defined when 21 # x # 1;
Tan21 is defined for all real numbers.

x $ 0 Sin21 x, Tan21 x, Cos21 x are positive numbers, all in Quadrant
I, between 0 and py2.

x , 0 Sin 21 x and Tan21 x are negative numbers, between
2p

2
and 0,

coterminal with Quadrant IV numbers.

Cos21 x is a number in Quadrant II, between
p

2
and p .

Inverse cosine function,
y 5 Cos21 x

FIGURE 60

Restricted cosine function,
y 5 Cos x
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Calculator Evaluation and Graphs

In general, we need calculators to find solutions to equations involving trigonomet-
ric functions, but for many familiar values, we can evaluate inverse functions
without a calculator. In working with such equations, here are some useful guide-
lines.

Keep in mind the angles displayed in Figure 29 from Section 5.2.
Sketch a quick graph of the sine or cosine curve for reference.
Draw unit circle diagrams or reference triangles.

And always check your results by calculator.

cEXAMPLE 1 Evaluating inverse functions Find all calculator solutions
for the equation and show the result on a graph of the appropriate inverse trigono-
metric function. (a) sin x 5 1

3 (b) ~2 cos x 2 1!~cos x 1 1! 5 0

Solution

(a) Evaluating Sin21~1
3!, the calculator displays .33983690945.

(b) By the zero-product principle, the given equation is equivalent to two:

2 cos x 2 1 5 0, cos x 1 1 5 0, or

cos x 5
1
2

, cos x 5 21.

Here is a place where we may recognize exact form solutions. For the first equation,
the first quadrant angle whose cosine is 1

2 is p
3 (see Figure 61a). By calculator,

x 5 Cos21~1
2! 5 1.0471975512, the calculator approximation for p

3 . For the sec-
ond equation, we can sketch a cosine curve to see where the cosine is 21, or
draw a unit circle diagram (Figure 61b). By calculator, x 5 Cos21~21! 5
3.14159265359, which we recognize immediately as p .

The points corresponding to each solution are shown in Figure 62. bFIGURE 62

FIGURE 61
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cEXAMPLE 2 Evaluating inverse functions Use graphs of y 5 sin x and
y 5 cos x to find all solutions (four decimal places).

(a) sin x 5 1
3 (b) ~2 cos x 2 1!~cos x 1 1! 5 0

Solution

(a) Either from the graph or from the unit circle diagram in Figure 63, we can see
that any solution to the equation must be coterminal with either the number
x1 < 0.3398 we obtained in Example la for Sin21~1

3! or with p 2 x1 < 2.8018.
All numbers coterminal with x1 are obtained by adding some integer multiple
of 2p . The solutions are given by

x < 0.3398 1 2kp or x < 2.8018 1 2kp ,

where k is any integer
(b) In Example 1b we found that p

3 and p are exact form solutions. While
Cos21 ~1

2! 5 p
3 (in Quadrant I), there are other angles with cosine 1

2 , such as 5p
3 ,

or 2p
3 (see Figure 64). All solutions are coterminal with one of p

3 , p , or 5p
3 . In

exact form, the solutions are given by

x 5
p

3
1 2kp , x 5 p 1 2kp , or x 5

5p

3
1 2kp . b

cEXAMPLE 3 Using a graph Find two solutions of Cos21~sin x! 5 2 in the
interval @0, 2p# (two decimal places).

Solution
Graphing Y1 5 COS21(SIN X) and Y2 5 2 in a decimal window gives the graph shown in
Figure 65a. Tracing along the sawtooth curve, we find one solution near x 53.6.
Since we are asked for all solutions between 0 and 6.3, we must extend our window.
(Try tracing to the right; if your calculator has a power scroll feature, the graph
extends automatically as your trace cursor reaches the right edge of your screen.)
It appears that the sawtooth pattern continues, so that there are infinitely many
solutions to the given equation, but there is only one more in the interval @0, 2p#.
To two decimal-place accuracy, the solutions are given by x 5 3.57 and x 5 5.85.

Alternate Solution Taking the cosine of both sides of the equation allows us to
use the inverse function identity cos~Cos21 u! 5 u for every u in @21, 1#:

cos~Cos21~sin x !! 5 cos 2, or sin x 5 cos 2.

Graphing Y1 5 SIN X and Y2 5 COS 2 gives the graph in Figure 65b. As above, we must
extend the window to the right to see the two intersections between 0 and 6.28. The
solutions are, of course, the same. b

Triangle Diagrams with Inverse Trigonometric Functions

It often helps to remember that Sin21(0.44) is the number (angle) in Quadrant I
with sine 0.44 or Cos21(20.012) is the number (angle) in Quadrant II with cosine
20.012. We sometimes use a name we associate with an angle, such as u 5
Sin21 0.15, to help us remember that inverse trigonometric functions name angles.
It then becomes natural to draw diagrams showing angles and reference triangles,
as in the next example.

FIGURE 63

FIGURE 64

FIGURE 65
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HISTORICAL NOTE p AND e, PART II

e 5 1 1
1
1

1
1

1 · 2
1

1
1 · 2 · 3

1 · · ·

p 2

6
5 1 1

1
4

1
1
9

1
1

16
1 · · ·

Euler (The series for e is very fast
but for p is quite slow.)

p

4
5 1 2

1
3

1
1
5

2
1
7

1 · · · Gregory, 1688 (very slow)

p

2
5

2 · 4 · 4 · 6 · 6 · 8 · 8 · · · ·
1 · 3 · 3 · 5 · 5 · 7 · 7 · · · ·

Wallis, 1650

Strategy: (a) First let cEXAMPLE 4 Drawing triangle diagrams Evaluate in exact form
u 5 Sin21 22

3 , so sin u 5
(a) tan~Sin21 2 2

3! and (b) cos~p 1 Tan21 2).2 2
3 and 2 p

2 # u # p
2 . Draw

a diagram that shows u in SolutionQuadrant IV and a reference
triangle with y 5 22 and (a) Follow the strategy. The diagram in Figure 66 shows that the x value for the
r 5 3. Use the Pythagorean

reference triangle is Ï32 2 ~22!2 or Ï5. From the reference triangle,theorem to find x and then
tan u 5 22

Ï5
. Therefore, tan~Sin21 2 2

3! 5 22

Ï5
.use the triangle to evaluate

tan u.

Because p and e are
transcendental, there is no
polynomial equation with integer
coefficients—not of degree ten or
ten million—whose graph has an
x-intercept at either number. How
are such numbers approximated
to thousands of decimal places?
Some limiting process is needed,
usually an infinite series. Various
series differ dramatically in their
rates of convergence (the number
of terms needed for a good

approximation). We list below some
series that have actually been used
to calculate digits of p and e.

Most recent computer calcula-
tions use series for the inverse
tangent function (the source of
Gregory’s approximation). The
1986 program on the CRAY-2
supercomputer that produced
29 million digits of p used a new
iteration algorithm due to the two
Borwein brothers of Dalhousie
University in Nova Scotia.

Mathematicians Peter (left)
and Jonathan Borwein

FIGURE 66
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(b) If we let a 5 Tan21 2, then a is a first quadrant angle whose tangent is 2, as
in Figure 67. Adding p gives an angle in Quadrant III with reference triangle
as in the diagram. From the diagram we read

cos~p 1 Tan21 2! 5 cos~p 1 a! 5
21

Ï5
.

Note that we could have used a reduction formula, cos~p 1 a! 5 2cos a,
instead of drawing the diagram. However we obtain the results, we should check
our answers on the calculator. b

Compositions of Trigonometric Functions and Their Inverses

By the inverse function identities, all compositions of the form f ~ f 21~x!! and
f 21~ f ~x!! are equal to x for at least some values of x. It follows that the graphs such
as y 5 sin~Sin21 x! or y 5 Tan21~tan x! must look like the graph of y 5 x on the
domain of the argument (the inside function). To make it easier to recall where
these functions look like y 5 x and where they differ, we show part of the graphs
of each composition. We invite you to duplicate all of these graphs on your calcu-
lator and experiment further for yourself.

Graphs of compositions- inverse function identities

sin~Sin21x!

cos~Cos21x!J 5 x on @21, 1# tan~Tan21x! 5 x for all real x

FIGURE 67

Sin21~sin x! 5 x
on @2py2, p 2#

Cos21~cos x! 5 x
on @0, p#

Tan21~tan x! 5 x
on ~2py2, p 2!

(in dot mode)
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cEXAMPLE 5 Exact form Evaluate in exact form

(a) sin~Arcsin 2
3! and

(b) Cos21~cos 5p
4 !. Explain why Cos21~cos 5p

4 ! 5/ 5p
4 .

Solution

(a) Since 2
3 is a number in the interval @21, 1#, we may apply sin~Sin21 x! 5 x

directly and obtain sin~Arcsin 2
3! 5 2

3 .
(b) The identity Cos21(cos x) 5 x applies only when x is in @0, p# and 5p

4 is not in
that interval. To evaluate (b) first evaluate cos 5p

4 .

Cos21Scos
5p

4 D 5 Cos21S21

Ï2
D 5

3p

4
.

Hence Cos21~cos 5p
4 ! 5 3p

4 .
(See Figure 68.) As a check, evaluate Cos21~cos 5p

4 ! by calculator. b

FIGURE 68

cEXAMPLE 6 Difference of compositions

(a) Draw a calculator graph of y 5 Arccos~cos x! 2 Arcsin~sin x!. Explain why
there appears to be no graph on certain intervals.

(b) Find the exact coordinates of the “corner” points of the graph on the interval
from x 5 2p to x 5 p .

Solution

(a) In a shifted decimal window the graph looks like Figure 69. Where the graph
seems to disappear, it is really overwriting the x-axis, as we can tell by tracing.
When we trace, starting at x 5 0 and moving to the right, the calculator shows
that y is some number less than 10210; a calculator display of a number that
small usually indicates some round-off error from 0.

(b) Referring to the composition graphs in the box above, we see that
Cos21~cos x! 5 x on @0, p#, and Sin21~sin x! 5 x on @2p

2 , p
2#. Therefore

Cos21~cos x! 2 Sin21~sin x! 5 x 2 x 5 0 on @0, p
2#. There is a corner at (0, 0)

and at ~p
2 , 0!. The next corner to the right is at ~p , p!. Moving to the left, there

is a corner at ~2p
2 , p! and at ~2p , p!. b

cEXAMPLE 7 Identical functions? Compare the graphs of f ~x! 5

Ï1 2 x 2 and g~x! 5 sin~Cos21 x !. Determine algebraically if the domains of f and
g are the same.

FIGURE 69
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Solution
Graphical If we graph Y1 5 Ï1 2 X2, and Y2 5 SIN(COS21 X), we see only one curve, a
semicircle centered at the origin. By translating the second graph up by one-half
unit, we can see both graphs at the same time. Graph

Y1 5 Ï1 2 X2, Y2 5 SIN(COS21 X) 1 .5 .

Tracing along the curves, comparing y-values to calculator accuracy, the y-
coordinates differ by exactly 0.5. The graphs make it appear that the domain of
both functions is the interval @21, 1#.
Algebraic The domain of f is the set of numbers for which 1 2 x 2 $ 0, x 2 # 1,
or 21 # x # 1. Thus the domain of f is the interval @21, 1#. The sine function is
defined for all real numbers, so the domain of sin~Cos21 x! is the same as the
domain of the argument, Cos21, namely @21, 1#.

We conclude that f and g have the same domain, and the graph suggests that
sin~Cos21 x! 5 Ï1 2 x 2 for every x in @21, 1#. b

cEXAMPLE 8 Applying the arctan function Janet, whose eye-level is 5.2
feet, is walking along Main Street looking up at a movie marquee that is 3.5 feet
tall, with its bottom edge 12 feet above the sidewalk. See the diagram in Figure 70.
Janet’s “view” of the marquee is measured by her viewing angle u, which in turn
depends on the distance x. When she is far away, u is small; as she approaches, the
angle increases, and then gets small again as she nears the marquee.

FIGURE 70

(a) Find a formula that gives u as a function of x.
(b) Use a graph of f to find the distance x giving the best view (the maximum

viewing angle).

Solution

(a) From nADB, tan~u 1 a! 5 10.3
x , so u 5 Tan21~10.3

x ! 2 a. From nADC,
tan a 5 6.8

x , so a 5 Tan21~6.8
x !. Putting the two equations together, we have the

desired function,

u 5 f ~x! 5 Tan21S 10.3

x
D 2 Tan21S 6.8

x
D.

(b) To select an appropriate window, we try a few values of x and see that u appears
to be less than 0.3. In @0, 20# 3 @0, 0.4# we get the graph in Figure 71. Tracing
and zooming in as needed, we see that the highest point is near (8.4, 0.206),
so Janet’s maximum viewing angle is about 0.206, or about 128, when she isFIGURE 71
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about 8.4 feet from the point directly below the bottom of the marquee. From
the graph, however, we see that her view really changes very little while she is
anywhere from about 11 feet to about 6.5 feet. b

Inverse Functions for Secant, Cosecant, and Cotangent

By suitably restricting the domains of the secant, cosecant, and cotangent, we can
define inverse functions. Unfortunately, there is no universal agreement as to which
domains are most useful. We are not going to do much with these inverse functions
except to recognize that when a need arises, it is almost always possible to translate
problems involving Sec21, Csc21, or Cot21 into terms of Cos21, Sin21, or Tan21, as
in the following example.

cEXAMPLE 9 Inverse secant Evaluate Sec21 3, rounded off to three deci-
mal places.

Solution
Let u 5 Sec21 3. Then sec u 5 3, and so 1

cos u 5 3, or cos u 5 1
3 . If the range of

Sec21 agrees with the range of Cos21, then use a calculator:

u 5 Cos21S 1

3
D < 1.231.

Therefore, Sec21 3 < 1.231. b

EXERCISES 5.5

Check Your Understanding

Exercises 1–5 True or False. Give reasons.

1. There is no number (or angle) u such that u 5 Sin21~20
29!

and u 5 Cos21~21
29!.

2. There is no number (or angle) u such that u 5 Sin21~2
3!

and u 5 Cos21~1
3!.

3. The function f ~x! 5 Cos21 x is an increasing function.

4. The point ~p
2 , 1! is on the graph of y 5 Sin21 x.

5. The range of f ~x! 5 Cos21 x contains four integers.

Exercises 6–10 Fill in the blank so that the resulting
statement is true.

6. The largest interger in the range of f ~x! 5 Cos21 x is
.

7. The largest negative integer that is not in the range of
f ~x! 5 Sin21 x is .

8. The smallest positive integer that is not in the range of
f ~x! 5 Tan21 x is .

9. The maximum value of f ~x! 5 Cos21 x is .

10. The graph of y 5 Tan21 x contains no points in Quad-
rant(s) .

Develop Mastery

Exercises 1–4 Exact Form Evaluate in exact form in
radians, using p as needed.

1. (a) Cos21SÏ3
2 D (b) Cos21S2

Ï3
2 D

2. (a) Sin21SÏ3
2 D (b) ArcsinS1

2D 1 Arccos S2
1
2D

3. (a) Arctan 0 (b) ArcsinS2
1

Ï2
D

4. (a) Sin21S1
2D 1 Cos21SÏ3

2 D (b) Sin21S2
1
2D

Exercises 5–8 Decimal Approximations Evaluate by
calculator and give results in radians rounded off to three
decimal places. If the display indicates an error, explain
why.
5. (a) Cos21~0.399! (b) Sin21 0.25

6. (a) Tan21S2
p

3D (b) Arcsin~sin 5.43!

7. (a) Tan21~sin Ï3! (b) secSCos21 2
1
3D

8. (a) sin~Arcsin 1.01! (b) sinSSin21 1
2

2 Tan21 1

Ï2
D
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Exercises 9–12 Exact Form Evaluate in exact form. In
some cases reduction fomulas may be helpful; see Table 2 in
section 5.4. In case an expression is undefined, explain why.

9. (a) sin~Sin21 0.3! (b) Sin21Ssin
3p

2 D
10. (a) secS2 Sin21 1

2D (b) cosSSin21 1
2

1 Cos21 1
2D

11. (a) sinSp

2
2 Cos21 2

3D (b) cotSp

2
2 Arctan

1
3D

12. (a) cosSp 2 Sin21 2
7D (b) sec~p 1 Cos21 0.75!

Exercises 13–14 Decimal Approximations Give an ap-
proximation rounded off to three decimal places. See Exam-
ple 9.

13. (a) Cot21S 1
10D (b) Sec21 1.532

14. (a) sin~Tan21 1 1 Sec21 1! (b) tan~22 Csc21 3!

Exercises 15–16 Graph to Solution Use a graph of the
inverse function to help you solve for x (2 decimal places).
As a check apply an appropriate function to both sides and
use an inverse trigonometric function identity. Explain why
this could lead to a false “solution.”

15. (a) Sin21 x 5 20.36 (b) Cos21 x 5 2.4

16. (a) Tan21 x 5 1.9 (b) Tan21 x 5 21.8

Exercises 17–19 Translations, Reflections Without us-
ing a calculator sketch the graph of f. (Hint: Use transla-
tions or reflections of core inverse function graphs where
appropriate.)

17. (a) f ~x! 5 2Cos21 x (b) f ~x! 5 Cos21~x 1 1!

18. (a) f ~x! 5 2Sin21 x (b) f ~x! 5 Sin21~2x!

19. (a) f ~x! 5 Sin21~sin x! (b) f ~x! 5 sin~Sin21 x!

Exercises 20–22 Using Graphs Use graphs to solve the
equation for x where 0 # x # 1 ( 2 decimal places).

20. (a) Tan21 x 5 Cos21 x (b) Cos21 x 5 x

21. (a) Cos21 x 5 x 2 (b) sin~2.4x! 5 Tan21 x

22. (a) Sin21 x 5 Cos21 x (b) cos x 5 Cos21 x

23. (a) Compare graphs of f ~x! 5 sin~Cos21 x! and g~x! 5

Ï1 2 x 2. What do you observe? (Hint: Draw
graphs of y 5 f ~x! 1 1 and y 5 g~x! on the same
screen and compare.)

(b) In Example 7 we observed that sin~Cos21 x! 5

Ï1 2 x 2 is an identity. Use this to solve Sin21 x 5
Cos21 x by first taking the sine of both sides. Check
graphically.

Exercises 24–26 Related Graphs Without using a cal-
culator, draw a graph. Use the graph to help sketch a graph
of g.

24. (a) f ~x! 5 Sin21 x (b) g~x! 5 _ Sin21 x _

25. (a) f ~x! 5 Cos21 x (b) g~x! 5 Cos21_ x _

26. (a) f ~x! 5 Tan21 x (b) g~x! 5 Tan21_ x _

27. For f ~x! 5 Sin21 x
4 1 Cos21 x

4 ,
(a) What is the domain of f ?
(b) What can you conclude from the graph of f ?
(c) What is the range of f ?

28. (a) Draw graphs of y 5 tan~Tan21 x! and y 5 x sepa-
rately. What do the graphs suggest?

(b) Do the same for y 5 Tan21~tan x! and y 5 x.

29. (a) Draw a graph of f ~x! 5 sin~Cos21 x!, @22, 2# 3
@22, 2#. Use the graph to help you determine the
domain and range of f.

(b) Draw a graph of g~x! 5 Cos21~sin x!, @22p , 2p# 3
@21, 4#.

(c) Explain why you should not expect to have any
points on either graph with negative values of y.

30. Draw a graph of f ~x! 5 Cos21~sin x!.
(a) Use the graph to find Cos21~sin 3.6!.
(b) Find solutions to Cos21~sin x! 5 1.24 where x is in

@0, p#, 2 decimal places.
(c) Show that ~2p

2 , p!, ~p
2, 0! and ~3p

2 , p! are points on
the graph of f. Give a piecewise formula for f in the
interval @2p

2 , 3p
2 #.

31. (a) Use a graph of y 5 cos x to find two solutions
(2 decimal places) for the equation cos x 5 20.64
in the interval @0, 2p#.

(b) Evaluate Cos21~20.64! amd compare with solu-
tions in part (a).

32. (a) Use a graph of y 5 sin x to find two solutions (2
decimal places) for the equation sin x 5 20.36,
where x is in the interval @0, 2p#.

(b) Evaluate Sin21(20.36) and see if it is one of the
numbers in part (a). Explain.

33. (a) For f ~x! 5 Cos21 x and g~x! 5 sin x, evaluate
~ f 8 g!~1.25!.

(b) What is the range of f 8 g?

34. Maximum Value
(a) For what x is f ~x! 5 cos~Tan21 x! a maximum?
(b) Does g~x! 5 sin~Tan21 x! have a maximum value?

(Hint: Remember that 2 p
2 , Tan21 x , p

2 .)

35. Best View Solve the best view problem in Example 8
if Janet is replaced by a basketball player whose eye
level height is 6 feet 9 inches. How far from Janet is the
basketball player when both get their best view?

36. Solve the best view problem in Example 8 if the width
of the marquee is 4.5 feet rather than 3.5 feet.
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37. Maximum Value
(a) In the diagram, find a formula that gives y as a

function of x and draw a graph.
(b) For what x is y a maximum?
(c) Using calculus it can be shown that for maximum y

the value of x must satisfy the equation
2

x 2 1 4 2 6
x 2 1 36 5 0. Solve for x and compare with

part(b).

38. Draw a graph of f ~x! 5 6
p ~Sin21 x 1 Cos21 x!. From

the graph what conclusion can be drawn about the func-
tion f ?

Exercises 39–40 Domain, Range (a) Without using
graphs, find the domain and range of f. (b) Use a graph as
a check.

39. f ~x! 5 Cos21S 1

Ï1 1 x 2
D

40. f (x) 5 Sin21S 1

Ï1 1 x 2
D

Exercises 41–42 Solutions Find all solutions (2 deci-
mal places) in the interval @0, p#. Compare the solutions in
(a) and (b).

41. (a) sin x 5 0.4 (b) x 5 Sin21 0.4

42. (a) cos x 5 20.7 (b) x 5 Cos21~20.7!

Exercises 43–44 Determine the solution set for the equa-
tion.

43. (a) Cos21~cos x! 5 x (b) Sin21~sin x! 5 x

44. (a) tan~Tan21 x! 5 x (b) Tan21~tan x! 5 x

45. See that the angle in the diagram is labeled correctly.

(a) Show that sin~Tan21 x! 5
x

Ï1 1 x 2

(b) Use calculator graphs to support a claim that

sin~Tan21 x! 5
x

Ï1 1 x 2
for every real number x.

Exercises 46–48 Find an equation that does not involve
inverse trigonometric functions to describe the function f.
In each case, check your work graphically. (Hint: For 46, let
u 5 Sin21 x and so sin u 5 x. Draw a diagram.)

46. f ~x! 5 cos~Sin21 x! 47. f ~x! 5 sin~Tan21 x!

48. f ~x! 5 cot~Tan21 x!

49. Show that Sin21 and Tan21 are odd functions.

50. Show that Cos21~2x! 5 p 2 Cos21 x for 21 #
x # 1. Is Cos21 x an even function? An odd function?

51. Show that Sin21 x 1 Cos21 x 5 p
2 for 21 # x # 1.

(Hint: Show first that sin~p
2 2 Cos21 x! 5 x.)

52. Show that Tan21 x 1 Tan21 1
x

5
p

2
for x . 0.

53. Maximum Value For x . 0, find the maximum value
(2 decimal places) of f ~x! 5 6~Tan21 8

x 2 Tan21 4
x!.

54. Minimum Value For x . 0, find the minimum value
(2 decimal places) of f ~x! 5 8~Tan21 2

x 2 Tan21 6
x!.

55. (a) Is f ~x! 5 Cos21~sin x! a periodic function? Explain.
(b) Is g~x! 5 Tan21~cos x! a periodic function? Ex-

plain.

56. (a) Draw a graph of g~x! 5 Tan21 x to support the
claim that g is an odd function.

(b) Is f ~x! 5 sin~Tan21 x! an odd funcion? Explain.

57. Determine whether f is odd, even, or neither.
(a) f ~x! 5 Cos21~cos x!
(b) f ~x! 5 Cos21~sin x!
(c) f ~x! 5 Sin21~cos x!
(d) f ~x! 5 Sin21~sin x!
(Hint: First draw a graph.)

58. In the diagram explain why the angles are labeled cor-
rectly. Show that

cos~Sin21 x! 5 sin~Cos21 x! 5 Ï1 2 x 2.

59. Solve the problem in Example 6 for f ~x! 5
Sin21~sin x! 2 Cos21~cos x!. Give a piecewise formula
for f where 2p

2 # x # p
2 .
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60. Find the solution set for tan~Tan21 x! 5 cos~Cos21 x!.
Remember domain.

61. Give a piecewise formula for f ~x! 5 Sin21~sin x! for
2p # x # p .

62. Do Exercise 61 for f ~x! 5 Cos21~cos x!.

Exercises 63–64 Your Choice Give a formula for a
linear function f (with nonzero slope) that satisfies the
specified conditions. Check by drawing graphs.

CHAPTER 5 REVIEW

Test Your Understanding

Determine the truth value (T or F). Give reasons. Drawing
graphs can be helpful.

1. There is no number x such that

(a) sin x 5 2, (b) cos x 5 2
3
4

,

(c) tan x 5
p

2
, (d) sec x 5

1
2

.

2. (a) sin 1 5
p

2
, (b) cos~21! 5 p ,

(c) tanSp

2D 5 0

3. If u is an angle in the fourth quadrant, then cos u is
negative.

4. The numbers 3p
2 and 2 5p

4 are coterminal.

5. There is no number x such that

(a) Sin21 x 5
p

4
, (b) Sin21 x 5

3p

4
,

(c) Cos21 x 5
5p

4
, (d) Cos21 x 5 2

p

3
.

6. The number sec 3 is negative.

7. The point ~p
2 , 1! is on the unit circle.

8. The point~2 5
13 , 2 12

13! is on the unit circle.

9. tan
3p

4
, tan

5p

4

10. If ~3, 24! is on the terminal side of u, then ~3, 4! is on
the terminal side of 2u.

11. If sin x . 0 and cos x , 0, then tan x , 0.

12. If cos u 5 3
5 , then sin~u 1 p

2! 5 3
5 .

13. The smallest prime number that is greater than tan 1.5
is 13.

14. If u 5 4508, then the radian measure of u is 5p
2 .

15. The graphs of f ~x! 5 cos x and g~x! 5 sin~p
2 1 x! are

identical.

16. The graphs of y 5 Ïcos x and y 5 x intersect in the
first quadrant.

63. (a) The graphs of f and y 5 Sin21 x intersect at more
than one point.

(b) The graphs of f and y 5 2Cos21 x intersect at ex-
actly one point which is in Quadrant II.

64. (a) The graphs of f and y 5 Tan21 x intersect at three
points.

(b) The graphs of f and y 5 Cos21 x intersect at exactly
one point, which is in Quadrant III.

17. There is no number x for which Tan21 x $ p
2 .

18. If u is an angle in the second quadrant, then tan u is
negative.

19. (a) Sin21Sp

2D 5 1, (b) Cos21 p 5 21

20. The range of f ~x! 5 Cos21 x contains two prime num-
bers.

21. The graph of y 5 4~Tan21 6
x 2 Tan21 1

x! has a local max-
imum point in the first quadrant.

22. (a) sec p is undefined. (b) Sin21~p
2! is undefined.

23. The graphs of f ~x! 5 sin~Cos21 x! and g~x! 5

Ï1 2 x 2 are identical.

24. tan~Tan21 x! 5 x for every real number x.

25. sin x . cos x for every x in the second quadrant.

26. If f ~x! 5 Sin21 x, then f is an increasing function.

27. If f ~x! 5 Cos21 x, then f is a decreasing function.

28. The graph of y 5 2cos x has no points in Quadrant III.

29. The function f ~x! 5 cos x is an even function.

30. The function f ~x! 5 sin x is neither even nor odd.

31. The function f ~x! 5 Sin21 x is one–one.

32. The function f ~x! 5 tan x is one–one.

33. Point ~1, p
2 ! is on the graph of y 5 sin x.

34. Point ~p , 21! is on the graph of y 5 cos x.

35. Point ~0, p
2 ! is on the graph of y 5 Cos21 x.

36. The function f ~x! 5 Cos21 x is an even function.

37. The graphs of y 5 Cos21 x and y 5 Tan21 x intersect in
the first quadrant.

38. The range of f ~x! 5 Sin21 x contains only one negative
integer.

39. The graph of y 5 Cos21 x contains exactly one point for
which both coordinates are integers.

40. If f ~x! 5 Cos21 x, then the maximum value of f ~x!
is p .
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41. In the window @2 p
2 , p

2# 3 @0, 3# the graph of y 5 sec x
is similar to the graph of y 5 sec x when using
@5p

2 , 7p
2 # 3 @0, 3#.

42. The graphs of f ~x! 5 tan~Cos21 x! and g~x! 5

Ï1 2 x 2 are identical.

43. The graphs of y 5 Tan21 x and y 5 sin~2.5x! do not
intersect in the first quadrant.

44. The function f ~x! 5 Cos21 x is periodic.

45. Planet Mars travels around the sun once in 687 days.
Assuming circular orbits, the angular speed of Mars is
greater than that of the Earth.

Review for Mastery

Exercises 1–3 Circular Sector Refer to a circular sector
with radius r, central angle u, arc length s, and area A. Give
results to two significant digits.

1. If r 5 24 cm and u 5 308, find s and A.

2. If r 5 12 cm and s 5 20 cm, find u and A.

3. If s 5 13 cm and A 5 64 cm2, find r and u.

4. What is the degree measure of the smaller angle be-
tween the hour and minute hands of a clock at time
2:20?

Exercises 5–10 Points on Unit Circle Point P~t! on the
unit circle corresponds to the number t as described in
Section 5.2. (a) From a diagram showing P~t!, give the co-
ordinates of P~t!. (b) Give the values of the six trigonomet-
ric functions at t. In Exercises 5 through 7, give results in
exact form, and in Exercises 8 through 10, give results
rounded off to two decimal places.

5. t 5
3p

4
6. t 5

22p

3
7. t 5

17p

4

8. t 5 4.21 9. t 5 2
p

5
10. t 5 8.3

11. Determine all real numbers t for which cos t 5 21.

12. Determine all real numbers t for which sin t 5 21.

13. (a) Draw a diagram that shows all points P~t! on the
unit circle where 0 # t # 2p and cos t 5 1

4 .
(b) What are the coordinates of P~t!?

Exercises 14–17 Simplify Simplify by using an appro-
priate reduction formula.

14. cosSp

2
2 tD 15. sinSt 1

3p

2 D
16. tanSt 1

5p

2 D 17. sec~p 2 t!

18. Evaluate in exact form

(a) sinSp

2D, (b) tanS5p

3 D,

(c) cosS2
7p

6 D, (d) sinSp 2
5p

4 D,

(e) secSp 1
p

3D.

19. Determine u.

(a) sin u 5
2Ï2

2
and p , u ,

3p

2

(b) tan u 5 2Ï3 and
p

2
, u , p

(c) sec u 5 21 and 0 , u , 2p .

20. If cos t 5 20.75 and tan t is negative, evaluate
(a) sin t, (b) tan t,

(c) cosSt 2
p

2D, (d) tan~t 1 p!.

21. Evaluate and give results rounded off to three decimal
places
(a) sin 438, (b) tan 1528, (c) cos 578169.

22. Evaluate and give results rounded off to three decimal
places

(a) sin 1.43, (b) tanS5p

8 D,

(c) sec 1.46 1 cos 1.46.

23. If point ~23, 4! is on the terminal side of the angle u
in standard position, evaluate in exact form

(a) sinSu 1
p

2D, (b) cos~u 1 p!.

24. Suppose P~t! is point ~23
5 , 4

5!.
(a) Show that P~t! is on the unit circle.
(b) What are the coordinates of P~t 1 p

2!?

25. Suppose P~t! is the point ~ 5
13 , 212

13 !.
(a) Show that P~t! is on the unit circle.
(b) What are the coordinates of P~t 1 p!?
(c) Evaluate sin~t 1 p! and tan~t 1 p!.

26. Which of the following points are on the unit circle?

(a) ~1, 21!, (b) S1

2
,

1

2
D, (c) S 1

Ï2
,

1

Ï2
D,

(d) SÏ3

2
,

21

2
D

Exercises 27–30 Reference Triangles, Function Values
Point Q is on the terminal side of angle u in standard posi-
tion. Assume that 0 # u # 2p . From a diagram that shows
a reference triangle for u, find sin u, cos u, and tan u in
exact form. Find angle u in radians rounded off to two
decimal places.

27. Q~3, 4! 28. Q~23, 5!

29. Q~24, 23! 30. Q~Ï2, Ï7!
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Exercises 31–38 Exact Form Evaluate in exact form.

31. (a) Sin21SÏ2
2 D (b) Cos21S2Ï3

2 D
32. (a) Tan21~2Ï3! (b) tanSSin21 22

5 D
33. (a) cos~Tan21 22! (b) sinSSin21 p

4D
34. (a) Cos21Scos

2p

6 D (b) sin~p 1 Cos21 0.5!

35. (a) Tan21Stan
5p

6 D (b) sec~p 2 Tan21 2 2!

36. (a) cosSp 2 Cos21 4
7D

(b) sinSp

2
1 Cos21 3

7D
37. (a) tanSp 2 Tan21 5

7D
(b) cosS3p

2
2 Cos21 25

13 D
38. (a) cosSp 1 Tan21 3

4D
(b) sinSp 2 Cos21 2

7D
Exercises 39–40 Decimal Approximations Evaluate
and round off to two decimal places.

39. (a) Sin21 0.47 (b) Cos21 20.25

40. (a) sin~Tan21 22.5! (b) sec~Cos21 0.48!

41. For what value(s) of x is Sin21 x 5 p
3 ?

42. For what value(s) of x is Cos21 x 5 3p
4 ?

43. For what value(s) of x is Tan21 x 5 2p
3 ?

Exercises 44–49 Graphs Without using a calculator
draw a graph of the function for 2p # x # p .

44. f ~x! 5 sin x 45. f ~x! 5 cos x

46. f ~x! 5 tan x 47. f ~x! 5 1 1 cos x

48. f ~x! 5 1 2 sin x 49. f ~x! 5 tanSx 2
p

2D
Exercises 50–53 Graph, Domain, Range Without using
a calculator draw a graph of the function and find the do-
main and range of f. Use a calculator as a check.

50. f ~x! 5 sin~Sin21 x! 51. f ~x! 5 cos~Cos21 x!

52. f ~x! 5 Sin21 x 1
p

2
53. f ~x! 5 Cos21 x 2

p

2

54. Draw a graph of y 5 Sin21 x.
(a) Show all points on the graph where y $ p

6 .

(b) Find the solution set for the inequality Sin21 x $
p

6
.

55. Draw a graph of y 5 Cos21 x.
(a) Show all points on the graph where y $ 2p

3 .
(b) Find the solution set for the inequality

Cos21 x $
2p

3
.

56. Draw a graph of y 5 Tan21 x.
(a) Show all points on the graph where y $ p

4 .
(b) Find the solution set for the inequality

Tan21 x $
p

4
.

57. For what values of x in @22p , 2p# do the graphs of
f ~x! 5 sin x and g~x! 5 _ sin x _ coincide?

58. Maximum Value In the window @0, 3# 3 @0, 5#, find
the maximum value of f ~x! 5 2 sin x 1 2 cos x

2
(2 decimal places).

59. (a) Determine the domain and range of f ~x! 5 3cos x.
(b) Is f a periodic function? Give reasons.

60. Give a verbal description of translations that can be
applied to the graph of f ~x! 5 cos x to get the graph of
g~x! 5 cos~x 2 p

3! 2 2. Draw graphs as a check.

61. Number of Intersections How many points do the
graphs of y 5 cos x

2 and y 5 x
8 have in common? In what

quadrant(s) do the graphs intersect?

62. What are the domain and range of f ~x! 5 Cos21 x
3 .

63. Find the root of sin x 5 Cos21 x (2 decimal places).

64. In the diagram, _ AD _ 5 8 and _ BD _ 5 3. Find u in
degrees.

65. Volume of a Cone A sector with a central angle 458 is
cut out of a circular piece of tin of radius 12 inches and
the remaining piece is formed into a cone. What is the
volume of the cone?
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66. Maximum Angle
(a) In the diagram, find a formula giving y as a function

of x.
(b) For what x is y a maximum (2 decimal places)?

67. (a) If the central angle of a circular sector of radius 6 is
denoted by x, find a formula for the area A of the
segment (the shaded region in the diagram). We
restrict x to 0 , x , p . Why?

(b) Determine the value of x for which A 5 36 (2
decimal places). (Hint: Use a graph.)
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ONE OF THE IMPORTANT FEATURES of problem solving involves the replacement of
a mathematical expression by another expression that is identically equivalent to
it. This is particularly true in the study of calculus, where solutions to many
problems can be made relatively easy by appropriate substitutions.

In this chapter our first task is to establish familiarity with identities that
involve trigonometric functions. Several basic identities are introduced in the first
three sections, then the remaining sections use these identities whenever appropri-
ate to solve equations and to draw graphs of general trigonometric functions.

6.1 B A S I C I D E N T I T I E S

This is why mathematics is effective: the world exhibits regularities which can
be described, independently of the world, by forms which can be studied and
then reapplied.

Saunders MacLane

Many times in earlier chapters we were able to solve equations that involved
polynomial, exponential, or logarithmic functions by using the equivalence opera-
tion from Section 1.5 (page 40):

Replace any expression in an equation by an
expression identically equal to it.

For example, to solve the equation x 2 1 3x 2 4 5 0, we may replace x 2 1 3x 2 4
by ~x 1 4!~x 2 1! since x 2 1 3x 2 4 5 ~x 1 4!~x 2 1! is an identity. Thus the

TRIGONOMETRIC
IDENTITIES, EQUATIONS,
AND GRAPHS

6.1 Basic Identities

6.2 Sum, Difference, and Double-Angle Identities

6.3 Half-Angle Formulas, Product-Sum, and Factor Identities

6.4 Solving Trigonometric Equations

6.5 Waves and Generalized Sine Curves

317
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original problem is equivalent to solving the equation ~x 1 4!~x 2 1! 5 0. The[W]hen I started
teaching trigonometric zero-product principle yields solutions 24 and 1.
identities, an ingenious Similarly, to solve ln x 2 5 2, the most common approach is to replace ln x 2 by
student told me of his 2 ln x and solve the equation 2 ln x 5 2, from which ln x 5 1 or x 5 e. It is true
foolproof way of getting

that e is a solution, but so is 2e, so our procedure did not yield the completea perfect grade almost
solution set. The problem, of course, is that ln x 2 5 2 ln x only if x . 0, so the twoevery time. If you’re

told to prove that some expressions are equal only for x . 0. A better procedure is to use equivalence (3)
expression A is equal to a from Section 4.2 to rewrite the equation ln x 2 5 2 in exponential form: e2 5 x 2,
different-looking B, you from which x 5 6e.
put A at the top left corner

In this chapter we will see many instances where identities involving trigono-of the page, B at the
metric functions are used to help in problem solving. We already have the notionbottom right, and using

correct but trivial of the domain of a function, but it is also convenient to talk about the domain of
substitutions, keep an equation.
changing them, working

Definition: domain of an equationfrom both ends to the
middle. When they meet, If f and g are functions, then the domain D of the equation f (x) 5 g (x) is
stop. the set of all real numbers for which both f and g are defined. That is, D is

Paul Halmos
the intersection of the domains of f and g.

cEXAMPLE 1 Domains of equations Determine the domain of the equa-
tion.

(a) sin x 5 2 cos x (b) Cos x 5 cos x
(c) Cos21 x 5 Cos x (d) ln~cos x tan x! 5 ln sin x

Solution

(a) Since sin x and 2 cos x are both defined for all real numbers, the domain is the
set of all real numbers.

(b) The function Cos x is the restricted cosine function we defined in Section 5.5.
Its domain is @0, p#. Since the domain of cos x is the set of all real numbers,
the domain of the equation is the intersection, @0, p#.

(c) Cos21 x is defined for x in @21, 1# and Cos x is defined for x in @0, p#. Therefore
D 5 @0, 1#.

(d) ln(cos x tan x) is defined only when the product cos x tan x is positive; that is,
when cos x and tan x have the same sign. Both are positive in Quadrant I and
both are negative in Quadrant II. ln sin x is defined when sin x is positive; that
is, in Quadrant I and Quadrant II. Therefore D consists of all numbers in the
first or second quadrants, not including quadrantal numbers:

D 5 $x _ x is in quadrants QI or QII%. b

An equation that is valid for all numbers in its domain is called an identity.

Definition: identity

If the domain of the equation f ~x! 5 g~x! is the nonempty set D and

f ~x! 5 g~x! for every x in D,

then the equation f ~x! 5 g~x! is an identity.

cEXAMPLE 2 Recognizing identities Is the equation an identity?

(a) x 2 2 4 5 3x (b) Ïx 2 5 x
(c) Ïx 2 5 _ x _ (d) e ln ~x21! 5 x 2 1
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Solution

(a) Both sides are defined for every real number x, but equality holds only when
x is 21 or 4. Thus x 2 2 4 5 3x is not an identity.

(b) Both sides are defined for every real number x, but equality holds only when
x is positive or zero. Hence Ïx 2 5 x is not an identity.

(c) Equality holds for every real number, and so Ïx 2 5 _ x _ is an identity.
(d) The set of numbers S for which both sides are defined is $x _ x . 1%. Equality

holds for all x in S, so the given equation is an identity. When we replace e ln~x21!

by x 2 1, we must remember that such a replacement is valid only when x is
greater than 1. b

The word identity is commonly associated with trigonometry even though the
concept occurs throughout mathematics, and the proof of a trigonometric identity
often involves the use of algebraic identities. We have already seen several trigono-
metric identities in Chapter 5 (including the reduction formulas). It is not possible
to remember, or even list, all the identities that are useful in problem solving.
Instead we concentrate on some key identities from which we can easily obtain
others. In this section, and in the two that follow, we list basic identities and
illustrate how they can be used to derive or prove others. It is important that you
learn these not simply by memorization but by working many problems until you
become quite comfortable with the key identities and the various forms in which
they occur.

Proving Identities: Algebraic Approach

We illustrate two techniques that can be used in showing that an equation is an
identity. Example 3 starts with a known identity to which we apply appropriate
operations and derive another desired identity. In Example 4 we work only on one
side of the equation.

Before illustrating these techniques, we call attention to an important point of
logic. Performing the same operation on both sides of a given equation and arriving
at an obvious identity does not prove that the original equation is an identity. For
instance, if we try to “prove” that 1 1 x 2 5 4x 2 2 is an identity we could oper-
ate on both sides of the equation, as follows:

1 1 x 2 5 4x 2 2

x 2 5 4x 2 3 Subtract 1 from both sides

0 · x 2 5 0~ 4x 2 3! Multiply both sides by 0

0 · x 2 5 0 · 4x 2 0

0 · x 2 5 0 · 4x

Since the last equation is obviously true for all x, can we conclude that the original
equation is also an identity? Clearly not, since that equation is satisfied only when
x 5 1 or x 5 3. All we have accomplished in this “proof” is to show that

“If 1 1 x 2 5 4x 2 2 for every x, then 0 5 0.”

which is indeed true, but hardly an enlightening statement.
To begin our work with identities we list several that we encountered in

Chapter 5. Some identities listed here are definitions given in Section 5.2 or 5.3.
We use labels such as (I-1) and (I-2) to identify identities for easy reference.
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Basic identities

cot x 5
1

tan x
sec x 5

1
cos x

csc x 5
1

sin x
(I-1)

tan x 5
sin x
cos x

cot x 5
cos x
sin x

(I-2)

sin~2x! 5 2sin x cos~2x! 5 cos x tan~2x! 5 2tan x (I-3)

sin2 x 1 cos2 x 5 1 ~Pythagorean identity! (I-4)

1 1 tan2 x 5 sec2 x 1 1 cot2 x 5 csc2 x (I-5)

Note that we write sin2 x and cos2 x in place of (sin x)2 and (cos x)2, respectively.
This common notation is used throughout the rest of the book, although we must
still enter (SIN X)2 on a calculator.

cEXAMPLE 3 Proving an identity In Chapter 5 we proved the Pythago-
rean identity (I-4) using the fact that any point on the unit circle has coordinates
of the form (cos x, sin x). Use (I-4) to show that the equation in (I-5), 1 1 tan2 x 5
sec2 x, is an identity.

Solution
We begin with an established identity (I-4), and divide both sides by cos2 x.

sin2 x 1 cos2 x 5 1

sin2 x
cos2 x

1
cos2 x
cos2 x

5
1

cos2 x

S sin x
cos xD

2

1 1 5 S 1
cos xD

2

Using (I-1) and (I-2), we have the desired identity

tan2 x 1 1 5 sec2 x. b

cEXAMPLE 4 Working with one side Prove that sin x
1 1 cos x 5 1 2 cos x

sin x is anStrategy: Multiplying the
numerator and denominator identity by working with the left-hand side only.
of the left-hand side by
1 2 cos x gives 1 2 cos2 x Solution
in the denominator, which In general, fractions with a single term in the denominator are simpler. Follow the
can be replaced by sin2 x. strategy.

sin x
1 1 cos x

0
1 2 cos x

sin x

sin x~1 2 cos x!

~1 1 cos x!~1 2 cos x!
Multiply numerator and denominator by (1 2 cos x)

sin x~1 2 cos x!

1 2 cos2 x
Algebra

sin x~1 2 cos x!

sin2 x
Pythagorean identity (I-4)

1 2 cos x
sin x

Simplify

By the transitivity property of equality, the left-hand side does equal the right; that
is, sin x

1 1 cos x 5 1 2 cos x
sin x is an identity. b
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In the previous example, we could just as well have worked with the right side
only, by first multiplying the numerator and denominator by (1 1 cos x).

When Is an Equation Not an Identity? Counterexamples

If an equation of the form f ~x! 5 g~x! is not an identity, then there must be at least
one number c in the domain of the equation for which f ~c! 5/ g~c!. Any such
number is called a counterexample. Finding a single value of x for which both sides
are defined and for which equality does not hold is all that is necessary to show that
an equation is not an identity.

Returning to Example 2 above, to show that x 2 2 4 5 3x is not an identity, we
could have simply produced a counterexample, such as 1, which does not satisfy the
equation: 12 2 4 5/ 3 · 1. Similarly, 21 is a counterexample showing that the
equation Ïx 2 5 x in Example 2b is not an identity.

Using Graphs With Identities

Calculator graphs can provide valuable insight about whether or not an equation
f ~x! 5 g~x! is an identity. If the graphs of f and g are not identical, then we
obviously do not have an identity. Furthermore, nonidentical graphs can help us
find a counterexample.

If the graphs do appear identical, what can we conclude? In general, all we can
say is that the equation may be an identity. The calculator graph only shows
function values for about a hundred x-values (at pixel coordinates). Important
behavior that distinguishes the functions may not appear in our window, or may be
masked by something else on the screen. Nevertheless, calculator graphs are ex-
tremely useful in guiding our intuition and may even suggest a way to approach the
algebraic problem of proving an identity.

Algorithm for establishing identities

To determine if the equation f ~x! 5 g~x! is an identity:

1. Draw graphs of f and g on the same screen for values of x in D.
2. If the graphs do not appear identical, the equation is not an identity. From

the graph you should be able to find a number x for which f ~x! 5/ g~x!, a
counterexample.

3. If the graphs appear identical, you may want to try other windows. If the
graphs continue to appear the same, then use algebraic techniques and try
to show that f ~x! 5 g~x! is an identity.

TECHNOLOGY TIP r Graphing identical functions

You may wish to review several methods for graphing identical functions in
the Technology Tip in Section 4.4. For trigonometric functions, it is often
most useful to graph something like y 5 f ~x! 2 g~x! 1 1. Then, if the
functions f and g are identically equal, the graph is the horizontal line y 5 1.

Caution. Since many trigonometric functions are occasionally undefined,
it is wise to do more than simply look for the line y 5 1. As a case in point,
in the graph of Y 5 Y2 2 Y1 1 1 in Example 5b below, the domain of the equation
does not include any point where tan x is undefined, but the calculator graph
does not show holes at odd multiples of p

2 .
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cEXAMPLE 5 Using graphs Determine if the equation is an identity. Prove
or find a counterexample.

(a) Ïtan2 x 2 sin2 x 5 sin x tan x (b) Ïtan2 x 2 sin2 x 5 _ sin x tan x _

Solution

(a) Follow the algorithm. When we graph Y1 5 Ï((TAN X)2 2 (SIN X)2), and Y2 5 SIN X TAN X
in the decimal window, we see two different graphs for much of the domain.
Alternatively, graphing Y 5 Y2 2 Y1 1 1, we see the expected horizontal line y 5 1
only on the interval @21.5, 1.5# ~which should make us suspect that the equa-
tion does hold for every x in ~2 p

2 , p
2!!. For a counterexample, we can try any

convenient number outside that interval, say x 5 3p
4 , where the left side is

positive and the right side is negative.
(b) Now when we graph Y1 5 Ï((TAN X)2 2 (SIN X)2) , Y2 5 ABS(SIN X TAN X) we see only one

graph. Alternatively, graphing Y 5 Y2 2 Y1 1 1 shows the horizontal line y 5 1
clear across the screen. We suspect that the equation is an identity. To try to
prove algebraically that we have an identity, we begin by using (I-2) to express

tan x by
sin x
cos x

:

Ïtan2 x 2 sin2 x 5 Î sin2 x
cos2 x

2 sin2 x By (I-2)

5 Îsin2 xS 1
cos2 x

2 1D Algebra

5 Ïsin2 x ~sec2 x 2 1! By (I-1)

5 Ïsin2 x tan2 x By (I-5)

5 Ï~sin x tan x!25_ sin x tan x _ . Algebra

It follows that Ïtan2 x 2 sin2 x 5 _ sin x tan x _ for every x in the domain, and
so the equation is an identity. b

cEXAMPLE 6 Is it an identity? Is ~sin x 1 cos x!2 5
csc x sec x 1 2

csc x sec x
an identity?

Solution
To graph the right side, we must enter something like

Y 5 ~1y~SIN X COS X! 1 2!y~1y~SIN X COS X!! ,
or we can use identities to simplify the form of the function before graphing. For
example,

csc x sec x 1 2
csc x sec x

5
1y~sin x cos x! 1 2

1y~sin x cos x!

Algebra5 S1 1 2 sin x cos x
sin x cos x D 4

1
sin x cos x

Invert and multiply5 S1 1 2 sin x cos x
sin x cos x D ·

sin x cos x
1

5 1 1 2 sin x cos x.

Strategy: Follow the
algorithm and graph both
sides of the equation. If they
look identical, expand the
left side and express the
right side in terms of sin x
and cos x.
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pg323 [R] G1 5-36058 / HCG / Cannon & Elich IQ 10-28-95 QC

6.1 Basic Identities 323

That is, we can graph the function on the right side as Y2 5 1 1 2 SIN X COS X . Using
either form for the right side, it appears that the graphs of the two functions are
identical. See Figure 1. For an algebraic proof, we follow the strategy and expand
the left side:

~sin x 1 cos x!2 5 sin2 x 1 2 sin x cos x 1 cos2 x Algebra

5 ~sin2 x 1 cos2 x! 1 2 sin x cos x Rearrange

5 1 1 2 sin x cos x. By ~I 2 4!

Each side is identically equal to 1 1 2 sin x cos x so the two sides are identically
equal to each other. The given equation is an identity. b

cEXAMPLE 7 Inverse trigonometric functions

(a) Find the domain of the equation Sin21 x 1 Cos21 x 5 p
2 .

(b) Is the equation an identity?

Solution

(a) Since Sin21 x and Cos21 x are defined only for x in the interval @21, 1# and the
right side is defined for all x, then D 5 @21, 1#.

(b) A calculator graph of the left side shows a horizontal line segment on the
interval @21, 1#, whose trace value is clearly an approximation of p

2 , strongly
suggesting that the equation is an identity. For an algebraic proof, we consider
the equivalent equation, Sin21 x 5 p

2 2 Cos21 x, and take the sine of both
sides. That is, we want to see if

sin~Sin21 x! 5 sinSp

2
2 Cos21 xD for all x in @21, 1#.

We know that sin~Sin21 x! 5 x for all x in @21, 1#, and for the right side we have
a reduction formula, sin~p

2 2 u! 5 cos u, where u 5 Cos21 x. Thus

sinSp

2
2 Cos21 xD 5 cos Cos21 x 5 x, again for all x in @21, 1#.

Therefore the given equation is an identity. b

In the next example we illustrate the importance of using care in depending on
calculator graphs. Graphs of f and g can coincide over a large interval even though
the functions are not identical.

cEXAMPLE 8 Functions identical for large intervals

(a) Find the domain of the equation
cos 2x 1 2 sin2 x 5 0.01~Ïx 1 _ Ïx2100 _ !.

(b) Is the equation an identity?

Solution

(a) Since Ïx is defined only for nonnegative real numbers; D 5 @0, `!.
(b) In most reasonable windows, if we graph f ~x! 5 cos 2x 1 2 sin2 x and

g~x! 5 0.01~Ïx 1 _ Ïx 2 100 _ !, it appears that both functions are identi-
cally equal to 1. The function f is defined for all real numbers, g only for x $ 0,

FIGURE 1



[0, 12,000] by [–1, 3]

y = g(x)

y = f (x)
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but the calculator graphs make it appear that the functions are identically equal on
the domain of the equation. With the absolute value function in g, though, we have
reason to be careful. A piecewise formula for g changes where Ïx 2 100 5 0;
that is, where x 5 1002 5 10,000. Setting a window such as @0, 12,000# 3 @21, 3#
shows that the functions clearly differ when x . 10,000 (see Figure 2). We con-
clude that the equation is not an identity. Any number greater than 10,000 is a
counterexample. b

Using Identities

In many situations we are interested in simplifying a mathematical expression. We
make no attempt to define a simplest form, but in most cases it will be clear when
one form is simpler than another. The next example shows how to use identities to
simplify expressions that involve trigonometric functions.

cEXAMPLE 9 Simplifying formulas Use identities to simplify the formula
for the function f.

(a) f ~x! 5
tan~2x!

sin~2x!
1 sec x. (b) f ~x! 5 ~sin x 1 cos x!2 2 2 sin x cos x

Solution
Strategy: (a) Begin by re- (a) Follow the strategy.
placing tan~2x! by 2tan x
and sin~2x! by 2sin x, then

f ~x! 5
tan~2x!

sin~2x!
1 sec x

replace tan x by
sin x
cos x

and

simplify.
5

2tan x
2sin x

1 sec x By (I-3)

5
1

cos x
1 sec x Use (I-2) and simplify

5 sec x 1 sec x By (I-1)

5 2 sec x

Therefore, the function f is also given by f ~x! 5 2 sec x. Keep in mind also
that we must exclude values of x for which the original formula for f is
not defined, namely 0, 6 p

2 , 6p , . . . since tan~2x! is undefined at 6 p
2 ,

6 3p
2 , . . . , and sin~2x! is zero when x is 0, 6p , 62p .

(b) Expand the right side and use (I-4).

f ~x! 5 ~sin x 1 cos x!2 2 2 sin x cos x

5 sin2 x 1 2 sin x cos x 1 cos2 x 2 2 sin x cos x

5 sin2 x 1 cos2 x 5 1.

Therefore f ~x! 5 1 for every real number x. b

cEXAMPLE 10 Solve an equation Find the solution set for the equation

sin~2x!

tan~2x!
1 cos x 5 2.

FIGURE 2



(2, 0)

(2, – 6)

(– 1, – 3) (5, – 3)
(2, – 3)

y

x

x = 2 + 3 sin t�
y = – 3 + 3 cos t

3
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Solution
Use (I-2) and (I-3) to simplify the left-hand side.

sin~2x!

tan~2x!
1 cos x 5

2sin x
2tan x

1 cos x By (I-3)

5
sin x
sin x
cos x

1 cos x By (I-2)

5 sin x
cos x
sin x

1 cos x Algebra

5 cos x 1 cos x

5 2 cos x.

Thus the original equation can be written as 2 cos x 5 2, or cos x 5 1. The set of
numbers satisfying the equation cos x 5 1 consists of all numbers coterminal with
0; that is, all integer multiples of 2p . Returning to the original equation, however,
we discover that numbers coterminal with 0 are not in the domain of the equation.
(Why?) Hence, the solution set is the empty set. b

Using Parametric Equations for Graphs of Circles

In Section 1.4 we saw how to draw a calculator graph of a circle. To graph the
circle ~x 2 2!2 1 ~y 1 3!2 5 9, we had to solve for y and use two equations,
Y1 5 23 1 [(9 2 (X 2 2)2) and Y2 5 23 2 [(9 2 (X 2 2)2). Even with all of this work, the calcu-
lator graph shows a circle with gaps (see Figure 1.20, page 33).

Now, with trigonometric functions at our disposal, we can use parametric
equations to get satisfactory graphs more easily, as illustrated in the next example.

cEXAMPLE 11 A parametric circle

(a) Show that the parametric equations x 5 2 1 3 sin t, y 5 23 1 3 cos t repre-Strategy: Solve the
parametric equations for sent a circle. Identify the center and radius, and use parametric mode to draw
sin t, cos t. Then square a calculator graph.
both sides and add. Use the (b) Use the parametric equations to find the coordinates of the y -intercept pointsPythagorean identity.

in exact form. Compare the approximate trace coordinates of the y -intercept
points on your graph.

Solution

(a) Follow the strategy. From the first equation, sin t 5 x 2 2
3 , and from the second,

cos t 5 y 1 3
3 . Now we square both sides and add.

~sin t!2 1 ~cos t!2 5 S x 2 2
3 D2

1 S y 1 3
3 D2

.

By the Pythagorean identity the left side equals 1:

1 5
~x 2 2!2

9
1

~y 1 3!2

9
.

Multiplying through by 9, we obtain an equation we recognize as a circle with
center at (2, 23) and radius 3, shown in Figure 3,

~x 2 2!2 1 ~y 1 3!2 5 32.FIGURE 3
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x

2
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t
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With the calculator in parametric mode we enter X 5 2 1 3 SIN T, Y 5 23 1 3 COS T
and graph in a shifted decimal window with a t-range of @0, 6.3# or @0, 2p# (see
the Technology Tip that follows), we should see a calculator graph that closely
approximates the circle shown in Figure 3. Tracing around the graph, there is
no t-value that makes x 5 0, but we come close near t 5 3.9 and t 5 5.5 or
5.6. The y-coordinates of the intercept points are roughly 25.2 and 20.8.

(b) To find the y-intercept points in exact form, we can use either the rectangular
or parametric equations defining the circle. In either case, we want to find y
when x 5 0. Using the parametric equations and setting x 5 0, we have

sin t 5
22
3

.

Two values of t for which sin t 5 22
3 are shown in the diagram in Figure 4.

From the reference triangles, we can read the corresponding values of the
cosine, cos t 5 6 Ï5

3 . Since y 5 23 1 3 cos t, the y-intercepts are where
y 5 23 6 Ï5 < 25.236 or 20.764. Check by tracing. (You might compare
this solution with the steps involved in setting x 5 0 and solving the standard-
form equation of the circle for y.) b

TECHNOLOGY TIP r Shifting a decimal window

Decimal windows are nice for many purposes, but the automatic (or default)
decimal setting may not show the window you need for a particular graph.
The circle in Example 11 doesn’t fit in the decimal window. From Figure 3,
we can see that we need a window that contains at least @21, 5# 3 @26, 0#,
but such a window is not an equal scale window (so the circle appears
“squashed”) and does not have nice pixel coordinates.

We can shift a window by adding (or subtracting) a constant for either
the x- or y-range, as from @a, b# 3 @c, d# to @a 1 k, b 1 k# 3 @c 1 l, d 1 l#.
As a specific example, the decimal window of the TI-82 is @24.7, 4.7# 3
@23.1, 3.1#. By adding 3 to both ends of the x-range and adding 2 3 to
both ends of the y-range, we get a shifted (equal scale) decimal window
@21.7, 7.7# 3 @26.1, .1# in which the whole circle shows up nicely.

EXERCISES 6.1

Check Your Understanding

Exercises 1–5 True or False. Give reasons.

1. sin x 5 cos x tan x is an identity.

2. sin~2x! 5 2 sin x is an identity.

3. tan~p 1 x! 5 tan p 1 tan x is an identity.

4. If f ~x! 5 1 1 x 2 and g~x! 5 tan x, then f ~g~x!! 5
sec2 x.

5. The graphs of y 5 cos x tan x and y 5 sin x are
identical.

Exercises 6–10 Fill in the blank so that the resulting
statement is true.

6. The domain of Sin x 5 sin x is .

7. The domain of
sin~2x!

tan x
5 2cos x is .

8. For every real number x, ln(sin2 x 1 cos2 x) 5 .

9. The equation
sin~2x!

cos~2x!
5 is an identity.

10. The equation cos x sec x 5 is an identity.

FIGURE 4
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Develop Mastery

Exercises 1–2 Determine whether or not the equation is
an identity. Give the values of x for which equality holds.

1. (a) x 3 2 x 2 5 x 2~x 2 1!

(b) _ x 1 2 _ 5 _ x _ 1 2
(c) e 2 ln x 5 x 2

2. (a) x 3 2 x 2 2 2x 5 ~x 2 2 2x!~x 1 1!

(b) Ïx 2 1 1 5 x 1 1

(c)
x 3 2 1
x 2 1

5 x 2 1 x 1 1

3. Start with identity (I-4) and show that 1 1 cot2 x 5
csc2 x is an identity.

4. From identity (I-4), show that
sin2 x

1 2 cos x
5 1 1 cos x

is an identity.

5. From identity (I-2), prove that cos x tan x 5 sin x is an
identity.

6. From identity (I-4), show that sin4 x 2 cos4 x 5
sin2 x 2 cos2 x is an identity. (Hint: Multiply both sides
of (I-4) by an appropriate quantity.)

7. From identity (I-4), by adding an appropriate quantity
to both sides, show that (sin x 1 cos x)2 5
1 1 2 sin x cos x is an identity.

8. From the identity 1 1 tan2 x 5 sec2 x, show that
tan2 x 5 (sec x 2 1)(sec x 1 1) is an identity.

Exercises 9–14 Prove that the equation is an identity.
Work only with the left-hand side.

9.
tan x
sin x

5 sec x 10.
sin x csc x

cot x
5 tan x

11.
cot x
sec x

1 sin x 5 csc x 12.
sin~2x!

cos~2x!
5 2tan x

13. tan x csc x 5 sec x

14. sin x cos x~tan x 1 cot x! 5 1

Exercises 15–20 Show that the equation is an identity.
Work only with the right-hand side.

15. csc x 5
cot x
cos x

16. cot x 5
cos x sec x

tan x

17. tan x 1 sec x 5
1 2 sin~2x!

cos~2x!

18. cos x 5
csc~2x!

cot~2x! 1 tan~2x!

19. sec x csc x 5 tan x 1 cot x

20. csc x 5 cos x~tan x 1 cot x!

Exercises 21–24 Domain Determine the domain of the
equation.

21. (a) cos x 5 4 sin x (b) tan x 5
sin x
cos x

22. (a) Sin21 x 5 sin x (b) Cos21 x 5 Sin21 x.

23. (a) Ï1 2 cos x 5 x
(b) ln~tan x! 5 ln~sin x! 2 ln~cos x!

24. (a) Ï1 2 sin x 5 cos x
(b) ln~csc x! 5 2ln~sin x!

Exercises 25–34 Prove Identities Show that the equa-
tion is an identity.

25. cos2 x 2 sin2 x 5 1 2 2 sin2 x

26. cos2 x 2 sin2 x 5 2 cos2 x 2 1

27.
sin x

1 2 cos x
5

1 1 cos x
sin x

28.
cos x
sec x

1
sin x
csc x

5 1 29. cos x tan x 5 sin x

30.
sin2 x
cos x

5 sec x 2 cos x

31. sin x tan x 5 sec x 2 cos x

32. sin x 1 cos x 5 ~cos x!~1 1 tan x!

33. sec x 1 cot x 5
cos x 1 tan x

sin x

34.
sin x

1 2 cos2 x
5 csc x

Exercises 35–48 Is It an Identity? Determine whether
or not the equation is an identity. Give either a proof or a
counterexample.
35. ~sin x 2 cos x!2 5 sin2 x 2 cos2 x

36. Ï1 2 cos2 x 5 sin x

37. sin4 x 2 cos4 x 5 2 sin2 x 2 1

38. Ï1 1 tan2 x 5 sec x

39.
csc x

tan x 1 csc x
5 cos x

40.
csc x
sin x

1
sec x
cos x

5 sec2 x csc2 x

41. ~1 2 tan x!2 5 sec2 x 2 2 tan x

42. Ïsin2 x 1 cos2 x 5 _ sin x _ 1 _ cos x _

43. Ï1 1 2 cos x 1 cos2 x 5 1 1 cos x

44. Ï2 2 2 cos x 2 sin2 x 5 1 2 cos x

45. Ïsec2 x 2 1 5 _ tan x _

46. Ïcot2 x 2 cos2 x 5 _ cot x cos x _

47.
1 1 sin~2x!

cos~2x!
5 sec x 2 tan x

48.
sin x

cos x 2 sin x
5

tan x
1 2 tan x



pg328 [V] G2 5-36058 / HCG / Cannon & Elich 7& 11-28-95 MP1

328 Chapter 6 Trigonometric Identities, Equations, and Graphs

Exercises 49–58 Simplify Find a simpler equation to
describe the function.

49. f ~x! 5
cos2 x 2 1

sin~2x!

50. f ~x! 5 sin4 x 1 sin2 x cos2 x

51. f ~x! 5
tan~2x!

sin~2x!

52. f ~x! 5
1

tan x 1 cot x

53. f ~x! 5 sin3 x cos x 1 cos3 x sin x

54. f ~x! 5
sec x

tan x 1 cot x

55. f ~x! 5
sin x 1 tan x

1 1 sec x

56. f ~x! 5 Ï1 2 sin2 x

57. f ~x! 5 sin xScos x
sin x

1
sin x
cos xD

58. f ~x! 5 sin~2x! 1 cot~2x! cos~2x!

Exercises 59–66 Solution Set Find the solution set.

59. Cos x 5 cos x

60. Sin x 5 sin x

61. Ï1 2 sin2 x 5 cos x

62. sin2 x 1 cos2 x 5 x 2 2

63. ln~tan x! 5 ln~sin x! 2 ln~cos x!

64. ln~1 1 tan2 x! 5 22 ln~cos x!

65. (a) Sin21 x
4

1 Cos21 x
4

5
p

2

(b) Sin21 x
100

1 Cos21 x
100

5
p

2

66. Ïx 1 _ Ïx 2 7 _ 5
14
p
SSin21 x

40
1 Cos21 x

40D
67. Determine the domain and range of f.

(a) f ~x! 5 x 1 Cos21 x (b) f ~x! 5 x 1 Sin21 x

68. Is 0.01~Ïx 1 _ Ïx 2 100 _ ! 5 1 an identity? See
Example 8.

6.2 S U M , D I F F E R E N C E , A N D D O U B L E - A N G L E I D E N T I T I E S

@Mathematics# is as incapable of being restricted within assigned
boundaries . . . as the consciousness of life, which . . . is forever ready to burst
forth into new forms of . . . existence.

J. J. Sylvester

One important property of numbers is that multiplication is distributive over
addition, which means that a~b 1 c! 5 ab 1 ac for all numbers a, b, and c. Our
first concern in this section is whether or not functions distribute over addition, that
is, is f ~x 1 y! 5 f ~x! 1 f ~y! an identity? Such functions are given a name.

69. Is sin2 x 1 cos2 x 5 0.01~Ïx 1 _ Ïx 2 100 _ ! an
identity? What do you observe when you draw a graph of
each side of the equation? See Exercise 68.

Exercises 70–72 Composition For functions f and g,
find an equation to describe the composite function f 8 g.
Simplify when possible.

70. f ~x! 5 Ï1 2 x 2, g~x! 5 cos x

71. f ~x! 5
_ x _

~x 2 2 1!1y2 , g~x! 5 sec x

72. f ~x! 5
Ï1 2 x 2

_ x _
, g~x! 5 sin x

Exercises 73–74 Determine whether the statement is true
or false. Give reasons.

73. If the graphs of functions f and g are identical, then
f ~x! 5 g~x! is an identity.

74. If f ~x! 5 g~x! is an identity, then the graphs of func-
tions f and g are identical.

Exercises 75–76 Parametric Equations (a) Show that
the curve given in parametric equations is a circle by writ-
ing an equation in standard form. (b) Draw a calculator
graph. See Example 11.

75. x 5 1 1 sin t, y 5 22 1 cos t

76. x 5 23 1 cos t, y 5 4 1 sin t

Exercises 77–78 Draw a graph of the curve given in para-
metric equations and explain how the graph is related to the
graph of the given nonparametric equation.

77. x 5 3 sin2 t, y 5 3 cos2 t;
x 1 y 5 3

78. x 5 cos t, y 5 sin2 t;
y 5 1 2 x 2

79. Evaluate the sum S 5 ln~tan p
180 ! 1 ln~tan 2p

180! 1
ln~tan 3p

180! 1 · · · 1 ln~tan 89p
180!. ~Hint: Use the re-

duction formula tan~p
2 2 u! 5 cot u 5 1

tan u . Thus
tan 89p

180 5 1
tan ~py180! .!



y

x
O (1, 0)

B(cos b , sin a)b bA(cos b , sin a)a a

(a)

a – b

a
b

y

x

a – b

O D(1, 0)

C(cos (a – b), sin (a – b))a – b a – b

(b)
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Definition: additive functionsI’ve worked in so many A function f is said to be an additive function if, and only if,
areas . . . . Basically, I’m
not interested in doing f ~x 1 y! 5 f ~x! 1 f ~y!
research and I never have

is an identity; that is, equality holds for all numbers x and y for which bothbeen. I’m interested in
understanding, which is sides are defined.
quite a different thing.

David Blackwell Most functions we have already considered in this text are not additive. For
instance, the natural logarithm function, f ~x! 5 ln x, is not additive because
ln~x 1 y! is not equal to ln x 1 ln y for all positive numbers x and y. The function
g~x! 5 x 2 is not additive since ~x 1 y!2 is not identically equal to x 2 1 y 2. The
function h~x! 5 Ïx is not additive either, because Ïx 1 y is not equal to Ïx 1
Ïy for all nonnegative x and y.

It should come as no surprise that trigonometric functions are not additive. For
instance, to see that the sine function is not additive consider sin~p

2 1 p
2 ! and

sin p
2 1 sin p

2 .

sinSp

2
1

p

2D 5 sin p 5 0 but sin
p

2
1 sin

p

2
5 1 1 1 5 2.

Thus, sin~p
2 1 p

2 ! 5/ sin p
2 1 sin p

2 , so the sine function is not additive. We may
wonder if, indeed, there are any additive functions. For some possibilities see
Develop Mastery Exercises 2 and 3.

Although trigonometric functions are not additive, some important identities
allow us to express functions of sums and differences in relatively simple terms.
Collectively, these identities are called the sum and difference formulas.

Sum and difference identities

sin~a 1 b! 5 sin a cos b 1 cos a sin b (I-6)

sin~a 2 b! 5 sin a cos b 2 cos a sin b (I-7)

cos~a 1 b! 5 cos a cos b 2 sin a sin b (I-8)

cos~a 2 b! 5 cos a cos b 1 sin a sin b (I-9)

tan~a 1 b! 5
tan a 1 tan b

1 2 tan a tan b
(I-10)

tan~a 2 b! 5
tan a 2 tan b

1 1 tan a tan b
(I-11)

Proofs of the Sum and Difference Identities

It is convenient first to give a proof of (I-9) and then proceed to use (I-9) to prove
(I-6) and (I-10). Proofs of the other identities are left for the reader. See Develop
Mastery Exercise 1.

Proof of (I-9). To prove (I-9), we wish to relate cos~a 2 b! to functions of a and
b. It will be helpful to have a diagram that shows each of the angles a, b, and
a 2 b. We lose no generality in supposing that a, b, and a 2 b are positive.
Placing a and b in standard position on a unit circle, P~a! 5 ~cos a, sin a! and
P~b! 5 ~cos b, sin b!, as shown in Figure 5a. Let us denote P~a! by A and P~b!
by B. In triangle AOB, angle AOB is a 2 b. Angle a 2 b appears in standard
position in Figure 5b, where C is the point ~cos~a 2 b!, sin~a 2 b!!.FIGURE 5
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In Figure 5, triangles AOB and COD are congruent. In fact, we may visualize
simply rotating triangle AOB clockwise until B coincides with D. In particular, the
segments AB and CD have the same length. We may use the distance formula to
calculate the length of each in terms of the coordinates of their endpoints. We leave
details as a worthwhile exercise for the reader (using identity (I-4) as needed) to get
the following:

_AB _2 5 ~cos a 2 cos b!2 1 ~sin a 2 sin b!2

5 2 2 2~cos a cos b 1 sin a sin b!.

_CD _2 5 @cos~a 2 b! 2 1#2 1 @sin~a 2 b!#2

5 2 2 2 cos~a 2 b!

Since _AB _ 5 _CD _ , we get 2 2 2~cos a cos b 1 sin a sin b! 5 2 2
2 cos~a 2 b!. After simplifying, we have identity (I-9).

Proof of (I-6). To prove identity (I-6), use (I-9) and these reduction formulas:

cosSp

2
2 tD 5 sin t

sinSp

2
2 tD 5 cos t

In the first reduction formula, replace t with ~a 1 b!. Reading from right to left,

sin~a 1 b! 5 cosFp

2
2 ~a 1 b!G 5 cosFSp

2
2 aD 2 bG

5 cosSp

2
2 aDcos b 1 sinSp

2
2 aDsin b By (I-9)

5 sin a cos b 1 cos a sin b By Reduction
formulas

Therefore sin~a 1 b! 5 sin a cos b 1 cos a sin b is an identity. In a similar
manner, (I-8) follows from (I-9); see Develop Mastery Exercise 1.

Proof of (I-10). Now we proceed to (I-10). As a first step, use (I-2), tan u 5
sin u

cos u
, where u is replaced by ~a 1 b!.

tan~a 1 b! 5
sin~a 1 b!

cos~a 1 b!
5

sin a cos b 1 cos a sin b

cos a cos b 2 sin a sin b
By (I-6) and (I-9)

Divide each term in the numerator and denominator by cos a cos b and simplify:

tan~a 1 b! 5

sin a

cos a
1

sin b

cos b

1 2
sin a

cos a
·

sin b

cos b

5
tan a 1 tan b

1 2 tan a tan b

cEXAMPLE 1 Using (I-10) Prove that tanSx 1
p

4D 5
cos x 1 sin x
cos x 2 sin x

is an

identity.



y

x

(a)

a

5
4

– 3

tan = –a 4�
3

cos = –a 3�
5

sin =a
4�
5

y

x

(b)

tan = –b 12�
5

cos =b
5�
13

12�
13

sin = –b
b

5

– 12
13
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Strategy: Begin by using Solution
(I-10) and then replace tan x Starting with the left-hand side,
by

sin x
cos x

and simplify.

tanSx 1
p

4D 5

tan x 1 tanSp

4D
1 2 tan x tanSp

4D
5

tan x 1 1
1 2 tan x

By (I-10) and tan
p

4
5 1

5

sin x
cos x

1 1

1 2
sin x
cos x

5
sin x 1 cos x
cos x 2 sin x

By (I-2) and algebra

Therefore, the given equation is an identity. b

cEXAMPLE 2 Using (I-7) Evaluate sin p
12 in exact form. Use a calculator to

check your result.

Solution
Follow the strategy and use (I-7).

sin
p

12
5 sinSp

4
2

p

6D 5 sin
p

4
cos

p

6
2 cos

p

4
sin

p

6
Strategy: First express p

12
as a sum or difference of
angles for which we know

5
1

Ï2
·

Ï3
2

2
1

Ï2
·

1
2

5
Ï3 2 1

2Ï2
5

Ï6 2 Ï2
4

.exact values. p
12 5 158 5

458 2 308 5 p
4 2 p

6 .

Therefore, in exact form, sin
p

12
5

Ï6 2 Ï2
4

. With the calculator in radian mode

sin
p

12
< 0.2588190451 and

Ï6 2 Ï2
4

< 0.2588190451. b

cEXAMPLE 3 More sums and differences Suppose a and b satisfy

sin a 5
4
5

and
p

2
, a ,

3p

2
, cos b 5

5
13

and 2p , b , 0.

Evaluate in exact form.

Strategy: Using the given (a) tan~a 2 b! (b) sec~a 1 b! (c) sin 2a.
information, first draw dia-
grams showing reference Solution
triangles for a and b, Follow the strategy and draw diagrams shown in Figure 6.
from which we can get the
trigonometric function
values of a and b, then use
(a) (I-11), (b) (I-8)
(c) (I-6).

FIGURE 6
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(a) tan~a 2 b! 5
tan a 2 tan b

1 1 tan a tan b
By (I-II)

5
S24

3 D 2 S212
5 D

1 1 S24
3 DS212

5 D 5
16
63

From Figure 6
and arithmetic

(b) By (I-1), sec~a 1 b! is the reciprocal of cos~a 1 b!, so evaluate cos~a 1 b!
and then take the reciprocal

cos~a 1 b! 5 cos a cos b 2 sin a sin b By (I-8)

5 S2
3
5DS 5

13D 2 S4
5DS2

12
13D 5

33
65

From Figure 6

Therefore sec~a 1 b! 5 65
33 .

(c) First write 2a as ~a 1 a! and then use (I-6).

sin 2a 5 sin~a 1 a! 5 sin a cos a 1 cos a sin a By (I-6)

5 2 sin a cos a 5 2S4
5DS2

3
5D 5 2

24
25

.

Hence, sin 2a 5 2 24
25 . b

The solution to Example 3c suggests an identity for the sine of twice an angle.
We can get sin 2u simply by replacing both a and b by u in identity (I-6). Similar
replacements in (I-8) and (I-10) give double-angle identities.

Double-angle identities

sin 2u 5 2 sin u cos u (I-12)

cos 2u 5 cos2 u 2 sin2 u (I-13)

tan 2u 5
2 tan u

1 2 tan2 u
(I-14)

The double-angle identities are three more key identities with which you
should become very familiar. In addition, two other forms of (I-13) are worth
remembering. We may replace cos2 u by 1 2 sin2 u, or replace sin2 u by 1 2 cos2 u
to get the alternate forms.

Alternate forms of (I-13)

cos 2u 5 1 2 2 sin2 u or cos 2u 5 2 cos2 u 2 1

cEXAMPLE 4 Using double-angle identities Suppose u is a number
(or angle) between 0 and p where tan u 5 2 5

12 . Evaluate in exact form (a) cos 2u,
(b) tan 2u, (c) sec 2u.



y

x

tan = –u 5
12�


cos = –u 12�
13

5�
13

sin =u

u5

– 12

13
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HISTORICAL NOTE IDENTITIES IN APPLICATION

Solution
Begin by drawing a diagram to show u and a reference triangle (see Figure 7).
(a) cos 2u 5 cos2 u 2 sin2 u By (I-13)

5 S2
12
13D

2

2 S 5
13D

2

5
119
169

From Figure 3

(b) Using (I-14) and Figure 7,

tan 2u 5
2 tan u

1 2 tan2 u
5

2S2
5

12D
1 2 S2

5
12D

2
5 2

120
119

(c) Since sec 2u 5
1

cos 2u
, and cos 2u 5 119

169 , so sec 2u 5 169
119 . b

Trigonometric identities are
important because they can
sometimes make feasible tasks that
otherwise might be difficult or
impossible. Consider the strange
case of Zacharias Dase, born in
Germany in 1824. Dase apparently
had very limited abilities in many
areas, but he was one of the most
remarkable mental calculators who
ever lived. He once calculated the
product of a pair of hundred-digit
numbers in his head in nearly nine
hours of intense concentration. He
enters our story because he was
another calculator of the number p .

Not long after the invention of calculus,
James Gregory, a Scottish mathematician, found
a way to express the function Arctan x as the
sum of an infinite series.

Arctan x 5 x 2
x 3

3
1

x 5

5
2

x 7

7
1 · · ·

Since tan p
4 5 1, we may substitute 1 for x in

Gregory’s series to obtain

p

4
5 Arctan 1

5 1 2
1
3

1
1
5

2
1
7

1 · · ·

While this series could theo-
retically be used to approximate p ,
it has little practical value because
it would require 10,000 terms to get
four-place accuracy and a million
terms for six places. Getting a good
approximation with Gregory’s
series would exceed even Dase’s
capabilities. Clever use of trigono-
metric identities, however, put an
approximation within reach.

If we let a 5 Arctan 1
2 ,

b 5 Arctan 1
5 , and g 5 Arctan 1

8 , then tan
a 5 1

2 , tan b 5 1
5 , and tan g 5 1

8 . By using
identity (I-10), we can show that
a 1 b 1 g 5 p

4 . This gives the identity
p 5 4(Arctan 1

2 1 Arctan 1
5 1 Arctan 1

8 ). Sub-
stituting the values 1

2 , 1
5 , and 1

8 into Gregory’s
series yields a manageable sum. In a still
prodigious calculating feat, Dase added up
hundreds of terms to obtain 200 digits of the
expansion of p .

James Gregory

FIGURE 7



y

x

3

4

5

4�
5

u = Cos– 1 u

y

x

f (x) = sin (Sin– 1 x + 2 Cos– 1 x) 

(– 1, – 1)

(1, 1)
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More Identities

In the preceding section we observed that calculator graphs may be helpful in
determining whether or not an equation is an identity. Here we consider some
further examples involving identities.

cEXAMPLE 5 Is it an identity? Determine whether or not the equation is an
identity. Refer to the algorithm in Section 6.1.

sin~x 2 Cos21 0.8! 5 0.2~4 sin x 2 3 cos x!

Solution
Graphical If f ~x! 5 sin~x 2 Cos21 0.8!, g~x! 5 0.2~4 sin x 2 3 cos x!, and we
graph y 5 f ~x! 1 1 and y 5 g~x! in the same window, the graphs of f and g
appear to be identical. On the basis of the graphs, we suspect that the equation is
an identity and look for a proof.
Algebraic To simplify the formula for f , let u 5 Cos21 0.8 and use (I-7).

f ~x! 5 sin~x 2 u! 5 sin x cos u 2 cos x sin u.

Since u 5 Cos21 0.8, we know that cos u 5 0.8 5 4
5 , and so we can draw a

reference triangle for u. See Figure 8. From the diagram in Figure 8 we can read
sin u 5 3

5 . Returning to the formula for f ,

f ~x! 5 sin x cos u 2 cos x sin u

5 sin x ·
4
5

2 cos x ·
3
5

5
1
5

~4 sin x 2 3 cos x!

5 0.2~4 sin x 2 3 cos x!.

Therefore f ~x! is identically equal to g~x!. b

cEXAMPLE 6 An odd function Draw a graph of the function

f ~x! 5 sin~Sin21 x 1 2 Cos21 x!

and guess a simpler formula for f. Is f an odd or even function (or neither)? What
is the domain of f ? Prove your simpler formula for f.

Solution
Graphing Y 5 SIN~SIN21 X 1 2 COS21 X) in a decimal window gives a graph like that shown
in Figure 9. Tracing along the graph indicates that the x- and y -coordinates are the
same, so we have the graph of y 5 x on the interval @21, 1#. The most reasonable
guess is that f ~x! 5 x on that interval, or that

sin~Sin21 x 1 2 Cos21 x! 5 x, 21 # x # 1

is an identity.
To confirm that the domain is actually the interval @21, 1# we need to take a

more careful look at the function. The sine function is defined for all real x, so the
domain of f is the same as the domain of the argument. In Section 5.5 we learned
that both Sin21 x and Cos21 x are defined for 21 # x # 1, so the domain we read
from the graph is correct, D 5 @21, 1#.

FIGURE 8

FIGURE 9
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a = Sin– 1 x(a)

1
x

1 – x2

a

sin a = x�

cos a = 1 – x2�



a

a

y

x

(b)

1

x

1 – x2

b

b = Cos– 1 xb 

sin a = 1 – x2

cos a = x�


b
b

a

u

A

B

C

V

x
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pg335 [R] G1 5-36058 / HCG / Cannon & Elich 7& 11-28-95 MP1

6.2 Sum, Difference, and Double-Angle Identities 335

To verify that f is identically equal to x on the domain, it is probably easiest to
draw reference triangles for the inverse function angles. Thus let a 5 Sin21 x and
b 5 Cos21 x and draw the reference triangles in Figure 10, from which we observe
that sin a 5 x, cos a 5 Ï1 2 x 2, cos b 5 x, sin b 5 Ï1 2 x 2. We then use
(I-6), and then (I-12) and (I-13).

sin~Sin21 x 1 2 Cos21 x! 5 sin~a 1 2b!

5 sin a cos 2b 1 cos a sin 2b

5 sin a~cos2 b 2 sin2 b! 1 cos a~2 sin b cos b!

5 x~x 2 2 ~1 2 x 2!! 1 Ï1 2 x 2~2Ï1 2 x 2 · x!

5 x~2x 2 2 1! 1 2x~1 2 x 2!

5 x~2x 2 2 1 1 2 2 2x 2! 5 x~1! 5 x.

This argument is valid when the reference triangles in Figure 10 apply, that is, for
x in ~0, 1!. To complete the proof, note that the reference triangles in Figure 10 can
be reflected through the axes (x-axis for Figure 10a, y -axis for Figure 10b)
and everything else remains the same. Checking 0 and 61 directly,
sin~Sin21 x 1 2 Cos21 x! 5 x is an identity on @21, 1#, and f ~x! 5 x is an odd
function. b

In Example 8 of Section 5.5 we learned that the “view” of a vertical marquee
is expressible in terms of the inverse tangent function. The same problem arises in
many different settings. In the next example we revisit the problem of obtaining the
best view, and we give a solution involving identity (I-10).

cEXAMPLE 7 “Best view” The Forest Service is going to locate a new
visitors’ center where the primary attraction is a 100-foot section of a vertical cliff
(think of Mt. Rushmore). The only reasonable location is a level area some 200 feet
lower than the base of the cliff and several hundred feet away, as in Figure 11.

(a) Show that the viewing angle u from the point V is given by u 5 Tan21 100x

x 2 1 60000
,

where x is the distance from V to a spot directly below the cliff. (b) If it is decided
that the visitor’s center V must have a viewing angle of at least 0.2 radians (about
11.58), what x-interval is allowable? What x gives a maximum u-value?

Solution

(a) From the diagram, in DAVC, tan~u 1 a! 5 300
x and in DBVC, tan a 5 200

x . We
can use (I-10) to evaluate tan u 5 tan~~u 1 a! 2 a!:

tan u 5 tan~~u 1 a! 2 a! 5
tan~u 1 a! 2 tan a

1 1 tan~u 1 a!tan a

5

300
x

2
200

x

1 1
300

x
200

x

5

100
x

x 2 1 60,000
x 2

5
100x

x 2 1 60,000
.

FIGURE 10

FIGURE 11



[100, 500] by [0, .3]

(245, 0.201)

u

(a)

u

(b)

u

(a) Positive slope.

P

Q

Dx

Dy

u

(b) Negative slope.
P

Q

Dx , 0

Dy
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Therefore u 5 Tan21 100x
x 2 1 60,000

. We note in passing that this also estab-

lishes another identity. Since u 1 a 5 Tan21 300
x

, u 5 Tan21 100x
x 2 1 60,000

,

and a 5 Tan21 200
x

, we have u 5 ~u 1 a! 2 a, or

Tan21 100x
x 2 1 60,000

5 Tan21 300
x

2 Tan21 200
x

.

(b) Graphing Y 5 TAN21 (100Xy(X2 1 60000)) in @100, 500# 3 @0, .3# gives the graph in
Figure 12. Tracing along the curve, we find that the maximum viewing angle
occurs when x < 245 feet, but that u is at least 0.2 radians for any value of x
from about 218 to 275 feet. Given the accuracy of the initial data, we aren’t
justified in assuming more than that the best view occurs when x is approxi-
mately 250 feet, and that we have an allowable view anywhere from about 220
to 280 feet away. b

Angle Between Lines: Looking Ahead to Calculus

Identity (I-11) also leads to a formula for the angle between two lines, a topic that
finds a number of applications in calculus and differential equations. To get into the
formula we first need to relate the slope of a line to its angle of inclination. At any
point on a line we can measure the angle from the positive horizontal direction to
the line, as in Figure 13.

The slope m of a nonvertical line containing points P~x1, y1! and Q~x2, y2! is
given by

m 5
Dy
Dx

5
y2 2 y1

x2 2 x1

.

We can take P and Q so that the differences Dy and Dx are the signed sides of a
reference triangle for the angle of inclination. See Figure 14.

FIGURE 14

m 5
Dy
Dx

5 tan u

The observation we want is that in both cases shown in Figure 14, the tangent
of the angle of inclination is equal to the slope of the line. For a horizontal line, both
the slope and the angle of inclination are zero, and m 5 0 5 tan 0. Thus, in all
cases we have the relation given in the box.

FIGURE 12

FIGURE 13
Angle of inclination



(0, – 2)

y

x

m = 3

u = Tan– 1 3u

y = 3x – 2

(0, 2)

(5, 0)

y

x

u

m = – 2
5

(a)

2

– 5

Tan–1 (– .4)

x

u

(b)

y

a

p – a p – a

a
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Angle of inclination and slope

If a nonvertical line has slope m and an angle of inclination u, then

m 5 tan u (1)

That is, the tangent of the angle of inclination is equal to the slope of the
line.

cEXAMPLE 8 Angle of inclination Find the angle of inclination of the line.

(a) L1: y 5 3x 2 2 (b) L2: 2x 1 5y 5 10.

Solution

(a) The equation of the line is already in slope–intercept form, so L1 has y-inter-
cept point (0, 22) and slope m 5 3. The angle of inclination is the angle u in
Figure 15, and by Equation (1), tan u 5 3. Therefore u 5 Tan21 3 < 1.249
radians, or about 71.68.

(b) To express the equation for L2 in slope-intercept form, we solve for y:

y 5 2
2
5

x 1 2.

Thus m 5 2 2
5 , and so tan u 5 2 2

5 5 20.4. In Figure 16a we show L2 and its
angle of inclination u. Figure 16b shows u in standard position with a reference
triangle. Tan21~20.4! is the negative angle shown in Figure 16b, so u 5
p 1 Tan21~20.4! < 2.761 radians, or about 158.28. b

FIGURE 16

Two intersecting lines form four angles, and as in Figure 17, two pairs of
vertical angles. The sum of any two adjacent angles of the four is a straight angle.
If the lines are perpendicular, then all four angles are right angles; otherwise one
of the pairs is acute.

Definition: angle between intersecting lines

If two nonperpendicular lines intersect, then the angle between them is the
acute angle formed by their intersection.

If two lines are perpendicular, the angle between them is
p

2
.

FIGURE 15

FIGURE 17



u2 – u1u u

u2u
u1u

L1

L2

p – (u2 – u1)uup

y

x

L1: y = 3x – 2

L2: 2x + 5y = 10

a
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Equation ~1! and identity (I-11) can be combined to get a convenient way to
find the angle between intersecting lines. Suppose nonperpendicular intersecting
lines L1 and L2 have angles of inclination u1 and u2 respectively and that u2 $ u1.
Then the angle between L1 and L2 is either u2 2 u1 or p 2 ~u2 2 u1! as in Fig-
ure 18. In the first case, where a 5 u2 2 u1, identity (I-11) yields

tan a 5 tan~u2 2 u1! 5
tan u2 2 tan u1

1 1 tan u2 tan u1

5
m2 2 m1

1 1 m2m1

.

If, on the other hand, a 5 p 2 ~u2 2 u1!, then

tan a 5 tan~p 2 ~u2 2 u1!! 5 2tan~u1 2 u2! 5 2
m2 2 m1

1 1 m2m1

.

Since the angle between L1 and L2 is acute, its tangent is positive, and we have the
following.

Formula for the angle between intersecting lines

If two nonperpendicular lines L1 and L2 intersect and have slopes m1 and m2,
respectively, then the angle a between them is the angle whose tangent is the
positive one of

6
m2 2 m1

1 1 m2m1

.

Equivalently, tan a 5 U m2 2 m1

1 1 m2m1
U.

cEXAMPLE 9 Angle between two lines Find the angle between the lines
of Example 8, L1: y 5 3x 2 2 and L2: 2x 1 5y 5 10.

Solution

In Example 8 we found that the slopes of the two lines are given by

m1 5 3 and m2 5 2
2
5

.

Then

m2 2 m1

1 1 m2m1

5

2
2
5

2 3

1 1 S2
2
5D3

5

2
17
5

5
5

2
6
5

5

2
17
5

2
1
5

5 17.

Since 17 is positive, the angle a between L1 and L2 is given by tan a 5 17;
from which u 5 Tan2117 < 1.512 radians. As a check, we found that u2 < 2.761
and u1 < 1.249, so that u2 2 u1 < 1.512. See Figure 19. b

FIGURE 18

FIGURE 19
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EXERCISES 6.2

Check Your Understanding

Exercises 1–5 True or False. Give reasons.

1. sin~1 1 Ï3! 5 sin 1 1 sin Ï3

2. There is no number x for which sin 2x 5 2 sin x.

3. If 0 , x ,
p

2
and sin x 5

Ï3
2

, then sin 2x 5
Ï3

2
.

4. If 0 , x , p and cos x 5
Ï3

2
, then cos 2x 5

Ï3
2

.

5. tanSx 1
3p

4 D 5
tan x 2 1
tan x 1 1

is an identity.

Exercises 6–10 Fill in the blank (use exact form) so that
the resulting statement is true.

6. sinSp 2 Sin21 1
2D 5 .

7. cosSp 2 Cos21 1
2D 5 .

8. sinSp

2
2 Cos21 0.4D 5 .

9. tanS5p

6
2

p

6D 5 .

10. tanS3p

2
2

p

4D 5 .

Develop Mastery

1. Replace b by 2b in each of (I-6), (I-9), and (I-10), and
then use (I-3) to get identities (I-7), (I-8), and (I-11).

2. Try various simple functions such as f ~x! 5 x 1 1,
f ~x! 5 2x 2 1, f ~x! 5 x 2 1 1, f ~x! 5 2x, f ~x! 5
23x, and so on, to see if any are additive functions.

3. Based on your findings in Exercise 2, with other exam-
ples as needed, make a guess about some types of func-
tions that are additive. Briefly explain why you think
that the kinds of functions you have identified are addi-
tive and why certain other classes of functions are not
additive.

Exercises 4–6 Reduction Formulas Use identities
given in this section to verify the reduction formulas.

4. (a) sinSu 1
p

2D 5 cos u

(b) cos~u 1 p! 5 2cos u

5. (a) cosSu 2
3p

2 D 5 2sin u

(b) tan~p 2 u! 5 2tan u

6. (a) sin~u 2 p! 5 2sin u

(b) secS3p

2
1 uD 5 csc u

Exercises 7–10 Exact Form Evaluate in exact form and
then check by using a calculator to obtain a decimal approx-
imation for your result and for the given expression.

7. cos
5p

12
, use (a)

5p

12
5

p

6
1

p

4
and (b)

5p

12
5

2p

3
2

p

4

8. tan
13p

12
, use (a)

13p

12
5

5p

6
1

p

4
and

(b)
13p

12
5

5p

4
2

p

6

9. sin~2158!; use (a) 2158 5 308 2 458 and
(b) 2158 5 458 2 608

10. sec 2558; use (a) 2558 5 1358 1 1208 and
(b) 2558 5 3158 2 608

Exercises 11–12 Exact Form Evaluate in exact form.
First express the given angle as a sum or difference of angles
whose trigonometric functions you can evaluate in exact
form.

11. (a) sin 1058 (b) tan 1058

12. (a) sin
17p

12
(b) csc

17p

12

Exercises 13–18 Exact Form For angles a and b,
where

sin a 5 2
3
5

, 0 , a ,
3p

2

cos b 5 2
5

13
,

p

2
, b , p ,

draw diagrams to show a and b in standard position
with reference triangles, then evaluate in exact form. See
Example 3.

13. sin~a 1 b! 14. cos~a 2 b!

15. tan~b 2 a! 16. sin 2a

17. sinSp

2
2 2aD 18. cosS3p

2
1 2aD

Exercises 19–24 Exact Form For angle u that satisfies

sin u 5 2
3
4

, 2
p

2
, u ,

p

2
,

draw a diagram to show u in standard position with a refer-
ence triangle, then evaluate in exact form.

19. sin 2u 20. sec 2u

21. tanSp

3
1 uD 22. tanS2p

3
2 uD

23. sinS5p

4
1 uD 24. cosS5p

6
1 uD
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Exercises 25–27 Exact Form Use the identities from
this section to simplify the expression, then evaluate in exact
form.

25. (a) sin 208 cos 408 1 cos 208 sin 408

(b) cos
p

10
cos

2p

5
2 sin

p

10
sin

2p

5

26. (a) cos2 158 2 sin2 158 (b) sin
5p

12
cos

5p

12

27. (a) sin 808 cos 508 2 cos 808 sin 508

(b)
1
2

sec 158 csc 158

Exercises 28–34 Prove Identities Prove that the equa-
tion is an identity.

28. tanSx 2
p

4D 5
sin x 2 cos x
sin x 1 cos x

29. sinSp

6
2 xD 5

1
2

~cos x 2 Ï3 sin x!

30.
cos 2x

cos x 1 sin x
5 cos x 2 sin x

31. ~sin x 1 cos x!2 5 1 1 sin 2x

32. ~sin x 2 cos x!2 1 sin 2x 5 1

33. tanS5p

4
2 xD 5

1 2 tan x
1 1 tan x

34. sinSx 2
p

6D 5 cosSx 2
2p

3 D
35.

sin 2x
cos 2x

5
2 tan x

1 2 tan2 x

36.
sin 2x
tan 2x

5 2 cos2 x 2 1

Exercises 37–41 Is It an Identity? (a) Give the domain
of the equation. (b) Determine whether or not the equation
is an identity.

37. sin~x 1 Sin21 0.6! 5 0.2~4 sin x 1 3 cos x!

38. cos~x 2 Sin21 0.6! 5 0.2~3 sin x 1 4 cos x!

39. cos~x 2 Cos21 0.4! 5 cos x 2 0.4

40. sin~Sin21 x 1 Cos21 x! 5 x 2 1 _ x 2 2 1 _
~Hint: Use the identity Sin21 x 1 Cos21 x 5 p

2 .!

41. cos 2x 1 2 sin2 x 5 0.1~Ïx 1 _ Ïx 2 10 _ !

Exercises 42–45 Simplify Use a graph of f to help you
guess a simpler formula for f. Remember to give domain of
f. You might want to use a decimal window.

42. f ~x! 5 sin~Sin21 x 1 2 Cos21 x!; line segment

43. f ~x! 5 cos~2 Sin21 x 1 Cos21 x!; line segment

44. f ~x! 5 sin~2 Sin21 x 1 Cos21 x!; half circle.

45. f ~x! 5 cos~Sin21 x 1 2 Cos21 x!; half circle.

46. Explore For f ~x! 5 sin(Sin21 x 1 k Cos21 x!, try sev-
eral integer values of k (positive and negative) and draw
graphs.
(a) Describe any interesting observations, such as the

number of x-intercept points and local extrema.
(b) How are the graphs for k 5 4 and k 5 22 related?
(c) Find other pairs of values of k for which properties

are similar to those in part (b).

47. Repeat Exercise 46 for
f ~x! 5 cos(k Sin21 x 1 Cos21 x!.

Exercises 48–50 Use identities (I-10) and (I-11). Give
answers in exact form.

48. If tan a 5 2 and tan~a 2 b! 5 3, find tan b.

49. If tan x 5
3
4

and x 1 y 5
p

4
, find tan y.

50. If sin x 5
3
5

, x is in the first quadrant, and

x 1 y 5
3p

4
, find tan y.

Exercises 51–52 Graphs Describe the graph of f as a
horizontal translation of the graph of g. Check with graphs.

51. g~x! 5 sin x, f ~x! 5 sin~x 2 Sin21 0.5!.

52. g~x! 5 cos x, f ~x! 5 cos~x 1 Cos21 0.5!.

Exercises 53–54 Draw graphs to support the claim that
the equation in part (a) is an identity. Use part (a) to solve
the equation in part (b).

53. (a) sin~2 Sin21 x 1 Cos21 x! 5 Ï1 2 x 2

(b) sin~2 Sin21 x 1 Cos21 x! 5 0.5

54. (a) cos~Sin21 x 1 2 Cos21 x! 5 2Ï1 2 x 2

(b) cos~Sin21 x 1 2 Cos21 x! 5 20.4

Exercises 55–56 Angle of Intersection (a) The graphs
of f and g are lines l1 and l2. Find the angle u at the intersec-
tion of l1 and l2. Give the answer to the nearest tenth of a
degree. (b) Find the angle of inclination for each line.
(c) Use a decimal window and draw the graphs of f and g on
the same screen. Does the angle between the lines and the
angles of inclination appear to be consistent with your an-
swer in parts (a) and (b)? Find the point of intersection of
the lines.

55. f ~x! 5 0.5x 1 2, g~x! 5 1.5x

56. f ~x! 5 x 1 2, g~x! 5 22x 2 7

Exercises 57–58 Solve the equation (Hint: Apply tan to
both sides.)

57. Tan21 x 5 Tan21S1
4D 1 Tan21S1

2D
58. Tan21~2x 1 1! 5 Tan21 1 2 Tan21S1

2D



B

C

DA

E
x

y

2.5

a

3

8

B

C

DA
x

y
a

3

4
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59. Solve Sin21 x 5 Tan21S3
4D 1 Cos21S3

5D
60. Solve Cos21 x 5 Tan21S4

3D 1 Sin21S4
5D.

61. (a) Prove that sin 3u 5 3 sin u cos2 u 2 sin3 u is an
identity. (Hint: sin 3u 5 sin~u 1 2u!; use (I-6).)

(b) Prove that sin 3u 5 3 sin u 2 4 sin3 u is an identity.

62. (a) Prove that cos 3u 5 cos3 u 2 3 sin2 u cos u is an
identity. (Hint: cos 3u 5 cos~u 1 2u!; use (I-8).)

(b) Prove that cos 3u 5 4 cos3 u 2 3 cos u is an iden-
tity.

63. (a) Show that sin 108 is a root of 8x 3 2 6x 1 1 5 0.
(Hint: Since the equation in Exercise 61(b) is an
identity we can replace u by any value and the
result will be a true statement. Show that replacing
u by 108 is equivalent to replacing x by sin 108.)

(b) Show that sin 508 and sin 2508 are also roots of
8x 3 2 6x 1 1 5 0.

(c) Get 10-decimal place approximations to the three
roots of 8x 3 2 6x 1 1 5 0. Check by drawing a
graph. (Hint: Use your calculator to evaluate
sin 108.)

64. Repeat Exercise 63 for the equation 8x 3 2 6x 2 1 5
0 with cos 208, cos 1008, and cos 1408 as roots.

65. Let x 1 1
x 5 2 cos u, where 0 , u , p

2 .
(a) Show that x 2 1 1

x 2 5 2 cos 2u. (Hint: Square both
sides of the equation.)

(b) Show that x 3 1 1
x 3 5 2 cos 3u. (Hint: Cube both

sides of the equation and use the identity in Exer-
cise 62(b).)

66. Use the identity Cos21~2x! 5 p 2 Cos21 x and the
fact that Sin21 is an odd function to prove that f is an
even function where f ~x! 5 sin~2 Sin21 x 1 Cos21 x!.
Check by drawing a graph. (Hint: You might need to use
the reduction formula sin~p 2 u! 5 sin u.!

67. Prove that f ~x! 5 cos~2 Sin21 x 1 Cos21 x! is an odd
function. See Exercise 66.

68. Best View Bridget is seated in a chair directly in front
of a picture on a wall. Her eye level height is 3 feet from
the floor and the picture is 2.5 feet high with the bottom
edge 8 feet from the floor (see the diagram). Her “view”
of the picture is measured by the size of angle y. She is
seated x feet from the wall.

(a) Find a formula for y as a function of x.
(b) How far from the wall should she sit to get the “best

view” (largest y)?

69. Solve Exercise 68 for a picture that is 3.5 feet high and
12 feet from the floor.

70. Maximum Angle In the diagram find the value of x
that will make the angle y a maximum (2 decimal
places). What is the maximum?

71. Solve Exercise 70 if _BC _ 5 5.

72. In Exercise 70 find two different formulas giving y as a
function of x. Use these to get an identity. See Exam-
ple 7. Check Graphically.

73. Give the domain of the equation and show that it is an
identity.
(a) ln~sin 2x! 5 ln 2 1 ln~sin x cos x!
(b) ln~sin 2x! 5 ln 2 1 ln~sin x! 1 ln~cos x!

Exercises 74–76 Graph, Domain and Range Draw a
graph of f; use @220, 20# 3 @22, 2#. (a) From the graph,
does it appear that f is odd, even, or neither? Justify your
guess. (b) Give the domain and range of f.

74. f ~x! 5 2 sinSTan21 12
x

2 Tan21 3
xD

75. f ~x! 5 3 sinSTan21 8
x

2 Tan21 2
xD

76. f ~x! 5 2 tanSTan21 12
x

2 Tan21 2
xD
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6.3 H A L F - A N G L E F O R M U L A S , P R O D U C T – S U M ,
A N D F A C T O R I D E N T I T I E S

The idea that buried among the chaotic data of experience are hidden
principles of an exact mathematical nature is far from obvious.

P. W. C. Davies

In this section we derive additional key identities.

Half-Angle Formulas

So I learned to do algebra As noted in the preceding section, identity (I-13) can be expressed in alternate
very quickly, and it came in

forms:handy in college. When we
had a problem in calculus, cos 2a 5 1 2 2 sin2 a, cos 2a 5 2 cos2 a 2 1.
I was very quick to see
where it was going and to Replacing 2a by u, and a by u

2 , these equations become
do the algebra.

Richard Feynman
cos u 5 1 2 2 sin2 u

2
, cos u 5 2 cos2 u

2
2 1.

Solving the first of these equations for sin u
2 and the second for cos u

2 gives the
traditional forms of half-angle identities, involving plus-minus signs.

Half-angle identities

sin
u

2
5 6Î1 2 cos u

2
(I-15)

cos
u

2
5 6Î1 1 cos u

2
(I-16)

The plus-minus sign can be misleading since it makes it look as if there are two
different values for sin u

2 . We could use graphs to help see that sin u
2 coincides with

Ï1 2 cos u
2 when sin u

2 is positive, and that sin u
2 agrees with 2Ï1 2 cos u

2 when sin u
2 is

negative. The same relationship holds for cos u
2 . Although such analysis is possible,

it is usually easier to determine the quadrant containing u
2 and take the proper sign

for that quadrant. Thus if u is an angle between p and 3p
2 , then u

2 is between p
2 and

3p
4 , which tells us that sin u

2 is positive and cos u
2 is negative.

Half-angle identities sometimes arise in a context where we are explicitly
asked for a trigonometric function of u

2 , or we may need an exact form for a function
of an angle such as 3p

8 , which we can get from our knowledge of functions of 3p
4 . If

we are only given partial information about u, we need to exercise care. Keep in
mind the following caution, which is illustrated in Example 1.

WARNING: The quadrant of u alone does not determine the quadrant of u
2 ;

coterminal angles can have different half-angle function values.

cEXAMPLE 1 Half-angle identities Evaluate sin u
2 and cos u

2 in exact form
for the fourth quadrant angle.

(a) u 5 2
p

4
(b) u 5

5p

3
(c) u 5 2

p

3



y

x
4

– 
8

–

(a)

p p

5 
6
p

5 
3
p


6
p–

3
2


3
p–

– 1
2

(b)

x

y
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Solution

(a) Since u
2 5 2 p

8 , u
2 is also in Quadrant IV, where the sine is negative and the

cosine is positive. See Figure 20a. Thus

sin
u

2
5 2Î1 2 cos u

2
5 2Î1 2 cos~2py4!

2

5 2Î1 2 1yÏ2
2

5 2Î2 2 Ï2
4

.

cos
u

2
5 Î1 1 cos u

2
5 Î1 1 cos~2py4!

2

5 Î1 1 1yÏ2
2

5 Î2 1 Ï2
4

.

As always, when evaluating any trigonometric function in exact form, we
should get a calculator check.

(b) Half of the fourth quadrant angle 5p
3 is 5p

6 , so u
2 is a second-quadrant angle,

where sine is positive and cosine is negative. Either from the reference triangle
in Figure 20b or from identities ~I-15! and ~I-16! we have

sin
u

2
5 Î1 2 cos u

2
5 Î1 2 cos~5py3!

2
5 Î1 2 1y2

2
5 Î1

4
5

1
2

.

cos
u

2
5 2Î1 1 cos u

2
5 2Î1 1 cos~5py3!

2
5 2Î1 1 1y2

2

5 2
Ï3

2
.

(c) If u 5 2 p
3, then u

2 5 2 p
6 , a fourth-quadrant angle, where sine is negative and

cosine is positive. While we can use the half-angle identities, the reference
angle for 2 p

6 is a special triangle from which we can read the trigonometric
functions. See Figure 20b.

sin
u

2
5 sinS2

p

6D 5 2
1
2

cos
u

2
5 cosS2

p

6D 5
Ï3

2
. b

Note that in Example 1, while 5p
3 and 2 p

3 are coterminal angles, so that all of
their trigonometric functions are the same, dividing by 2 gives different angles with
different sine and cosine values.

To get an identity for tan u
2 let us first rewrite identities (I-12) and an alternative

form of (I-13) by replacing 2u by u and u by u
2 .

sin u 5 2 sin
u

2
cos

u

2

1 1 cos u 5 2 cos2 u

2
Now divide the first equation by the second equation and simplify:

sin u

1 1 cos u
5

2 sin
u

2
cos

u

2

2 cos2 u

2

5

sin
u

2

cos
u

2

5 tan
u

2
.

FIGURE 20
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This gives an identity for tan u
2 :

tan
u

2
5

sin u

1 1 cos u
.

In Example 4 of Section 6.1 we proved that sin u
1 1 cos u is identically equal to 1 2 cos u

sin u ,
so we have two forms for tan u

2 .

Another half-angle identity

tan
u

2
5

sin u

1 1 cos u
or tan

u

2
5

1 2 cos u

sin u
(I-17)

The two forms for (I-17) do not require the plus-minus sign that appeared in
identities (I-15) and (I-16) since 1 1 cos u $ 0 and 1 2 cos u $ 0, and the signs
for tan u

2 and sin u agree, as can be seen by graphing the two functions on the same
screen.

As we noted in Chapter 5, we can get exact-form answers only for certain
angles. The important point is that practice is necessary to understand and remem-
ber the half-angle formulas.

cEXAMPLE 2 Half-angle identities Angle u is defined by sin u 5 2 4
5 and

2p , u , 2 p
2 . Evaluate in exact form and use a calculator to get a decimal

approximation: (a) sin u
2 (b) cot u

2 .

Solution
Since 2p , u , 2 p

2 , dividing by 2 gives 2 p
2 , u

2 , 2 p
4 . Thus u

2 is a fourth-
quadrant angle as may be seen in Figure 21a. In the fourth quadrant, cos u

2 . 0 and
sin u

2 , 0.

(a) Follow the strategy, using (I-15) with a negative sign and cos u 5 2 3
5 from

Figure 21b,

sin
u

2
5 2Î1 2 cos u

2
5 2Î1 2 ~2 3

5!

2
5 2Î 8

10
5 2

2

Ï5
.

Hence, in exact form, sin u
2 5 2 2

Ï5
.

To get a calculator check, first identify u. From the diagram in Figure 21b,
u 5 2p 1 Tan21 4

3 < 22.2142974. Therefore, sin u
2 < sin~2 2.2142974

2 ! <
20.8944272. Also, 2 2

Ï5
< 20.8944272.

(b) Using (I-17) directly with (I-1),

cot
u

2
5

1

tan
u

2

5
1 1 cos u

sin u
5

1 2
3
5

2
4
5

5

2
5

2
4
5

5 2
1
2

. b

In the above examples, we were able to get results in exact form. In many cases
this is inconvenient or impossible, as may be seen in the next example.

cEXAMPLE 3 Calculator evaluation For angle u where sin u
2 5 0.64 and

0 , u , p , find a decimal approximation for (a) u, (b) sin 3u, (c) tan u
5 .

Strategy: First draw a
diagram with a reference
triangle for u from which the
functions of u can be read,
then use appropriate
identities.

FIGURE 21
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Solution

(a) Follow the strategy. Since 0 , u , p , also 0 , u
2 , p

2 , so u
2 is in the first

quadrant. Therefore u
2 5 Sin21~0.64! and u 5 2 Sin21~0.64! < 1.3889965.

(b) Similarly, sin 3u 5 sin~3 · 2 Sin21 0.64!, so sin 3u < 20.8549202.
(c) Finally, tan u

5 5 tan~1
5 · 2 Sin21 0.64!, so tan u

5 < 0.2851732. b

Product-Sum Formulas

We conclude our collection of key identities with two groups of formulas that are
useful in a number of special situations. They do not occur as often as (I-1) through
(I-17) and they are not easy to remember. However, they are easy to derive from
the sum and difference identities (I-6) through (I-9). You should become ac-
quainted with them and their use.

Product-to-sum identities

sin a cos b 5
1
2

@sin~a 1 b! 1 sin ~a 2 b!# (I-18)

cos a cos b 5
1
2

@cos~a 1 b! 1 cos ~a 2 b!# (I-19)

sin a sin b 5
1
2

@cos~a 2 b! 2 cos ~a 1 b!# (I-20)

To prove (I-18), we add the equations in (I-6) and (I-7):

sin~a 1 b! 5 sin a cos b 1 cos a sin b
sin~a 2 b! 5 sin a cos b 2 cos a sin b

sin~a 1 b! 1 sin~a 2 b! 5 2 · sin a cos b

Identity (I-18) follows if we divide by 2 and read from right to left. Identities (I-19)
and (I-20) can be proved similarly. See Develop Mastery Exercise 56.

cEXAMPLE 4 Product to sum Use (I-19) to express the product of cos u
and cos 3u as a sum. Then draw calculator graphs as a check.

Solution
In (I-19) replace a by u and b by 3u.

cos u · cos 3u 5
1
2

@cos~u 1 3u! 1 cos~u 2 3u!# by (I-19)

5
1
2

@cos~4u! 1 cos~22u!#

5
1
2

@cos 4u 1 cos 2u# by (I-3)

Hence cos u cos 3u 5 1
2 ~cos 4u 1 cos 2u! is an identity.

To see both functions, we translate one up by a unit. In either a decimal win-
dow or the trigonometric window, graph Y1 5 COS X COS 3X 1 1 , Y2 5 ~COS 4X 1 COS 2X!y2,
See Figure 22. The graphs clearly suggest that the functions are identical. b

Strategy: For decimal ap-
proximations, first get a cal-
culator value for u. Locate
the quadrant for u

2 , evaluate
u
2 with Sin21, and multiply by
2 to get u. Store u in mem-
ory and recall as needed.

FIGURE 22
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Identities (I-18) through (I-20) convert products to sums. Another closely
related set of identities converts sums to products. These sum-to-product identities
are also known as factoring identities.

Sum-to-product (factoring) identities

sin x 1 sin y 5 2 sinSx 1 y
2 DcosSx 2 y

2 D (I-21)(I-21)

sin x 2 sin y 5 2 cosSx 1 y
2 DsinSx 2 y

2 D (I-22)

cos x 1 cos y 5 2 cosSx 1 y
2 DcosSx 2 y

2 D (I-23)

cos x 2 cos y 5 22 sinSx 1 y
2 DsinSx 2 y

2 D (I-24)

Identity (I-21) follows from (I-18) by simple substitutions. First write (I-18)
and multiply through by 2:

2 sin a cos b 5 sin~a 1 b! 1 sin~a 2 b!

Now let a 1 b 5 x and a 2 b 5 y. Then

a 5
x 1 y

2
and b 5

x 2 y
2

.

Substituting these values for a and b into ~I-18! and reading from right to left gives
identity (I-21). Identities (I-22), (I-23), and (I-24) can be proved similarly (see
Exercise 59).

cEXAMPLE 5 Sums to products Use sum-to-product identities to simplify
the following expression and then draw calculator graphs as a check.

sin 2x 2 sin 4x
cos 2x 1 cos 4x

Solution
Applying (I-22) to the numerator and (I-23) to the denominator, we have

sin 2x 2 sin 4x
cos 2x 1 cos 4x

5

2 cosS2x 1 4x
2 D · sinS2x 2 4x

2 D
2 cosS2x 1 4x

2 D · cosS2x 2 4x
2 D

5
2 cos 3x · sin~2x!

2 cos 3x · cos~2x!

5
22 cos 3x · sin x
2 cos 3x · cos x

5 2tan x.

To see both functions, translate one up by a unit. Graph Y1 5 2TAN X 1 1 ,

Y2 5 (SIN 2X 2 SIN 4X!y(COS 2X 1 COS 4X) . Because of the steepness with vertical asymptotes,
it may not be clear that the functions are identical. You may want to turn off the two
functions and graph instead Y3 5 Y1 2 Y2 and see that the difference appears to be the
expected line y 5 1. b



1 + u2

1

u

x
2
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Looking ahead to calculus. Half-angle identities provide the basis for a substitu-
tion used in integration in calculus. Quotients that involve sines and cosines can be
very difficult to integrate. The substitution illustrated in the next example can
change such a quotient into a more manageable rational function in variable u. In
Example 6 we show how to deal with sin x. For the substitution for cos x, see
Develop Mastery Exercise 65.

cEXAMPLE 6 A substitution Let u 5 tan x
2, where 0 , x , p

~so 0 , x
2 , p

2 .!

(a) Express sin x in terms of u.

(b) Express
sin x

1 2 sin x
in terms of u.

Solution
Follow the strategy. See Figure 23.

(a) Express sin x in terms of x
2 by using the double-angle identity (I-12) with u

replaced by x
2 .

sin x 5 2 sin
x
2

cos
x
2

.

From the right triangle,

sin
x
2

5
u

Ï1 1 u 2
and cos

x
2

5
1

Ï1 1 u 2
,

so

sin x 5 2
u

Ï1 1 u 2
·

1

Ï1 1 u 2
5

2u
1 1 u 2 .

(b) Replace sin x by
2u

1 1 u 2 .

sin x
1 2 sin x

5

2u
1 1 u 2

1 2
2u

1 1 u 2

5
2u

1 1 u 2 2 2u
5

2u
~u 2 1!2 . b

EXERCISES 6.3

Check Your Understanding

Exercises 1–5 True or False. Give reasons.

1. If u is an angle in the first quadrant, then
u

2
must also be

in the first quadrant.

2. 2 sin
x
2

5 sin x is an identity.

Strategy: (a) First use the
given information to draw a
right triangle with angle x

2
whose tangent is u

1 , then find
sin x

2 and cos x
2 in terms of u

and use identity (I-12).

FIGURE 23

3. 2 cos2 x
2

5 1 1 cos x is an identity.

4. 2 sin2 x
2

5 1 1 cos x is an identity.

5. For every real number x, sin2 x
2

5 1 2 cos2 x
2

.
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Exercises 6–10 Fill in the blank with ,, ., or 5 so that
the resulting statement is true.

6. For every real number x, 2 cos2 x
2

1 1 cos x.

7. For every real number x, 2 sin
x
2

cos
x
2

1 1 sin x.

8. For every x in @3.5, 4.5#, cos
x
2

0.

9. For every x in Fp ,
3p

2 G, sin
x
2

0.

10. cos 1 cos 0.5.

Develop Mastery

In all exercises, express numerical results in exact form
unless otherwise specified.

Exercises 1–4 Half-Angle Evaluation Use half-angle
formulas to evaluate the expressions, then make a calculator
check.

1. (a) sinS p

12
D, (b) cosS11p

8
D

2. (a) cosS5p

12
D, (b) tanS7p

12
D

3. (a) sinS2
3p

8 D, (b) cosS2
3p

8 D
4. (a) cscS2

7p

12D, (b) cotS17p

8 D
Exercises 5–8 Half-Angle Evaluation An angle u is
specified. Draw a diagram that shows the angle u, determine
the quadrant that contains u

2 , and find (a) sin u
2, (b) cos u

2,
(c) tan u

2.

5. cos u 5 2 12
13 and 0 , u , p .

6. sin u 5 2 3
4 and p , u , 3p

2

7. cos u 5 2 3
5 and 2p , u , 3p

8. sec u 5 22 and p , u , 2p

Exercises 9–12 For each exercise restrictions on x are
given and three expressions are to be considered using these
restrictions, (i) cos x is ` (ii) sin x

2 is `
(iii) cos 2x is ` . Enter a 1 sign in the box if the
expression is positive, a 2 sign if it is negative, or a 6 if
it might be either positive or negative.

9. (a) p , x ,
3p

2
(b) x is in the third quadrant.

(Hint: At first glance it might appear that conditions
(a) and (b) are identical; they are not.)

10. (a)
3p

2
, x , 2p . (b) x is in the fourth

quadrant. (Hint: See Exercise 9.)

11. (a)
3p

4
, x , p . (b) p , x ,

5p

4
.

12. (a) p , x , 2p and tan x . 0.
(b) Both cos x and tan x are negative.

13. Is there an angle u in the third quadrant such that

(a) sin
u

2
is positive and cos

u

2
is negative? Explain.

(b) sin
u

2
is negative and cos

u

2
is positive? Explain.

Exercises 14–16 Evaluate in two ways as indicated. Al-
though the two answers may look different, evaluate each
by calculator to see if approximations are equal.

14. Evaluate sin
p

12
by using

(a) (I-15) with
p

12
5

1
2Sp

6D
(b) (I-7) with

p

12
5

p

3
2

p

4
.

15. Evaluate cos
13p

12
by using

(a) (I-16) with
13p

12
5

1
2S13p

6 D,

(b) (I-8) with
13p

12
5

3p

4
1

p

3
.

16. Evaluate tan 2
7p

12
by using

(a) (I-17) with 2
7p

12
5 2

1
2S7p

6 D,

(b) (I-11) with 2
7p

12
5

p

6
2

3p

4
.

Exercises 17–24 Prove Identities Prove that the equa-
tion is an identity.

17. sin x 5 2 sin
x
2

cos
x
2

18. Ssin
x
2

1 cos
x
2D2

5 1 1 sin x

19. tan
x
2

5 csc x 2 cot x

20. 2 sin2 x
2

5
sec x 2 1

sec x

21. cot
x
2

5
sin x sec x
sec x 2 1

22. 2 sin2 x
2

5 sin x tan
x
2
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23. Î1 1 cos x
2

5 Ucos
x
2 U

24.
sin x 1 sin 3x
cos x 1 cos 3x

5 tan 2x

Exercises 25–36 Is It an Identity? Use the algorithm in
Section 6.1 to determine whether or not the equation is an
identity. If it is not, then give at least one counterexample,
that is, a value of x for which the equality does not hold.

25. sin
x
2

5
sin x

2

26. 2 cos2 x
2

5 1 1 cos x

27. Î1 2 cos x
2

5 sin
x
2

28. Î1 1 cos x
2

5 cos
x
2

29.
cos 2x 2 cos 4x

2 sin 3x
5 sin x

30. cosSCos21 x
2D 5 cosSCos21 x

2 D
31. 2 cos x cos 3x 5 (2 cos 2x 2 1)(cos 2x 1 1) (Hint:

See Example 4.)

32. cot
x
2

5
1 1 cos x

sin x

33. 2 sin 2x cos x 5 sin 3x 1 sin x

34. 2 cos 2x cos x 5 cos 3x 1 cos x

35. 20Ssin
x
2D2

5 0.1~0.01x 1 _ 0.01x 2 100 _ ! 2

10 cos x

36. 20Scos
x
2D2

5 0.1~0.01x 1 _ 100 2 0.01x _ ! 1

10 cos x

Exercises 37–38 Decimal Approximation Use the given
information to find u (in radians) and to get a three-place
decimal approximation.

37. sin u 5 0.36 and 0 , u ,
p

2
. Find

(a) u, (b) sin
u

2
, (c) cos 3u.

38. cos u 5 20.65 and 0 , u , p . Find

(a) u, (b) tan
u

2
, (c) csc

u

2
.

Exercises 39–40 Exact Form Use the given informa-
tion to evaluate in exact form.

39. 2u is between
3p

2
and 2p , and cos 2u 5

4
5

. Find

(a) tan 2u, (b) sin u, (c) cos u.

40. 2u is between 2
p

2
and 0, and cos 2u 5

5
13

. Find

(a) sin 2u, (b) sin u, (c) cos u.

Exercises 41–42 Evaluate in exact form. The indicated
identity may be helpful. Check by calculator evaluation.

41. (a) sin
5p

12
1 sin

p

12
; (I-21)

(b) cos
5p

12
1 cos

p

12
; (I-23)

42. (a) sin
p

12
· cos

p

12
; (I-18)

(b) sin
5p

12
· cos

p

12
; (I-18)

Exercises 43–46 Increasing, Decreasing (a) Deter-
mine whether f is increasing decreasing or neither. (b) Give
the domain and range of f in exact form. (c) Determine the
y-intercept point (exact form). (Hint: Draw a graph of f.)

43. f ~x! 5 tanSCos21 x
2 D

44. f ~x! 5 1 2 tanSCos21 x
2 D

45. f ~x! 5 sinSCos21 x
2 D

46. f ~x! 5 cosSCos21 x
2 D

Exercises 47–48 Graph Intersection Find the coordi-
nates (1 decimal place) of the point of intersection of the
graphs of f and g.

47. f ~x! 5 cosSx
2D, g~x! 5 Cos21Sx

2D
48. f ~x! 5 sinSx

2D, g~x! 5 Cos21Sx
2D

49. Find a piecewise formula for (a) f ~x! 5 ~21!@sin x#,
(b) g~x! 5 ~21!@cos x#. Here @ # is the greatest integer
function.

50. Draw graphs of f ~x! 5 ~21!@sin x# and g~x! 5 sin x on
the same screen. Use dot mode. What do you observe?
See Exercise 49.



1

1

A

B D C 

u
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51. Draw graphs of f ~x! 5 ~21!@cos x# and g~x! 5 cos x on
the same screen. Use dot mode. What do you observe?
See Exercise 49.

Exercises 52–53 Maximum Value Find the maximum
value (2 decimal places) of f.

52. f ~x! 5 2 cosSCos21 x
2 D 2 sin x.

53. f ~x! 5 2 cos x 2 cosSCos21 x
2 D

54. We can derive the half-angle tangent formula for
0 , u , p

2 from the diagram with a semicircle of radius
1 and center at D and a central angle of u.
(a) Show that /ABC 5 u

2, _AC _ 5 sin u, _DC _ 5
cos u.

(b) Show that tan
u

2
5

sin u

1 1 cos u
.

55. If sin x 1 cos x 5 u, then show that
(a) sin 2x 5 u 2 2 1. (Hint: Square both sides.)
(b) sin3 x 1 cos3 x 5 1

2
~3u 2 u 3!. (Hint: Cube both

sides.)

6.4 S O L V I N G T R I G O N O M E T R I C E Q U A T I O N S

@The# characterization of mathematics as a study of the order and relation
of . . . abstract patterns, forms, and structures . . . provides mathematics with
root and substance, yet allows for the full range of the intuitive, creative, and
aesthetic impulse for which mathematics is so justly renowned.

W. G. Holladay

In Section 1.5 we discussed the notion of a domain D for an equation that involves
a variable as the nonempty set of real numbers that can be substituted for the
variable to yield a numerical statement that is either true or false. The solution set
for the equation consists of all numbers in D that yield true statements.

In the preceding three sections of this chapter we considered equations for
which the solution set is the entire domain D. Such equations are called identities.
Equations for which the solution set is not all of D are called conditional equa-
tions. In this section we are interested in conditional equations that involve
trigonometric functions.

I was always interested in
everything. Finally, when
I entered college, [my
father] told me in words of
one syllable that I would
have to earn my living
when I graduated, and I
had better make use of
my four years to prepare
myself for a profession. It
was at that point that I
decided to become a
mathematician.

Garrett Birkhoff

56. A proof of identity (I-18) using (I-6) and (I-7) was
given in this section. In a similar manner prove identi-
ties (I-19) and (I-20).

Exercises 57–58 Product to Sum Use identities (I-18)
through (I-20) to express the product as a sum.

57. (a) sin 3x cos 2x (b) cos x cos 3x

58. (a) sin 2x sin 3x (b) cos 2x sin 3x

59. A proof of identity (I-21) was given in this section. In
a similar manner prove that (I-23) follows from (I-19).

Exercises 60–61 Sum to Product Use identities (I-21)
through (I-24) to write the sum or difference as a product.

60. (a) sin 2x 1 sin 4x (b) cos x 1 cos 3x

61. (a) sin 3x 2 sin x (b) cos 5x 2 cos x

Exercises 62–63 Simplify. (Hint: Use (I-21) through (I-24)
to write the numerator and denominator as products.)

62.
sin x 1 sin 3x
cos x 1 cos 3x

63.
sin 4x 1 sin x
cos 4x 1 cos x

64. Simplify.
(a) cos 208 cos 408 cos 808. (Hint: Use identity (I-19).)
(b) sin 108 sin 508 sin 708. (Hint: Use (a).)

65. Looking Ahead to Calculus Using the substitution
u 5 tan x

2 , (a) express cos x and tan x in terms of u,
(b) express 1 2 cos x

tan x in terms of u. (Hint: See Exam-
ple 6.)



y

x

2
1

3

x1

(a)

y

x

2
1

3

x2

–

(b)

y

x

1
x1

(a)

31 –

3cos x1 = 1 –

y

x

1
x2

(b)

31 –

3cos x2 = 1 –
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In finding roots of polynomial equations in Chapter 3, we saw that for some
equations we are able to find roots in exact form, while for other equations we must
settle for approximations. The same observation applies to equations involving
logarithmic and exponential functions or trigonometric functions. In the first part
of this section we consider equations for which the roots can be expressed in exact
form, and then we look at a variety of equations for which we have no tools for exact
answers but for which we can nonetheless get good approximations with the aid of
technology. Techniques for solving equations involving trigonometric functions can
best be explained by considering a number of examples.

Exact Form Solutions

cEXAMPLE 1 No domain specified Solve the equation 2 sin x 2 1 5 0.

Solution
With no specified domain, we assume it to be the set of real numbers. The given
equation can be written as sin x 5 1

2 . In Figure 24 we show two angles, x1 and x2,
whose sine equals 1

2 . Each reference triangle is a 308–608 triangle, so that x1 5 p
6

and x2 5 5p
6 . The sine function is periodic with period 2p , so we can add any

multiple of 2p to either x1 or x2. The solution is given by

x 5
p

6
1 2kp , or x 5

5p

6
1 2kp ,

where k is any integer (positive, negative, or zero). b

cEXAMPLE 2 Limited domain Solve the equation cos2 x 2 2 cos x 2 2 5 0,
where 2p # x # p . Give the results rounded to two decimal places.

Solution
Follow the strategy.

cos x 5
2 6 Ï4 1 8

2
5

2 6 2 Ï3
2

5
2~1 6 Ï3!

2
5 1 6 Ï3

For cos x 5 1 1 Ï3 there is no solution since 1 1 Ï3 < 2.732, and 21 #
cos x # 1 for every x. For cos x 5 1 2 Ï3 < 20.732 we do get solutions as
shown in Figure 25. Again we are careful to draw curved arrows, remembering that

FIGURE 24
sin x1 5 sin x2 5 1

2

Strategy: The equation is
quadratic in cos x. The left
side does not factor, so use
the quadratic formula.

FIGURE 25



y

x

2

1

3

p
2

2x = 

2x

(a)

p 
+ k • 2pp



y

x

2

– 1

3

2 
3

2x =  

2x

(b)

p
+ k • 2pp
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2p # x # p . From the diagrams it is easy to see that

x1 5 Cos21~1 2 Ï3! < 2.39 and x2 5 2x1 5 2.39.

Thus, the desired solutions are 2.39 and 22.39. b

cEXAMPLE 3 Domain [0, 2p] Suppose the domain is @0, 2p#. Find the
solution set for the equation sin x · tan x 2 tan x 5 0.

Solution
Follow the strategy.

~sin x 2 1!tan x 5 0.

Therefore, tan x 5 0 or sin x 5 1. From tan x 5 0, x 5 0, p , 2p , and from sin
x 5 1, we get x 5 p

2 . It would appear that we have four solutions. However, when
we check x 5 p

2 in the original equation, we recognize that tan p
2 is not defined.

Hence x 5 p
2 is not a solution. Checking the other three numbers we find that they

are solutions. The solution set is $0, p , 2p%. b

cEXAMPLE 4 Using an identity Find the solution set for the equation

4 sin x cos x 2 Ï3 5 0 where 2p # x # p .

Solution
Following the strategy, the given equation is equivalent to

2~2 sin x cos x! 2 Ï3 5 0 or 2 sin 2x 2 Ï3 5 0.

Thus sin 2x 5 Ï3
2 . Draw diagrams to show possible values for the angle 2x (see

Figure 26). From Figure 26(a),

2x 5
p

3
1 k · 2p or x 5

p

6
1 k · p

Now pick values for k that give solutions in the interval @2p , p#. When k is 21,
x is 2 5p

6 , and when k is 0, x is p

6
.

In a similar manner, from Figure 26(b), 2x 5 2p
3 1 k · 2p , or x 5

p

3
1 k · p .

When k is 21, x is 2 2p
3 and when k is 0, x is p

3
. Thus the solution set is

$2 5p
6 , 2 2p

3 , p

6
, p

3
%. b

Functions of the Form f(x) 5 a sin x 1 b cos x

Equations of the form a sin x 1 b cos x 5 c for given number a, b, and c, occur
frequently. Before discussing some of the common techniques for solution, we want
to get a feeling for the graph of the funcion f ~x! 5 a sin x 1 b cos x. We begin by
looking at some examples.

cEXAMPLE 5 f(x) 5 a sin x 1 b cos x Graph the functions on the same
screen, and describe some common features for all four graphs.

(a) f1~x! 5 2sin x 1 2 cos x (b) f2~x! 5 sin x 2 cos x

(c) f3~x! 5 2sin x 2 3 cos x (d) f4~x! 5 3 sin x 1 2 cos x

Strategy: The left side has
tan x as a factor. Factor, and
then use the zero-product
principle.

Strategy: First simplify the
equation. The expression
sin x cos x brings to mind
(I-12): 2 sin x cos x 5
sin 2x.

FIGURE 26

sin 2x 5
Ï3

2



x

y

(a) y = – sin x + 2 cos x
(b) y = sin x – cos x
(c) y = – sin x – 3 cos x
(d) y = 3 sin x + 2 cos x

x

y

a

b

P(a, b)

a

a2 + b2

cos = a

a2 + b2
a

sin = b

a2 + b2
a
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Solution
The graphs are shown in Figure 27. All of the graphs look like sine curves (what we
called “sinusoidal” in Section 5.4), in that they could belong to the family of sine
curves. They all appear as if each could be obtained by shifting and/or dilating the
graph of y 5 sin x. The graphs have different dilation factors and cross the axes at
different points, but they all have the same basic shape. b

To see that any function of the form

f ~x! 5 a sin x 1 b cos x (1)

is in fact obtainable as a basic transformation of the sine function, we begin with
a point and angle associated with the function. The point associated with the
function in Equation (1) is the point P~a, b!, and the associated angle is the angle
a (or any of the coterminal angles) containing P~a, b! on its terminal side. See
Figure 28. From the diagram in Figure 28 we note that

cos a 5
a

Ïa2 1 b 2
, sin a 5

b

Ïa2 1 b 2
. (2)

Having identified the point P and angle a associated with f , we take the equation
for f and multiply and divide by (or factor out) the distance from P to the origin,
Ïa2 1 b 2. Then rewrite the equation for f as

f ~x! 5 Ïa2 1 b 2 Fsin x
a

Ïa2 1 b 2
1 cos x

b

Ïa2 1 b 2
G by (2)

5 Ïa2 1 b 2 @sin x cos a 1 cos x sin a#

5 Ïa2 1 b 2 sin~x 1 a!. by (I-6)

This last equation shows that any function of the form f ~x! 5 a sin x 1
b cos x can also be written in the form f ~x! 5 Ïa2 1 b 2 sin~x 1 a!, whose graph
is a transformation of the graph of y 5 sin x, a horizontal shift (by a) and a dilation
~by Ïa2 1 b 2!. The whole process can be codified as an algorithm.

Algorithm for graphing f (x) 5 a sin x 1 b cos x
Given f ~x! 5 a sin x 1 b cos x, where not both of a, b are zero.

1. Draw the associated point P~a, b! on the terminal side of the associated

angle a, with cos a 5
a

Ïa2 1 b 2
, sin a 5

b

Ïa2 1 b 2
.

2. Multiply and divide by Ïa2 1 b 2.
3. The equation for f has the form

f ~x! 5 Ïa2 1 b 2 sin~x 1 a!. (3)

cEXAMPLE 6 f ~x! 5 a sin x 1 b cos x Identify the associated point and
angle for the function and write its equation in the form of Equation (3).

(a) f1~x! 5 2sin x 1 2 cos x
(b) f2~x! 5 sin x 2 cos x
(c) f3~x! 5 2sin x 2 3 cos x

FIGURE 27

FIGURE 28
Point and angle associated

with the function
f ~x! 5 a sin x 1 b cos x

5 Ïa2 1 b 2 sin~x 1 a!.

Strategy: Each is a function
from Example 5, with graph
in Figure 27. For each one
follow the steps of the
algorithm.



x

y
P(– 1, 2)

2

– 1

5
1 = Cos – 1a –1

5
< 2.03

(a)

x

y

(b) f1(x) = – sin x + 2 cos x =  5 sin (x + 2.03)

5

2.03

x

y

P2(1, – 1)

P3(– 1, – 3)

2a

3a

(a)

2

10

x

y

2

10

(b)

y = f2(x)

y = f3(x)
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Solution

(a) The point associated with the equation f1~x! 5 2sin x 1 2 cos x is P1~21, 2!
in Figure 29a. From the diagram, the associated angle is a1 5 Cos21 ~2 1

Ï5
! <

2.03. Multiplying and dividing by Ï5, we have

f1~x! 5 Ï5 Ssin xS21

Ï5
D 1 cos xS 2

Ï5
DD 5 Ï5 ~sin x cos a1 1 cos x sin a1!

5 Ï5 sin~x 1 a1! < Ï5 sin~x 1 2.03!.

In Figure 29b we show the graph of f1, identifying the horizontal shift and
dilation of y 5 sin x.

(b) and (c) The functions are as follows.

f2~x! 5 sin x 2 cos x: associated point P2~1, 21! and angle

a2 5 2
p

4
< 20.785, and Ïa2 1 b 2 5 Ï2.

f3~x! 5 2sin x 2 3 cos x: associated point P3~21, 23! and angle

a3 5 p 1 Sin21S 1

Ï10
D < 3.46, and Ïa2 1 b 2 5 Ï10.

See Figure 30a. For f2 we multiply and divide by Ï2 and for f3 by Ï10.

FIGURE 29

FIGURE 30

f2~x! 5 sin x 2 cos x 5 Ï2 sinSx 2
p

4D
f3~x! 5 2sin x 2 3 cos x 5 Ï10 sin~x 1 3.46!
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In the form of Equation (3) we have

f2~x! 5 Ï2 sinSx 2
p

4D and

f3~x! 5 Ï10 sin~x 1 a3! < Ï10 sin~x 1 3.46!.

The graphs are shown in Figure 30b. b

Equations of the Form a sin x 1 b cos x 5 c

With the algorithm above, we have the tools we need for solving equations of the
form a sin x 1 b cos x 5 c. Changing the form from f ~x! 5 a sin x 1 b cos x to
f ~x! 5 Ïa2 1 b 2 sin~x 1 a! gives an equation, one we have already solved ear-
lier in this section, and it also allows us to tell whether or not we can find a
convenient exact form solution.

cEXAMPLE 7 a sin x 1 b cos x 5 c Solve the equation in exact form.

(a) sin x 1 Ï3 cos x 5 1 (b) sin x 2 Ï3 cos x 5 0

Solution

(a) With a 5 1, b 5 Ï3, the associated point and angle are shown in Figure 31.
The algorithm shows how to write f ~x! 5 sin x 1 Ï3 cos x in the form of

Equation (3), f ~x! 5 2 sinSx 1
p

3D. The given equation is equivalent to

2 sinSx 1
p

3D 5 1, or sinSx 1
p

3D 5
1
2

.

The two angles between 0 and 2p whose sine is 1
2 are p

6 and 5p
6 . Therefore x 1 p

3

must be coterminal with one of p
6 or 5p

6 .

x 1
p

3
5

p

6
1 2kp or x 1

p

3
5

5p

6
1 2kp .

x 5 2
p

6
1 2kp or x 5

p

2
1 2kp .

(b) The point associated with sin x 2 Ï3 cos x is P~1, 2Ï3! with a 5 2 p
3 as in

Figure 31. Following the steps of the algorithm, the equation is equivalent to

2 sinSx 2
p

3D 5 0, or sinSx 2
p

3D 5 0.

The graph of y 5 sin~x 2 p
3 ! is the core sine curve shifted p

3 units to the right,
as in Figure 32. The graph crosses the x-axis at x 5 p

3 6 kp , for every integer
k, which thus gives all solutions to the original equation.

Alternate Solution Equations of the form a sin x 1 b cos x 5 0 (where the right
side is zero) can be rewritten in a form that does not require the algorithm. In this
case, if sin x 2 Ï3 cos x 5 0, then sin x 5 Ï3 cos x. Dividing by cos x, we have
the simpler equation tan x 5 Ï3, which has the same solution, x 5 p

3 6 kp , for
any integer k. b

FIGURE 31

FIGURE 32
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Using Graphs to Find Roots

In general, it is not possible to find roots of a trigonometric equation in exact form,
but graphical techniques allow us to find excellent approximations.

TECHNOLOGY TIP r Graphical solutions again

To solve an equation f ~x! 5 g~x!, where f and g are functions, we can use
either of two approaches. The second is based on the fact that the equation
f ~x! 5 g~x! is equivalent to the equation f ~x! 2 g~x! 5 0.

1. Draw calculator graphs of Y1 5 f(X), Y2 5 g(X) on the same screen. The
x-coordinates of the points of intersection are the roots of the equation.
Trace and zoom as needed to get the desired degree of accuracy. If your
calculator has built-in routines to find intersections, you can get more
precision. It is usually necessary to move the cursor near to the
intersection to give the calculator a good starting point for its
approximation routine.

2. Draw a calculator graph of Y 5 f(X) 2 g(X).The x-coordinates of the x-intercept
points are the roots of the equation. Calculators with routines to find
intersections usually also have root-finding routines.

cEXAMPLE 8 Using graphs In Example 8 of Section 5.4 we saw that the
equation cos x 5 x

4 has three roots. Use graphs to find the roots to 2 decimal place
accuracy.

Solution
Graphing y 5 cos x and y 5 x

4 in the same window (as, say, a decimal window)
shows something like the curves in Figure 33. The x-coordinates of the intersec-
tions are approximately 23.60, 22.13, and 1.25. b

cEXAMPLE 9 Using graphs Find the smallest positive root and the largest
negative root of the equation (2 decimal place accuracy).

(a) 3 sin x 1 4 cos x 5 2 (b) sin~x 1 Cos21 0.6! 5 0.4

Solution

(a) Graphing y 5 3 sin x 1 4 cos x 2 2 shows something like Figure 34. The first
x-intercept point to the right of the origin (the smallest positive root) is located
at about x 5 1.80. The first root to the left is at about x 5 20.52.

(b) The graph of y 5 sin~x 1 Cos21 0.6! 2 0.4 looks very much like a dilation of
the graph of y 5 3 sin x 1 4 cos x 2 2 in part (a), and the zeros appear to be

FIGURE 33 FIGURE 34
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the same, x < 1.80, 20.52. To see if the zeros are identical, we can apply the
algorithm above to express f ~x! 5 3 sin x 1 4 cos x 2 2 in the form of
Equation (3). The associated point P~3, 4! is 5 units from the origin on the
terminal side of the angle a 5 Cos21 3

5 . Multiplying and dividing by 5 gives

f ~x! 5 3 sin x 1 4 cos x 2 2 5 5S3
5

sin x 1
4
5

cos x 2
2
5D

5 5~sin~x 1 a! 2 0.4!, where a 5 Cos21 0.6.

Thus the graph of y 5 3 sin x 1 4 cos x 2 2 is a dilation, by a factor of 5, of
the graph of y 5 sin~x 1 Cos21 0.6! 2 0.4, and both graphs have exactly the
same x-intercept points. b

cEXAMPLE 10 Volume of a cone Figure 35 shows a right triangle with
hypotenuse of 6 inches and /BAC 5 x. If the triangle is rotated about the line AC
we get a cone of radius r and height h. The volume V of the cone depends on the
size of angle x. When x is small, we get a skinny cone of small volume, and when
x is near p

2 , the cone is very flat and has little volume.

(a) Express V as a function of x and find the value of x for which V is a maximum.
What is the maximum volume?

(b) What values of x give a cone of half the maximum volume?

Solution

(a) The volume of a cone is given by V 5 1
3 pr 2h, so we need to see how r and h

depend on the angle x. In nABC, we have sin x 5 r
6 and cos x 5 h

6 , so
r 5 6 sin x, h 5 6 cos x. Substituting these values for h and r,

V 5
p

3
~6 sin x!2 ~6 cos x! 5 72p sin2 x cos x.

We want to graph Y 5 72p (SIN X)2 COS X in an appropriate window. From the nature
of the problem, x is between 0 and p

2 , so we take an x-range of @0, 1.5#.
Sampling values of the volume suggests that a y-range of @50, 100# should show
us the maximum. We get the graph in Figure 36a. Tracing to find the high
point, we find that Vmax < 87.1, where x < 0.96 radians, or just over 548.

(b) Since half of Vmax is about 43.5, we add the horizontal line y 5 43.5 to our
graph and find where the curves intersect. In Figure 36b we take a y-range of
@40, 46#. The two intersections occur where x < 0.485 or 1.369; that is, just a
little less than 288 or just over 788. b

EXERCISES 6.4

Check Your Understanding

Use graphs whenever they might be helpful.

Exercises 1–5 True or False. Give reasons.

1. The equation sin x 1 1 5 0 has two solutions in the
interval @0, 2p#.

2. The solution set for the equation tan2 x 1 1 5 0 is the
empty set.

3. The solution set for sin x cos x 5 1 is the empty set.

4. The solution set for sec2 x 2 2 5 0 is the same as that
for tan2 x 2 1 5 0.

5. The functions f ~x! 5 sin x 1 cos x and g~x! 5

3 sinSx 1
p

4D have the same zeros.

FIGURE 35

FIGURE 36
y 5 72p sin2 x cos x
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Exercises 6–10 Fill in the blank so the result will be a true
statement.

6. The graphs of y 5 2 cos x and y 5 20.5x intersect in
Quadrant(s) .

7. A number in the interval @0, p# that is in the solution set
for cos x~2 2 sin x! 5 0 is .

8. The number of points of intersection of the graphs of
f ~x! 5 2 cos x and g~x! 5 x 2 2 2x 2 3 is .

9. The smallest positive number satisfying sin x 5 cos x
is .

10. The number of zeros for f ~x! 5 Cos21 x 2 cos x
is .

Develop Mastery

Exercises 1–18 Exact Form, Restricted Domain Solve.
Give answers in exact form. Use identities as needed. The
domain is the interval @0, 2p# . Use graphs as a check.

1. 2 cos x 2 1 5 0

2. sec x 1 2 5 0

3. 2 cosSx 2
p

3D 2 1 5 0

4. 3 tan x 1 Ï3 5 0

5. tanSx 1
p

3D 2 Ï3 5 0

6. 2 sin2 x 1 sin x 5 0

7. 2 sin2 x 2 1 5 0

8. 4 cos2 x 1 4 cos x 1 1 5 0

9. 2 cos2 x 2 5 cos x 1 2 5 0

10. sin2 x 2 2 sin x 1 1 5 0

11. cos x · tan x 1 sin x 5 1

12. cosSx 1
p

2D 2 sin x 5 1

13. cos2 x 1 cos x 5 1 2 sin2 x

14. sin2 x 1 2 sin x 5 2 2 cos2 x

15. sin2 x 1 sin x 2 cos2 x 5 0

16. sin x 2 Ï3 cos x 5 0

17. sin 2x 2 cos x 5 0

18. sin 2x 1 sin x 5 0

Exercises 19–24 Exact Form, Restricted Domain
Solve the equation where the domain is the interval
@2p , p#. Give answers in exact form.

19. 2 sin x 2 Ï3 5 0

20. tanSx 2
p

6D 2 1 5 0

21. 2 cosSx 1
2p

3 D 2 1 5 0

22. cos2 x 1 2 cos x 1 1 5 0

23. Ï3 tan2 x 1 2 tan x 2 Ï3 5 0

24. sin x tan x 1 tan x 5 0

Exercises 25–30 Domain Not Restricted No domain is
specified. Find the solution set. Give answers in exact form.

25. 2 cos x 2 Ï2 5 0

26. tan2 x 2 3 5 0

27. 2 cos2 x 1 5 cos x 1 2 5 0

28. 2 cos2 x 1 cos x 5 0

29. 2 Sin21~sin x! 2 p 5 0

30. Cos21~sin x! 2 p 5 0

Exercises 31–34 Use Algorithm The domain is the
interval @0, 2p# . Solve using the algorithm given in this
section.

31. sin x 2 cos x 5 1

32. Ï3 sin x 1 cos x 5 2

33. sin x 1 Ï3 cos x 5 2

34. 2Ï2 sin x 1 Ï2 cos x 5 1

Exercises 35–38 Solve the equation in exact form where the
domain is @0, 2p#. Sum-to-product identities from Sec-
tion 6.3 may be useful.

35. sin 3x 1 sin x 5 0 36. cos 3x 2 cos x 5 0

37. sin 3x 5 sin x

38. sin 4x 2 sin 2x 5 sin x

Exercises 39–48 Decimal Approximations Use the
Technology Tip in this section to find 1 decimal place ap-
proximations for the roots of the equation. The domain is
@2p , p# .

39. cos x 5 x 2 40. sin x 5 x 2 2 1

41. e sin x 5 x 2 2 x 42. 4 cos x 1 x 5 0

43. 3 cos x 5 sin x 44. 2 Sin21~sin x! 5 2

45. 2 cos~Sin21 x! 5 1

46. 3 cos~x 2 Sin21 0.4! 5 2

47. cos x 2 2 sin x 5 0 48. cos 2x 1 2 cos x 5 0

Exercises 49–54 Decimal Approximations Find 1 deci-
mal place approximations for the roots of the equation,
where the domain is @0, p#. Use any technique you wish.

49. 3 sin x 2 2 5 0

50. sin2 x 1 2 sin x 5 3

51. sin2 x 1 2 sin x 5 2

52. tan2 0.5x 2 2 tan 0.5x 5 3

53. cot2 0.5x 2 2 cot 0.5x 5 2

54. sec2 x 1 4 sec x 5 22
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Exercises 55–58 Looking Ahead to Calculus In cal-
culus, functions f and g of these exercises are related; for
the given function f , function g is called the derivative of f.
Assume 0 , x , p . (a) Draw a graph of f; use it to find the
coordinates of the local maximum or minimum point P(1
decimal place). (b) On the same screen draw a graph of g
and find the zero, c, of g. Evaluate f (c) and let Q be the point
~c, f ~c!!. How are P and Q related?

55. f ~x! 5 e sin x g~x! 5 ~cos x!e sin x

56. f ~x! 5 1 2 x sin x g~x! 5 2sin x 2 x cos x

57. f ~x! 5 x sin x g~x! 5 sin x 1 x cos x

58. f ~x! 5 2 sin x 2 x g~x! 5 2 cos x 2 1

Exercises 59–63 Restricted Domain Solve algebraic-
ally (2 decimal places) and check graphically. Assume the
domain is @0, 2# .

59. sin px 1 cos px 5 0

60. sin px 1 cos px 5 1

61. sin 2px 2 sin px 5 0

62. cos 2px 1 cos px 5 0

63. e ln~cospx! 2 sin px 5 0

Exercises 64–67 (a) Express in the form f ~x! 5
A sin ~x 1 a!. (b) Find the largest value that f ~x! can as-
sume and (c) find all values of x in @0, 2p# that yield this
maximum value of f ~x!.

64. f ~x! 5 sin x 1 Ï3 cos x

65. f ~x! 5 sin x 2 cos x

66. f ~x! 5 2 sin x 1 2 cos x

67. f ~x! 5 Ï3 sin x 2 cos x

68. Determine the smallest positive root, in exact form, of
8 sin x cos x~cos4 x 2 sin4 x! 5 Ï3.

69. Find the smallest number in the interval ~50, `! that
satisfies the equation sin x 2 1 5 0.

70. Find the smallest number in the interval @10p , 40p#
that satisfies the equation 2 cos x 1 1 5 0.

71. Find the largest number in the interval @10p , 50p# that
satisfies the equation tan x 1 1 5 0.

72. Find the largest number in the interval ~2`, 240! that
satisfies the equation 3 sin x 2 1 5 0.

Exercises 73–76 Let S denote the solution set, where D is
the domain. Find (a) the smallest integer that is greater than
all of the numbers in S, and (b) the largest integer that is less
than all of the numbers in S.

73. 2 sin x 2 1 5 0; D 5 @0, 2p#

74. sin 2x 2 1 5 0; D 5 @22p , 2p#

75. sin2 x 5 1 2 cos2 x; D 5 @2p , 4p#

76. sin x 5 2 sinSx
2DcosSx

2D; D 5 @2p , 2p#

77. Solve the problem in Example 10 if _ AB _ 5 9.

78. Solve the problem in Example 10 if triangle ABC is
rotated about BC to get a cone.

79. A one-quart milk carton has a square bottom and top
measuring 2.75 by 2.75 inches. The carton is 7.5 inches
tall. Suppose the carton is half full of milk. When it sits
upright on a table, the top surface of the milk is a
square. However, when the carton is tipped along one of
its bottom edges so that the bottom of the carton makes
an angle u with the table, the surface becomes a rectan-
gle (see the diagram). Assume that if the carton is
tipped far enough for the milk to reach the top, the milk
will spill out.

(a) Find an equation that gives the area A of the rectan-
gle as a function of u and that is valid up to the time
the milk spills.

(b) What is the domain of the function?
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6.5 W A V E S A N D G E N E R A L I Z E D S I N E C U R V E S

Mathematical models of biological and social phenomena have traditionally
relied on the paradigm of classical physics in the development of their
mathematical formalisms. The potency of this paradigm lies in the ability of
classical physics to relate cause and effect . . . through a sequence of formal
implications and thereby to make predictions.

B. J. West

The sine curve is the prototype of the sinusoidal (wave-like) function. A sine graph
is what we think of as an ideal wave, oscillating and repeating. Wave motion is
literally all around us, all the time.

We drop a pebble into a still pond and observe the wave traveling outward in
concentric circles; a cross-section would resemble a sine curve. Sound is carried to
our ears by pressure waves in the atmosphere; some kind of vibrator sets the air in
motion, initiating the sound waves whose variations are received by the elaborate
sensing mechanisms of our ears. Electromagnetic radiation is propagated as waves,
from alternating current to radio and television signals, through microwaves in our
kitchens, through the visible light spectrum on to x-rays and atomic radiation.

We distinguish varieties of wave motion by two features, their frequency and
wavelength, both of which measure the same kind of behavior (called the period)
of sinusoidal functions. Count the number of pulses hitting your eardrum or enter-
ing your retina in a second and you get the frequency, in units of cycles per second,
now called hertz (Hz). The speed of your computer may be given in megahertz.
Measure the distance between successive wave crests and you have the wavelength.
For example red light has a different wavelength than blue or green light. Wave
motion can also vary in amplitude, which is a measure of the intensity that has
nothing to do with the frequency or wave-length. A tone of a given frequency can
be loud (greater amplitude) or soft (smaller amplitude), or we see a given color as
bright or dim.

The generalized sine curve, y 5 A sin~Bx 1 C!, gives us tools to model all
these phenomena, and many more of the things going on in the physical world. The
numbers A, B, C are called parameters and are related to the amplitude, frequency,
and wavelength of the sine curve. Our goal in this section is to understand the
generalized sine curve and the role of each of these parameters in graphs and some
applications. Since every cosine curve may be realized as a basic transformation of
a sine curve, we usually include both together.

Generalized sine (and cosine) curves

The graph of any function that be written in either of the forms

f ~x! 5 A sin~Bx 1 C! or g~x! 5 A cos~Bx 1 C!,

where A and B are nonzero, is called a generalized sine curve.
The numbers A, B, C affect the amplitude and period and are called

parameters.

Core Sine and Cosine Curves

Before continuing, we remind you how essential it is to know the graphs of y 5
sin x and y 5 cos x on the interval @0, 2p#. For convenient reference we reproduce
them here, but you want to be able to sketch them both in rough form at any time,

I think the earliest I
remember my father
telling me something
mathematical was when I
was beginning to study
Euclidean geometry at
school. At that time he also
told me about Cartesian
geometry. I must have
been 12 or 13.

Cathleen Morawetz
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at the top of a page of homework, or whenever you are working with trigonometric
functions. We call the graphs of y 5 sin x and y 5 cos x core graphs. They are
building blocks from which we can construct any generalized sine curve. The same
graphs are also called fundamental cycles of the sine and cosine curves. Any
portion of a generalized sine curve that corresponds to one of the graphs in
Figure 37 is a fundamental cycle of the curve. Once we have a fundamental cycle
for any generalized sine curve, the rest of the graph simply repeats the fundamental
cycle. The parameters A, B, C affect the size, length, and location of a fundamental
cycle.

Amplitude (Vertical Dilation, the Parameter A)

We are familiar with the fact that multiplication of a function by a nonzero constant
dilates the graph vertically. Since core sine and cosine curves oscillate between 1
and 21, multiplying by A affects the magnitude of oscillation; _ A _ measures the
distance the graph of a generalized sine curve reaches from the x-axis about which
it oscillates, and hence the maximum value of the function. We call _ A _ the
amplitude of the function. You should see for yourself, with your graphing calcula-
tor, the effect of changing A.

cEXAMPLE 1 Amplitude Sketch a graph of the function.

(a) y 5 3 sin x (b) y 5
1
2

sin x (c) y 5 22 sin x

Solution
Graphing the first two functions on the same screen with y 5 sin x, and y 5
22 sin x with y 5 sin x should yield diagrams such as in Figure 38. Observe that
the graph of y 5 22 sin x shows a reflection in the x-axis as well as a vertical
dilation by a factor of 2. b

Period (Horizontal Dilation, the Parameter B)

Multiplying the argument of a function by a nonzero constant dilates a graph
horizontally. Thus the graph of y 5 sin Bx is a horizontal dilation, stretching or
compressing the graph of y 5 sin x. Again, you should draw a number of graphs
yourself until you have a good feeling for the graph of any curve of the form y 5
sin Bx.

FIGURE 37
Core graphs for
sin x and cos x.

FIGURE 38
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cEXAMPLE 2 Horizontal dilation Sketch a graph of the function. Identify
a fundamental cycle of the graph (corresponding to the core graph in Figure 38a).

(a) y 5 sin 3x (b) y 5 sin 1
2 x (c) y 5 sin~22x!

Solution
Graphing the three functions separately gives the graphs in Figure 39.

(a) The graph oscillates three times as fast as the core sine curve, compressing
three cycles into the interval @0, 2p#. A complete fundamental cycle occurs in
the interval @0, 2p

3 # ~of length 2p
3 !.

(b) Since B~ 5
1

2
! is less than 1, the curve is stretched horizontally, so that it now

takes an interval of length 4pS5
2p

1
2
D for a fundamental cycle. A fundamental

interval is @0, 4p#.
(c) The graph of y 5 sin~22!x shows a reflection as well as a horizontal compres-

sion. We can see a fundamental cycle tipped upside down (reflected in the
x-axis) on the interval @0, p#, or we can see a fundamental cycle as shifted to
the right, on the interval @p

2 , 3p
2 #. Both are correct. Using identity (I-3), we can

write sin~22x! 5 2sin 2x, so that the graph of y 5 sin~22x! is a vertical
reflection of the graph of y 5 sin 2x. b

In the light of the discussion of Example 2c, it is convenient to assume that the
parameter B is positive because we can always apply (I-3) before graphing:

sin~2B!x 5 2sin Bx, and cos~2B!x 5 cos Bx.

Since the parameter B determines the horizontal dilation, it provides a handy
measure of the rapidity or period, of oscillation. The length of a fundamental cycle
is also the distance between successive wave crests of a sine curve, so the period is
the same as the wavelength. The frequency of a sine wave is measured in cycles (or
periods) per second and hence is also determined by the parameter B.

The period of the core graph, y 5 sin x, is the length of the fundamental cycle,
2p . A fundamental cycle of y 5 sin Bx is dilated to length of 2p

B , so the period is

FIGURE 39
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given by p 5 2p
B . If B . 1, the fundamental cycle is compressed; if 0 , B , 1,

then the fundamental cycle is stretched.

Phase Shift (Horizontal Shift, the Parameter C)

The graph of y 5 f ~x 6 c! is a horizontal shift of the graph of y 5 f ~x!. Thus
the graph of y 5 sin~x 1 1! shifts the sine curve 1 unit left; the graph of
y 5 sin~x 2 p! is a shift p units to the right, as in Figure 40. Because the sine

curve continues to oscillate in both directions, it helps to look at the shift of a
fundamental cycle of the core graph. A fundamental cycle of sin~x 1 1! occurs in
the interval @21, 2p 2 1#, while sin~x 2 p! has a fundamental cycle in @2p , p#
or in @p , 3p#. The amount of horizontal shift in a generalized sine curve is called
the phase shift.

The Graph of a Generalized Sine Curve

The parameters B and C together determine the size and location of a fundamental
cycle of the curve y 5 A sin~Bx 1 C!. As the argument of the sine (or cosine) goes
from 0 to 2p , we observe all of the critical behavior of the function. The same is
true of any generalized sine function. As the argument Bx 1 C goes from 0 to 2p ,
we generate a fundamental cycle giving all the information needed for sketching
the graph. The interval containing a fundamental cycle is called a fundamental
interval and is obtained by solving the inequalities (remember that B . 0)

0 # Bx 1 C # 2p , or 2
C
B

# x #
2p 2 C

B
.

The length of the fundamental interval is the period of the function, 2p
B . Writing the

equation for the function in the form

y 5 A sin BSx 1
C
BD,

identifies the phase shift, the horizontal shift to the point where a fundamental
cycle begins, as 2 C

B . (Sometimes people refer to the distance from the origin to the
beginning of fundamental cycle as the phase shift, in which case they would define
the phase shift as _ C _

B .)

FIGURE 40



Fundamental
cycle

Fundamental
interval, of length p =

AmplitudeA

2
B
p
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The information discussed so far is put together in the box that follows. The out-
lined procedure can be used either for sketching a graph by hand or for getting exact
information from a calculator graph.

Graph of a generalized sine curve

1. Express equation in the form y 5 A sin~Bx 1 C!, where B is positive,
using identity (I-3) if needed.

2. Find a fundamental interval (FI) by solving the inequalities

0 # Bx 1 C # 2p , so a fundamental interval is F2
C
B

,
2p 2 C

B G.

3. A fundamental cycle for the curve is obtained by drawing a core sine
curve on the fundamental interval, dilated vertically by the factor _ A _
(and reflected in the x-axis if A is negative).

4. The entire graph is a repetition of a fundamental cycle. The function has
period, amplitude, and phase shift given by:

Period (or wavelength) p 5
2p

B
Amplitude _ A _

Phase shift
C
B

.

5. Because of the shape of the core sine curve, the generalized sine curve
has a local maximum point one-quarter (and a local minimum
three-quarters) of the way across the fundamental interval if A is positive
(vice-versa if A is negative). The general form of the graph is shown in
Figure 41.

Graph of y 5 A cos(Bx 1 C). As mentioned above, since the graph of any
cosine curve is a horizontal shift of a sine curve, we include functions of the form
y 5 A cos~Bx 1 C! in the family of generalized sine curves. We get a fundamental
interval in precisely the same way and get the graph by drawing a core cosine curve
on the fundamental interval, dilating by _ A _ . The adjustments for locating local
extrema should be obvious.

FIGURE 41
Generalized sine curve, y 5 A sin~Bx 1 C!.



[– 4, 4] by [– 4.5, 4.5]
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3

a = Sin –1 0.8 , 0.9,
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y = 3 sin x + 4 cos x
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(.64, 5)
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cEXAMPLE 3 A generalized sine curve Sketch a graph of the function

f ~x! 5 4 cos~2x 2 1!.

Find the smallest positive x-coordinate for which the function has the value 4, and
identify a fundamental interval, period, and phase shift. Describe how the graph is
obtained from a core graph by basic transformations.

Solution
A calculator graph is shown in Figure 42. The amplitude is 4. Without just the right
window, tracing along a calculator graph won’t show a y-coordinate of 4, but we
know that cos u 5 1 when u 5 0. Thus f ~x! 5 4 when 2x 2 1 5 0, or x 5 .5.
Solving 0 # 2x 2 1 # 2p , we get .5 # x # p 1 .5, so the fundamental
interval is @.5, p 1 .5#. The period is 2p

2 , or p . Writing f ~x! 5 4 cos~2x 2 1! 5

4 cos 2~x 2 .5!, a fundamental cycle begins at x 5 0.5, for a phase shift of 0.5.
There are several equivalent ways to describe how the graph of f is related to

the core cosine curve. For one, the graph of y 5 cos 2x is the core graph com-
pressed horizontally so that we have a full cycle in the interval @0, p#. Multiplying
by 4 stretches the graph vertically. Then to get the graph of y 5 4 cos 2~x 2 0.5!,
shift the graph of y 5 4 cos 2x to the right 0.5 units. b

cEXAMPLE 4 Another generalized sine curve Let
f ~x! 5 3 sin x 1 4 cos x.

(a) Use the algorithm from Section 6.4 (page 353) to rewrite the equation in the
form of a generalized sine curve.

(b) Find the amplitude, period p, and a fundamental interval (FI).
(c) Find the x-coordinates of the local extrema nearest the origin.

Solution

(a) The point and angle associated with f are P~3, 4! and a 5 Sin21 .8 < 0.9273
(see Figure 43a). Multiplying and dividing by 5 gives

f ~x! 5 5S3
5

sin x 1
4
5

cos xD 5 5 sin~x 1 a!.

A graph is shown in Figure 43b.
(b) The amplitude is 5 and the period is given by p 5 2p

1 5 2p . For the FI, solve
0 # x 1 a # 2p for x, giving @2a, 2p 2 a# for the number a 5 Sin21 .8.

(c) The local maximum nearest the origin is located one-fourth of the way across
the FI, at x 5 2a 1 p

2 < 0.6435; the desired local minimum is p
2 units to the

left of the FI, at x 5 2a 2 p
2 < 22.4981. See graph. b

Simple Harmonic Motion

An important class of physical phenomena is characterized by oscillatory behavior.
Among such phenomena are all kinds of spring and wave motion—sound waves
and electromagnetic waves (from light waves through radio waves, infrared, to
X-rays). This oscillatory behavior is called simple harmonic motion and is mod-
eled by generalized sine functions.

FIGURE 42
y 5 4 cos~2x 2 1!

FIGURE 43
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HISTORICAL NOTE THE ROSETTA STONE AND FOURIER SERIES

For simple harmonic motion defined by a function of the form f ~t! 5
A sin~Bt 1 C!, we say that the motion has amplitude _ A _ and frequency f (in
cycles per unit time) given by the reciprocal of the period:

f 5
1
p

5
B
2p

.

Sinusoidal Functions and Sums

The algorithm from Section 6.4 gives a procedure for rewriting a function f ~x! 5
a sin x 1 b cos x in a form we recognize as a sinusoidal curve, a generalized sine

When Napoleon led a military
expedition to Egypt in 1798, his
forces included the mathematican
Joseph Fourier. Napoleon’s troops
discovered a large slab of
polished stone covered with
three different kinds of
writing, including mysterious
hieroglyphics which no one in
the world knew how to read.
When Fourier returned to France,
he brought a rubbing of
the writing on the Rosetta
Stone.

In Fourier’s study an 11-year-old boy
became intrigued by the strange pictures on the
stone. Young Champollion vowed that he would
someday read the ancient Egyptian writing. His
fascination led him to become an Egyptologist at
the University of Grenoble by age 17. He
achieved a translation of the whole hieroglyphic
panel in 1822. Fourier was thus indirectly
responsible for unlocking the mysteries of
Egyptian hieroglyphics.

Fourier is much more directly responsible for
the use of trigonometric series to understand and
unravel virtually all wave forms. In one of the
most imaginative and profoundly important
applications of trigonometric identities, Fourier

showed how to represent a great
variety of functions as sums of
sines and cosines. Fourier’s
remarkable theorem says that,
assuming an infinite number of
terms, any kind of wave function
can be written as a sum of sine and
cosine waves.

The unique musical signatures
of a violin or a tenor saxophon
are no more than complex
combinations of sound waves.
Fourier analysis can break up any
such wave form into a sine-cosine

instruments such as the Moog synthesizer depend
on Fourier analysis to combine wave forms to
duplicate particular musical sounds or create new
combinations and sounds never heard before.
With increasing sophistication and computer help,
synthesizers can combine thousands of tiny pieces
of sine waves as brushstrokes to paint almost any
sound picture. Similarly, Fourier analysis makes it
possible to take discrete optical or radio signals
(which are also wave forms) and filter out
atmospheric interference or reconstruct coherent
images from data of telescopes located thousands
of miles apart—all because of trigonometric
identities.

Robert Moog (background)
applied Fourier analysis to

develop the Moog synthesizer,
forerunner of today’s

synthesizers.

combination in essentially one way. Electronic



x

y

g(x) = sin (6x – 1) + 3 cos (4x + 1)

?p
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function. What happens if we add two sinusoidal curves? Do we always get a
sinusoidal curve? The answer is no, as we show in the next example. Also see
Develop Mastery Exercise 53.

cEXAMPLE 5 Sum of generalized sine curves Is the function g, given by
g~x! 5 sin~6x 2 1! 1 3 cos~4x 1 1!, periodic? sinusoidal?

Solution
Both y 5 sin~6x 2 1! and y 5 3 cos~4x 1 1! are generalized sine functions, the
first having period 2p

6 , and the second with period 2p
4 . The graph in Figure 44

appears to be periodic, but it is clearly not sinusoidal because the local extrema
have different heights. To verify that g is periodic, we need to find a number p for
which g~x 1 p! 5 g~x! for all real numbers x. It looks as if the graph repeats from
one high point to another. Tracing along the curve between the indicated high
points, we find that they are about 3.16 units apart, suggesting the possibility that
the period is p . From the graph, the period clearly cannot be much less than p . We
compute g~x 1 p!.

g~x 1 p! 5 sin~6x 1 6p 2 1! 1 3 cos~4x 1 4p 1 1!

5 sin~~6x 2 1! 1 6p! 1 3 cos~~4x 1 1! 1 4p!

5 sin~6x 2 1! 1 3 cos~4x 1 1! 5 g~x!.

Therefore g~x 1 p! 5 g~x! for all real x, and g is a periodic function with
period p . b

Envelopes and Damped Oscillations

The generalized sine curve f ~x! 5 A sin~Bx 1 C! oscillates repeatedly between
the horizontal lines y 5 A and y 5 2A. The oscillatory behavior continues to be
a vital feature of more general functions of the form

F~x! 5 g~x! sin~Bx 1 C!,

where we have replaced the constant A by g~x!. F~x! now oscillates between the
curves y 5 g~x! and y 5 2g~x!, just touching y 5 g~x! when sin~Bx 1 C! 5 1,
and touching y 5 2g~x! when sin~Bx 1 C! 5 21. For convenience, we say that
F oscillates between 6g~x!, and we call the curves y 5 6g~x! envelopes for F. We
explore these ideas briefly in the next couple of examples.

cEXAMPLE 6 Envelopes Graph each function separately in the window
@24.7, 4.7# 3 @22.5, 2.5#.

(a) y 5 sin 10x (b) y 5 2 cos x sin 10x (c) y 5 62 cos x

Then (d) graph y 5 2 cos x sin 10x and y 5 62 cos x together. Describe how the
graphs in each part are related to each other, and describe what should happen if
we replace 10x by 15x. Check by graphing.

FIGURE 44



[– 4.7, 4.7] by [– 2.5, 2.5]
y = sin 10x

(a)

[– 4.7, 4.7] by [– 2.5, 2.5]
y = 2 cos x sin 10x

(b)

[– 4.7, 4.7] by [– 2.5, 2.5]
y = 2 cos x, y = – 2 cos x

(c)

[– 4.7, 4.7] by [– 2.5, 2.5]


(d)

y = 2 cos x sin 10x
y = 2 cos x, y = – 2 cos x 
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Solution
The graphs are shown in Figure 45. The graph of y 5 sin 10x oscillates fairly
rapidly between y 5 61. Multiplying by 2 cos x in part (b) gives a graph that
oscillates at the same rate, but the size of the oscillations now varies. Comparing
the graphs in (c) and (d), we can see that the curves y 5 62 cos x bound the
oscillation in (b), so that the curves y 5 62 cos x are the envelope curves for the
graph in (b).

Changing 10x to 15x should simply increase the rate of oscillation, so that the
curve y 5 2 cos x sin 15x is still enveloped by 62 cos x, but the graph oscillates
more often within each of the boundary cycles. The graph confirms our prediction
(Check!), but there are now so many oscillations that the calculator graph of
y 5 sin 15x begins to look quite ragged instead of showing the smooth sine curve
we know is there. b

The kind of behavior we observe in the graphs in Figure 45 is typical of many
of the sound and electronic wave phenomena that surround us in everyday life. A
pulsing sound or the “beats” in closely tuned instruments may indicate a rapidly
varying envelope function. Another common experience is damped oscillation,
where the envelope functions decrease, as in the following example.

FIGURE 45



[0, 6] by [– .5, .5]
y = e–.64x(4  sin 4.8x + 3  cos 4.8x)

y = –e–.64x

y = e–.64x
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cEXAMPLE 7 Damped oscillation A weight hangs from a spring and is
pulled downward from the equilibrium point and then released. The weight then
goes up and down, but the motion gradually decreases until the weight comes to
rest at equilibrium again. The function describing the distance from the rest posi-
tion for a particular example is given in a book on differential equations as

d~t! 5 e2.64tS4
9

sin 4.8t 1
1
3

cos 4.8tD.

(a) Graph Y 5 ~e2.64X!~~4y9!SIN 4.8X 1 ~1y3!COS 4.8X! and Y 5 6e2.64X in @0, 6# 3 @20.5, 0.5# and
explain why y 5 6e2.64t are not the envelope curves for the oscillation.

(b) Use the algorithm from Section 6.4 to express the function f ~t! 5
4
9 sin 4.8t 1 1

3 cos 4.8t as a generalized sine function and identify the envelope
curves for d.

Solution

(a) The graphs are shown in Figure 46, and it is clear that d~t! is not oscillating as
far as y 5 6e2.64t. If we write d~t! as

d~t! 5 e2.64t f ~t!, where f ~t! 5
4
9

sin 4.8t 1
1
3

cos 4.8t,

then the amplitude of f is not 1. To find the amplitude of f, we need to express
f as a generalized sine function.

(b) Using the algorithm of Section 6.4 with a 5 4
9 , b 5 1

3 5 3
9 , we find the associ-

ated point P~4
9 , 3

9! at a distance 5
9 from O, and the angle is given by

a 5 Tan21 3
4 < 0.6435. See Figure 47. Therefore

f ~t! 5 S4
9Dsin 4.8t 1 S1

3Dcos 4.8t 5 S5
9Dsin~4.8t 1 a!, and

d~t! 5 e2.64t f ~t! 5
5
9

e2.64t sin~4.8t 1 a!.

The envelope curves for y 5 d~t! are y 5 6 5
9 e2.64t, as may be confirmed by

graphing. (Check!) b

Calculator Limitations

The ragged-looking calculator graph of y 5 sin 15x of Example 6d points up
further limitations of technology. Calculator graphs necessarily involve sampling,
and sampling a rapidly changing function can produce misleading results. You may
have seen ads for compact disc players with a phrase such as “4 Times Oversam-
pling,” suggesting that lots of sampling is needed for satisfactory fidelity of sound
reproduction, and lots of the waves we live with have a much greater frequency
than sound waves. Actually your CD player probably samples the sound many
thousands of times a second.

To illustrate how a graph can convey incorrect information, we invite you to
experiment with the ideas of the next example. Because the behavior we want to see
is so very sensitive to window size, we give instructions in terms of the number of
pixel columns. You can tell the number of columns on your screen from your
decimal window. For example, pressing ZDECM on the TI-85 gives a window with an
x-range of @26.3, 6.3#, in which there are 126 (5 63 1 63) tenths, or 126 pixel
columns. See the inside front cover.

FIGURE 46

FIGURE 47



(a) (b)

(c) (d)

y = sin 20x y = sin 20x

y = sin 20x
y = sin 20x [0, .314] by [–1.5, 1.5]
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cEXAMPLE 8 Calculator graphs Let f ~x! 5 sin 20x, and set a y-range of
@21.5, 1.5#. Graph f on the specified x-ranges in (a), (b), and (c). Keep in mind that
each of the graphs in (a), (b), and (c) is supposed to be the graph of the same
function, y 5 sin 20x. After comparing your graphs on the three given x-ranges
(a), (b), and, (c), (d) find and use a fundamental interval for f as the x-range.
Explain why the graphs are so very different.

aCols. Calculator (a) (b) (c)

94 TI-82 615.1 614.4 67.55

Casio 7700 615.1 614.4 67.55

95 TI-81 614.6 615.3 27.6, 7.8

126 TI-85 620.2 619.4 610.1

Casio 9700 620.2 619.4 610.1

130 HP-38, 48 620.8 620 610.4

Solution
A fundamental interval is found by solving 0 # 20x # 2p , giving an FI of
@0, p

10#, or about @0, 0.314#. The graphs for each part should be similar to those
in Figure 48. (On the HP-38, the graph in part (c) will not be connected; trace.)
You may want to experiment with changing each x-range very slightly, say by one
or two tenths, in the first three parts to see the effect. The reason that the graphs
are so different is that f goes through a complete cycle in every interval of length
p
10 . It follows that in, say, an interval of length 30, there are 30

~py10! cycles, nearly 100

FIGURE 48
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cycles! Evaluating the function once for each pixel column amounts to picking
about one point per cycle and cannot possibly give a very accurate picture of the
total behavior of the function. b

EXERCISES 6.5

Check Your Understanding

Use graphs whenever they might be helpful.

Exercises 1–5 True or False. Give reasons.

1. The graph of y 5 1 1 cos px is periodic with a period
of 2.

2. Shifting the graph of y 5 4 sin x to the right p
3 units or

to the left 5p
3 units gives the same graph.

3. The graph of y 5 cos x · tan x is the same as the graph
of y 5 sin x.

4. Shifting the graph of y 5 3 cos~x 2 p
3 ! to the left p

3
units gives the same graph as y 5 3 cos x.

5. The graph of y 5 2 cos x 2 sin x is sinusoidal.

Exercises 6–10 Select from the list below all choices
whose graphs contain the cycle shown.

(a) y 5 cos x (b) y 5 sin x
(c) y 5 sin 2x (d) y 5 2sin px

(e) y 5 2 cos 2x (f) y 5 22 cosSx 2
p

4D
(g) y 5 cos Spx

2 D (h) y 5 22 cosSx 1
p

4D
(i) y 5 1 1 sin x

6. 7.

8. 9.

10.

Develop Mastery

Exercises 1–4 Determine a fundamental interval.

1. y 5 sin 3x 2. y 5 cos 4x

3. y 5 2sinSpx 1
3p

4 D 4. y 5 22 cosSpx 2
p

5D
Exercises 5–8 Simplify (a) Use an appropriate reduc-
tion formula to express the equation in simpler form, then
(b) use the simpler form to determine a FI, amplitude, and
period.

5. y 5 sinS2x 2
p

2D 6. y 5 2 cosSp

2
2 xD

7. y 5 22 cosS3p

2
1 xD 8. y 5 sinS3p

2
2 2xD

Exercises 9–12 Follow the steps outlined in the algorithm
of this section to draw a graph of a fundamental cycle. Find
the amplitude, period, and phase shift.

9. y 5 sinSpx
2 D 10. y 5 cos px

11. y 5 3 sinSp

4
2 2xD

12. y 5 Ï3 cosS3p

4
2 xD

Exercises 13–16 Amplitude, Period, Phase Shift
(a) Determine the amplitude, period and phase shift for the
graph of f. Give a verbal description of phase shift in which
you tell what graph is being shifted, by how much, and in
what direction, to get the graph of f. (b) Find another for-
mula that will give a phase shift in the opposite direction.
Draw a graph.

13. f ~x! 5 2 sin~px 2 3p!

14. f ~x! 5 23 sin~2x 2 4!
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15. f ~x! 5 3 cos~2x 1 3!

16. f ~x! 5 22 cos~px 2 4p!

Exercises 17–20 Working with Degrees Follow the in-
structions in Exercises 13–16. Use @2180, 180# 3 @25, 5#,
xSCL 5 30, ySCL 5 1; x is in degrees.

17. f ~x! 5 2 sin~3x 2 608!

18. f ~x! 5 3 cos~2x 1 308!

19. f ~x! 5 22 cos~3x 2 488!

20. f ~x! 5 22 sin~2x 2 608!

Exercises 21–24 Using the Algorithm (a) Apply the al-
gorithm to write an equivalent equation in the form, y 5
A sin~x 1 a!. (b) Use this form to sketch a graph. Check by
using the original equation to draw a calculator graph.

21. y 5 sin x 1 cos x

22. y 5 sin x 2 cos x

23. y 5 sin x 1 Ï3 cos x

24. y 5 2~Ï3 sin x 2 cos x!

Exercises 25–28 Zeros Find the smallest positive zero
and the largest negative zero of f (2 decimal places).

25. f ~x! 5 sin 2x 1 3 cos 2x

26. f ~x! 5 sin~px 2 1! 1 cos~px 1 4!

27. f ~x! 5 2 sin~px! 1 2 cos~px!

28. f ~x! 5 cos 2x 2 3 sin~2x 2 1!

Exercises 29–32 Use translations and/or reflections of
core graphs to sketch a graph of the equation.

29. y 5 1 1 2 sin 2x

30. y 5 2 2 cosSpx
2 D

31. y 5 sin px 2 2

32. y 5 3 2 cos 2x

Exercises 33–42 Using Identities Use appropriate iden-
tities to get a simpler equivalent equation, then sketch a
graph of that equation. Compare with a calculator graph of
the original equation.

33. y 5~sin x 1 cos x!2 2 1

34. y 5 Ssin
x
2

1 cos
x
2D2

35. y 5 1 1 ~sin x 1 cos x!2

36. y 5 cos2 x 2 sin2 x

37. y 5 cos2 2x 2 sin2 2x

38. y 5 4 cos2 x
2

39. y 5 cos x tan x (Hint: First check the domain.)

40. y 5 e ln sin x (Hint: Check the domain and then use an
appropriate identity from Chapter 4.)

41. y 5 e ln cos x (Hint: See Exercise 40.)

42. y 5 e ln_ sin x _ (Hint: See Exercise 40.)

Exercises 43–44 Damped Oscillations (a) Draw graphs
of the three functions on the same screen. What do you
observe about the graphs? (b) Determine the coordinates
(in exact form) of the local maximum and minimum points
for the graph of f , where 21 # x # 1. Use TRACE to support
your answers. (c) What are the coordinates of the points
where the graphs of f and g, f and h meet (21 # x # 1)?

43. f ~x! 5 22x sin~2px!, g~x! 5 22x, h~x! 5 222x

44. f ~x! 5 22x cos~2px!, g~x! 5 22x, h~x! 5 222x

Exercises 45–48 Periodic, Sinusoidal (a) Is f periodic?
If it is, give the period in exact form. (b) Draw a graph.
Does it appear that f is sinusoidal? See Example 5.

45. f ~x! 5 2 cos~3x 1 4! 2 sin~3x 2 1!

46. f ~x! 5 sin~3px! 1 cos~3px 1 2!

47. f ~x! 5 sin~3x 2 1! 2 cos~2x 1 3!

48. f ~x! 5 cos~px! 2 sin~0.5px!

Exercises 49–50 Periodic and Sinusoidal Function f is
periodic and sinusoidal. Draw a graph to support this
claim. (a) Find a formula for f of the form f ~x! 5
A sin~Bx 1 C!. (b) Determine the amplitude and period.
Describe the phase shift. See Example 4.

49. f ~x! 5 Ï3 sin x 1 cos x

50. f ~x! 5 Ï5 sin 2x 2 2 cos 2x

51. The graph of function f can be obtained by shifting the
graph of y 5 sin 2x to the left 1 unit. Give two different
formulas for f. Check graphically.

52. The graph of function f can be obtained by shifting the
graph of y 5 23 cos 2x to the right 2 units, and then
translating the resulting graph 3 units upward. Give a
formula for f. Check graphically.

53. In Exercises 45 and 46, f is periodic and sinusoidal
while in 47 and 48, f is periodic but not sinusoidal. Look
carefully at the formulas for f and guess how you can
predict when the function will be periodic and sinu-
soidal. Try a few examples of your own choice to sup-
port your guess.

54. Strange Calculator Graphs Example 8 illustrates
how the calculator graph of f ~x! 5 sin 20x varies with
the x-range. Use x-ranges listed in (a), (b), and (c) of
Example 7 for your calculator and in each case see what
the display shows as the graph of y 5 sin 20x. Do
any of these actually represent the graph you would
expect?
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The graph in (a) appears to be a sine graph but trace
and see if the length of a cycle is really p

10 (the actual
period).

55. Exercise 54 Continued
(a) For the x-range try @0, p

10# and trace to see if the
cycle has length p

10 ~<0.31416!.
(b) Try @0, 6p

10# for the x-range. Does the display show six
cycles, each of length p

10 ? Experiment with other
windows of your choice.

56. Repeat Exercise 54 for f ~x! 5 sin 10x where each num-
ber in (a), (b), and (c) of Example 8 for the x-range is
multiplied by 2. Similarly for f ~x! 5 sin 40x, divide
each number by 2.

Exercises 57–62 Graph to Formula One cycle of the
graph of a general sine or cosine function is shown
(possibly translated vertically). Determine a formula
for f. The answer is not unique. First describe your
strategy.

57.

58.

59.

60.

61.

62.
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Exercises 63–66 Harmonic Motion The function de-
scribes simple harmonic motion. Find the amplitude, pe-
riod, and frequency of the motion, and give the location
when t is zero.

63. f ~t! 5 4 sin 6pt

64. E~t! 5 3 sin 80pt

65. E~t! 5 2 cos
2pt

3
1 0.4 sin

2pt
3

66. V~t! 5 2 cos 120pt 2 3 sin 120pt

Exercises 67–70 Envelopes Function f is the product of
functions g and h, f ~x! 5 g~x! · h~x!. Use @0, 6.25# 3
@24, 4# and on the same screen draw graphs of y1 5 f ~x!,
y2 5 g~x!, y3 5 2g~x!. Does the display seem to indicate
that the graphs of y 5 6g~x! are envelope curves for the
graph of f ? For x in @0, p# , at what points does the graph of
f touch the envelope graphs? Solve algebraically and graph-
ically.

67. g~x! 5 Ïx, h~x! 5 sin 4x

68. g~x! 5 Ï2x, h~x! 5 sin 4x

69. g~x! 5 Ï2x, h~x! 5 sin~2px!

70. g~x! 5 Ï3x, h~x! 5 sin~1.5px!

71. Envelopes For f ~x! 5 sin 6x 2 sin 4x, on the same
screen draw graphs of y1 5 f ~x!, y2 5 2 sin x, y3 5
22 sin x. Use @0, 8# 3 @23, 3#. Do the graphs of y2

and y3 appear to be envelope curves for f ? Explain by
using identity (I-22) in Section 6.3.

72. Envelope Curves (a) For f ~x! 5 e20.4x~0.4 sin 6x 1
0.3 cos 6x!, on the same screen draw graphs of
y1 5 f ~x!, y2 5 e20.4x, y3 5 2e20.4x. Use @0, 6# 3
@20.8, 0.8#. See that the graphs of y2 and y3 are not

CHAPTER 6 REVIEW

Test Your Understanding

True or False. Give reasons. Use identities or draw graphs
when helpful.

1. For every real number x, 20.5 # sin x cos x # 0.5.

2. For every real number x, 22 # Ï3 sin x 1 cos x # 2.

3. For every real number x, 0 # sin2 x 1 cos 2x # 1.

4. For every real number x, 21 # cos2 2x 2 sin2 2x # 1.

5. The graph of y 5 sin2 x 1 cos2 x is a horizontal line.

6. The graph of y 5 cos x 2 2 cos2Sx
2D is a horizontal

line.

envelope curves for f. Use the algorithm in Section 6.4
to adjust the formula for f so that you do get envelope
curves. Give formulas for the envelopes. See Exam-
ple 7.

73. One of the first astronomical discoveries for measuring
distances to other galaxies was a class of stars whose
brightness varies regularly. The intensity (brightness)
of these Cepheid variables varies according to a func-
tion of the form

I~t! 5 A 1 B sin
2pt
C

,

where t is in days, A is the average intensity (magni-
tude), and the intensity varies by as much as 6B (mag-
nitudes) every C days.
(a) If the average intensity of a particular Cepheid star

is 4.0 and the star becomes as much as 10 percent
brighter every 10.8 days, write an equation for its
intensity as a function of time.

(b) What is the intensity when t 5 0? When t 5 4
days?

Exercises 74–76 Your Choice Give a formula for a
function f whose graph is sinusoidal and that satisfies the
specified conditions. Answer is not unique.

74. The local extrema points are on the x axis and on the
line y 5 2.

75. The smallest positive zero of f is p
4 and the largest nega-

tive zero is 2 p
4 .

76. The points ~0, 2! and ~p
2 , 2! are local maximum points.

7. The graphs of y 5 1 2 2 sin2Sx
2D and y 5 cos x are

identical.

8. The graphs of y 5 cos 2x 1 sin2 x and y 5 cos2 x are
identical.

9. The graphs of y 5 Ï1 2 sin2 x and y 5 cos x are
identical.

10. The graphs of y 5 cos x tan x and y 5 sin x are identi-
cal.

11. If p # x #
3p

2
, then cos

x
2

5 2Î1 2 cos x
2

.
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12. If
p

2
# x # p , then cos

x
2

5 2Î1 2 cos x
2

.

13. For every x in the interval F2
p

2
, 0G, cos

x
2

5

2
Ï1 1 cos x

2
.

14. The graphs of y 5 sec x sin 2x and y 5 2 sin x are
identical.

15. The range of the function f ~x! 5 sin x 1 cos x is the
interval @21, 1#.

16. The range of f ~x! 5 Ï3 sin x 1 cos x is the interval
@22, 2#.

17. The range of f ~x! 5 Ïsin2 x 1 cos2 x consists of a sin-
gle number.

18. There is no number x for which sin x cos x equals 1.

19. A solution to the equation sin 2x 2 1 5 0 is
p

2
.

20. A solution to the equation cos 2x 1 1 5 0 is
p

2
.

21. The equation 1 1 sin2 x 5 0 has no solution.

22. The equation Ï1 2 sin2 x 5 cos x is satisfied by every
real number x.

23. The function f ~x! 5 4 sin~px 1 3! is periodic with pe-
riod 2.

24. The function f ~x! 5 22 cos~4x 1 p! is periodic
with period p .

25. The graphs of y 5 22 cosSx 1
p

2D and y 5 2 sin x are

identical.

26. The amplitude of the graph of f ~x! 5 23 sin 2x is 23.

27. Every point of the form S~2k 1 1!p

2
, 0D, where k is any

integer, is an x-intercept point for the graph of y 5
sin 2x.

28. The graphs of y 5 sin 2x and y 5 2sin 2x have identi-
cal x-intercept points.

29. The graphs of y 5 cos px and y 5 23 cos px have
identical x-intercept points.

30. Every x-intercept for the graph of y 5 sin x is also an
x-intercept for the graph of y 5 sin 2x.

31. Every x-intercept point for the graph of y 5 sin 2x is
also an x-intercept point for the graph of y 5 sin x.

32. The graph of y 5 2 1 cos x has no x-intercept points.

33. The graphs of y 5 e ln sin x and y 5 sin x are identical.

34. The graph of y 5 e ln sin x has no x-intercept points.

35. For every x, 5 sin~x 2 Sin21 0.8! 5 3 sin x 1 4 cos x.

36. For every x, 5 cos~x 2 Sin21 0.6! 5 4 cos x 2 3 sin x.

Exercises 37–45 Fill in the blank so that the resulting
statement is true.

37. For every x, log(sin2 x 1 cos2 x) 5 .

38. sinSp 2 Sin21 3
5D 5 .

39. cosSp

2
2 Sin21 4

5D 5 .

40. tan(p 2 Tan21~21!) 5 .

41. The domain of f ~x! 5 cos(p 1 Sin21 x) is .

42. The range of f ~x! 5 sinSp

2
1 Sin21 xD is .

43. The graphs of y 5 4 cos x and y 5 0.4x 2 1 intersect
at points in Quadrant(s) .

44. The number of zeros in the interval @2p , p# for
f ~x! 5 sin x 1 2 cos 2x is .

45. The smallest prime number that is greater than the
smallest positive zero of f ~x! 5 sin~0.4x! 1 cos~0.4x!
is .

Review for Mastery

Exercises 1–12 Prove Identity Prove that the equation
is an identity.

1. sin x cot x 5 cos x

2. secSp

2
2 xD tan x 5 sec x

3. sec x sin 2x 5 2 sin x

4. 2 csc2 x cos2Sx
2D 5

1
1 2 cos x

5. tanSx 1
p

4D 5
cos x 1 sin x
cos x 2 sin x

6. ~sin x 1 cos x!2 5 1 1 sin 2x

7. sin x tan
x
2

5 1 2 cos x

8. 4 sin2 x
2

cos2 x
2

5 sin2 x

9. 2 sinSx 2
p

6D 5 Ï3 sin x 2 cos x

10. Ï1 2 sin2 x 5 _ cos x _

11. cos 2x tan 2x 5 2 sin x cos x

12. tan
x
2

1 cot x 5 csc x
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Exercises 13–18 Is It An identity? Determine whether
or not the equation is an identity. Give a counterexample or
a proof.

13. Ïsec2 x 2 tan2 x 5 1 14. Ï1 1 tan2 x 5 sec x

15. cos 2x 1 cos x 5 cos 3x

16. cos4 x 2 sin4 x 5 cos 2x

17. 13 sinSx 1 Sin21 5
13D 5 12 sin x 1 5 cos x

18. sin~Sin21 x 1 Cos21x! 5 1

Exercises 19–22 Find a simpler formula for function f.

19. f ~x! 5 sin~2x!tan x 1 sec x

20. f ~x! 5 csc x tan x

21. f ~x! 5 ~sin x 1 cos x!2 2 sin 2x

22. f ~x! 5 cot x sec x cosSx 2
p

2D
Exercises 23–30 Exact Form Evaluate in exact form,
where angles a, b, and g satisfy the conditions:

sin a 5 4
5 and p

2 , a , 3p
2

tan b 5 2 5
12 and 2p , b , 0

cos g 5 3
5 and 0 , g , p

2

23. tan a 24. sin 2a

25. sinSb

2D 26. sin~a 2 b!

27. cos2Sa

2D 2 sin2Sa

2D
28. tanSg

2D
29. tanSg 1

p

4D
30. sin2 a 1 cos2 b

Exercises 31–38 Restricted Domain Solve, assuming
the domain is the interval @0, 2p#. Give answers in exact
form. Use graphs as a check.

31. 2 sin2 x 2 1 5 0

32. Ï3 sin x 1 cos x 5 0

33. 2 sin2 x 2 sin x 2 1 5 0

34. sin x cos x 1 cos2 x 5 0

35. sin x 2 cos x 5 Ï2

36. Ï3 sin x 1 cos x 5 2

37. 4 cos2 x 2 3 5 0

38. 2 cos2 x 2 7 cos x 2 4 5 0

Exercises 39–44 Restricted Domain Solve, assuming
the domain is the interval @2p , p#. Give answers rounded
off to two decimal places.

39. 2 cos x 1 sin x 5 0 40. 4 sin x cos x 5 cos x

41. 2 sin2 x 5 2 sin x 1 3 42. sin2 x 5 2 sin x 1 1

43. cos2 x 5 3 cos x 2 2

44. cos2~px! 5 2 cos~px! 2 1

Exercises 45–50 Solution Set Find the solution set (ex-
act form). Draw graphs to support your answer.

45. Ï1 2 cos2 x 5 sin x

46. sin2 x 1 cos2 x 5 x 2 2 2x 2 3

47. Ï1 2 sin2 x 5 cos x

48. ln~sec x! 1 ln~cos x! 5 0

49. ln~tan x! 1 ln~cos x! 5 ln~sin x!

50. sin x 5 Î1 2 cos 2x
2

Exercises 51–56 Amplitude, Period, Phase Shift With-
out using a calculator, draw a graph of f. Give the ampli-
tude and period. Describe the phase shift telling what graph
is being shifted, by how much and in what direction.

51. f ~x! 5 2 sinSx 2
p

4D 52. f ~x! 5 22 sin px

53. f ~x! 5 Ï2~sin x 2 cos x!

54. f ~x! 5 Ï3 sin x 1 cos x

55. f ~x! 5 22 cosS2x 1
p

3D
56. f ~x! 5 3 cosSpx 1

p

2D
Exercises 57–59 Translating Graphs Describe how
you would translate the graph of g to get the graph of f.

57. g~x! 5 cos x, f ~x! 5 cos~x 2 Sin21 0.5!

58. g~x! 5 sin x, f ~x! 5 sin~x 1 Cos21 0.5!

59. g~x! 5 tan x, f ~x! 5 tan~x 2 Tan21 1!

60. Determine the domain and range of f ~x! 5 x 1 Sin21 x

61. Find the smallest positive zero (2 decimal places) of
f ~x! 5 sin x 1 3 cos x.

62. Find the largest negative zero (2 decimal places) of
f ~x! 5 2 sin x 1 cos x.

Exercises 63–66 Periodic, Sinusoidal (a) Is the graph
of f periodic? If it is, give the period. (b) Is f sinusoidal?
Give reasons.

63. f ~x! 5 cos~px 2 1! 2 2 sin~px 1 4!

64. f ~x! 5 sin px 1 2 cos px
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65. f ~x! 5 sin~2x 1 3! 2 cos 4x

66. f ~x! 5 cos 2x 1 sin 3x

Exercises 67–70 Decimal Approximations Find ap-
proximations (2 decimal places) for the roots of the equa-
tion, where 2p # x # p .

67. cos x 5 x 2 2 2

68. 2 sin x 1 3 cos x 5 1

69. 2 sin x 2 3 cos 3x 5 4

70. 5~sin x 1 cos x! 5 1

71. Find the maximum value (2 decimal places) of
f ~x! 5 2 cos x 1 3 cos~0.5 Cos21 x!

72. Find the minimum value (2 decimal places) of
f ~x! 5 2 sin x 2 cos x.

Exercises 73–74 Angle of Intersection (a) Find the an-
gle (to the nearest degree) between the lines y 5 f ~x! and
y 5 g~x!. (b) Draw the graphs of f and g on the same screen
using a decimal window to see if they appear to support the
answer in part (a). Give the point of intersection of the two
lines.

73. f ~x! 5 0.4 x 1 1, g~x! 5 21.2x 2 7

74. f ~x! 5 23x 1 1, g~x! 5 20.5x 2 1.5

75. Is f ~x! 5 p 2 Cos21 x an increasing function? If it is,
then find a formula for the inverse function f 21, and
state the domain and range of f 21.

76. For f ~x! 5 2 sin 2x 2 3 cos 2x, find A, B, and C such
that f ~x! 5 A sin~Bx 2 C!.

77. Express f ~x! 5 sin x 1 cos x in the form f ~x! 5
A sin~Bx 1 C!.

78. (a) Prove that f ~x! 5 sin~2 Sin21 x 1 Cos21 x! is an
even function. (Hint: Use the fact that y 5 Sin21 x
is an odd function and the identity
Cos21~2x! 5 p 2 Cos21 x.)

(b) sin~2 Sin21 x 1 Cos21 x! 5 Ï1 2 x 2 is an iden-
tity. Solve in exact form

sin~2 Sin21 x 1 Cos21 x! 5 0.2.

Use graphs to support your answer.
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IN CHAPTER 5 WE INTRODUCED trigonometric functions defined either on the set of
real numbers or on measures of angles (in radians or degrees). In this chapter we
apply what we have studied to specific types of problems. Many of these applica-
tions involve trigonometric functions of angles measured in degrees.

The first three sections of this chapter focus on solving triangles, using trigono-
metric functions to relate parts of triangles, which allows us to find distances and
angles that may not be directly measurable. These techniques illustrate some
traditional applications of trigonometry such as surveying and navigation, but
similar techniques are needed for all kinds of problem solving in engineering and
physics, as well as throughout mathematics.

Section 7.1 focuses on right triangles. In Sections 7.2 and 7.3 we study more
general techniques for dealing with more kinds of triangles. In Section 7.4 we use
trigonometric functions to represent complex numbers, which supports work in
many areas of physics and electrical engineering. Properties of trigonometric func-
tions provide additional insight into complex roots of polynomial equations. Sec-
tion 7.5 contains a brief introduction to vectors.

7.1 S O L V I N G R I G H T T R I A N G L E S

I invented a set of right triangle problems. But instead of giving the lengths of
two of the sides to find the third, I gave the difference of the two sides. A
typical example was: There’s a flagpole and there’s a rope that comes down
from the top. When you hold the rope straight down, it’s 3 feet longer than
the pole, and when you pull the rope out tight, it’s 5 feet from the base of
the pole. How high is the pole?

Richard P. Feynman

In Sections 5.2 and 5.3 we defined trigonometric functions for angles of any size,
as long as the angles were in standard position relative to some system of rectangu-
lar coordinates. We also defined trigonometric functions for acute angles in a right

APPLICATIONS OF
TRIGONOMETRIC
FUNCTIONS

7.1 Solving Right Triangles

7.2 Law of Sines

7.3 Law of Cosines

7.4 Trigonometry and Complex
Numbers

7.5 Vectors

379



b

a
c

b
A C

B

a g

b

A C

B

a

c = hyp
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triangle, and at the end of Section 5.3 we related the various definitions to each
other. Applications that use right triangle relations to find unknown distances or
angles usually are not set in any particular coordinate system, so in this section we
concentrate on right triangle definitions.

Throughout this chapter we will follow a consistent method for labeling any
triangle. We will frequently use A, B, and C to label vertices, with the opposite sides
labeled with the corresponding lower-case letters, a, b, and c. We will occasionally
use a vertex label for an angle, but more often we will use Greek letters a, b, and
g, as in Figure 1. When we have a right triangle, we will normally locate the right
angle at C, making the hypotenuse c, legs a and b, and the acute angles a and b.
We refer to a, b, a, b, and c, as parts of the triangle ABC.

For convenient reference, we repeat the right triangle definitions of trigonomet-
ric functions from Section 5.2. See Figure 2.

Definition: trigonometric functions of an acute angle

Suppose a is an acute angle of a right triangle. The trigonometric functions
of a are defined by

sin a 5
opp a

hyp
cos a 5

adj a

hyp
tan a 5

opp a

adj a

csc a 5
hyp

opp a
sec a 5

hyp
adj a

cot a 5
adj a

opp a

In a similar manner, the trigonometric functions for the angle b are:My trigonometry
teacher . . . taught me

sin b 5
opp b

hyp
cos b 5

adj b

hyp
tan b 5

opp b

adj b
.about adjacent over

hypotenuse (all new) and
“solving” triangles by Solving Right Triangles
logarithms (a crashing
bore). He also taught me Given information about some of the angles or sides of a right triangle, trigonomet-
about identities (capital ric functions can be used to determine the other sides and angles. The process of
fun).

using given data to solve for unknown parts is called solving the triangle. InPaul Halmos
virtually all instances, we look for trigonometric functions that relate known parts
of the triangle to the parts we want to find, giving equations that can be solved for
the desired quantities. A number of examples illustrate this point.

cEXAMPLE 1 Given: hypotenuse and an angle A right triangle has a
hypotenuse of 4.3 meters and an acute angle of 328. Find the other acute angle and
the lengths of the legs.

Solution
Start with a diagram like Figure 3 with c as 4.3 and a as 328. The sum of the acute
angles in a right triangle is 908, so b 5 908 2 a 5 908 2 328 5 588. To find a
and b, use trigonometric ratios that relate these sides to known parts:

sin a 5
opp a

hyp
5

a
c

and cos a 5
adj a

hyp
5

b
c

.

Solve the first equation for a and the second for b:

a 5 c sin a 5 4.3 sin 328 and b 5 c cos a 5 4.3 cos 328.

With your calculator in degree mode, obtain decimal approximations for a and b
as a < 2.278652836, b < 3.646606814. b

FIGURE 1

FIGURE 2

FIGURE 3
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Measurements and Accuracy. Recording the lengths of the sides to ten
significant digits in Exercise 1 requires some explanation. In Example 1, we
recorded the full calculator displays as approximations of the lengths of sides a and
b. What does this imply? If the given values of a 5 328 and c 5 4.3 come from
measurements, as is often the case in applications, then we can only assume that
c was measured to the nearest tenth of a meter (to within 10 centimeters). Rounding
off the decimal display for a to, say 2.27865, would imply knowing the length of
side a to a fraction of a millimeter, an assumption that is surely unjustified.

In most of the work in this chapter we assume that given values represent
measurements, (and hence approximations, unless the text specifically indicates
otherwise). As a general rule, we cannot justify any more accuracy for calculated
values than for the initial data. We use the following rule of thumb as a guideline.

Significant digits guideline

In applied problems that involve measured numbers we are not justified in
recording final computed results with any more significant digits than the
least precise number given.

Working with triangles often involves both linear and angular measurements.
We use the following guidelines for linear–angular measurements:

Length Accuracy of Angle Accuracy of

2 significant digits nearest 18

3 significant digits nearest 109 or 0.18

4 significant digits nearest 19 or 0.018

5 significant digits nearest 100 or 0.0018

For the problems considered in this chapter, these guidelines should be ade-
quate, and answers should be rounded off to be consistent with the accuracy of the
given data. Notation will reflect this convention. When applying these guidelines,
we use 5 instead of < and write, for instance, x 5 2.54 cm rather than the more
precise x < 2.54 cm.

cEXAMPLE 2 Given: hypotenuse and a leg In a right triangle a 5Strategy: Express each of
the desired quantities in 23.4 cm and c 5 42.3 cm. Find b, a, b, and the area of the triangle.
terms of the given a and c,

Solutionusing the right triangle
definitions of trigonometic First draw a diagram to show the given information (see Figure 4). The
functions. The area of a Pythagorean theorem gives
right triangle equals 1

2 ab.
b 5 Ïc 2 2 a2 5 Ï~42.3!2 2 ~23.4!2 5 35.2

Thus b 5 35.2 cm. Trigonometric relations that involve the given parts a and c are

sin a 5
opp a

hyp
5

a
c

and cos b 5
adj b

hyp
5

a
c

. Therefore,

a 5 Sin21Sa
cD 5 Sin21S23.4

42.3D 5 33.68

b 5 Cos21Sa
cD 5 Cos21S23.4

42.3D 5 56.48.
FIGURE 4



a a

c

a = 458

P = 100

458

yA B D

C

a = 31.48

b = 42.58

1570

h
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Hence a is 33.68 and b is 56.48. To find the area K of the triangle, use the formula
from geometry. The area is half the base times the height. For the example triangle,
K 5 ab

2 5 ~23.4!~35.2!
2 < 411.84. Rounding off to three significant digits, the area is

412 cm2. b

cEXAMPLE 3 Dimensions of a park In planning a park, a region of lawn
is desired in the shape of a 458–458 right triangle with a perimeter of 100 yards.
How long should the sides of the triangle be?

Solution
Draw a 458–458 right triangle and label the sides, as in Figure 5, with the two legs
equal. For the perimeter P, P 5 a 1 a 1 c 5 100. Apply the Pythagorean theo-
rem to get c 5 Ï2 a. Therefore, the equation for the perimeter becomes
a 1 a 1 Ï2a 5 100, or ~2 1 Ï2!a 5 100. Hence,

a 5
100

~2 1 Ï2!
< 29.3 and c 5 Ï2a < 41.4

The results are rounded off to three significant digits, assuming that all three
digits of the given 100-yard perimeter are significant. Thus, the two equal sides
should each be 29.3 yards. b

For a more general situation, given the perimeter and angle a, we may use
sin a 5 a

c and tan a 5 a
b to express b and c in terms of a and a:

b 5
a

tan a
and c 5

a
sin a

.

Substituting into the equation for the perimeter,

P 5 a 1
a

tan a
1

a
sin a

5 aS1 1
1

tan a
1

1
sin a

D.

This equation may be readily solved for a in terms of the given quantities P and a.

cEXAMPLE 4 Height of a mountain To find the height of a mountaintop,
a surveyor locates two accessible points A and B, as shown in Figure 6, and obtains
these measurements:

_AB _ 5 1570 feet, a 5 31.48, b 5 42.58.

Find the height h of the mountain.
Strategy: The diagram con-

Solutiontains two right triangles,
Let _CD _ 5 h and _BD _ 5 y. From right triangle ACD, tan a 5 h

1570 1 y , orACD and BCD. Use both tri-
angles to get equations that

h 5 1570 tan a 1 y tan a. (1)involve y and h, then elimi-
nate y and solve the result-

From the right triangle BCD, tan b 5 h
y , or y 5 h

tan b . Substitute into Equation ~1!ing equation for h. Do all of
to getthe algebra first and then use

your calculator for the final
evaluation. Round off to h 5 1570 tan a 1 h

tan a

tan b
.

three significant digits.

FIGURE 5

FIGURE 6
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Now solve for h.

h 2 h
tan a

tan b
5 1570 tan a

hStan b 2 tan a

tan b
D 5 1570 tan a

h 5
1570 tan a · tan b

tan b 2 tan a
5

1570 · tan 31.48 · tan 42.58

tan 42.58 2 tan 31.48
< 2870.4399

Rounding off to three significant digits, h is 2870 feet. b

It is a good (and efficient) practice to first perform all the necessary algebra,
as in Example 4, before doing any calculations. Finding a final formula for h before
any evaluation avoids the need to record and use intermediate answers, a practice
that often leads to accumulated rounding error.

cEXAMPLE 5 Triangle in a circle Triangle ABC is inscribed in a circle of
diameter 7.20 cm, as shown in Figure 7, where AB is a diameter, O is the center
of the circle, and a 5 28.08. Find the length of (a) chord BC and (b) circular arc
BCC.

Strategy: (a) Since AB is a Solution
diameter, nACB is a right

(a) Use the important fact from geometry that any angle inscribed in a half-circletriangle. Solve for BC.
(one that subtends half of the circumference) is a right angle. Since AB is a(b) For arc length, s 5 ru,

so we need the central angle diameter, then /ACB is a right angle, so ABC is a right triangle. Then,
u (in radians). Use isosceles
nAOC to relate u to a.

sin a 5
_BC _

_AB _
so _BC _ 5 _AB _ sin aRound off to three

significant digits.
Therefore, _BC _ 5 7.2 sin 28.08 < 3.3802 < 3.38.

(b) Let s denote the length of arc BCC. From Section 5.1, s 5 ru, where u is
measured in radians. First, determine u using another important fact from
geometry, that the measure of any angle inscribed in a circle (such as a) is half
the measure of the central angle that subtends the same arc (in this case, u).
This gives u 5 2a 5 56.08. Hence for arc length s,

s 5 ru 5 3.6S56 ·
p

180D < 3.5186.

Rounding off to three significant digits, the length of the chord is 3.38 centime-
ters and the length of the circular arc is 3.52 centimeters. b

cEXAMPLE 6 How much volume is left? A conical tank is shaped so that
it holds two spheres, one of radius 4 and the other of radius 2, so that they are
tangent to the sides of the tank and to each other. A cross-section is shown in the
diagram on page 384.

Strategy: (a) Use similar
(a) Find the dimensions, r and h, of the tank.right triangles to solve for x,

r, and h. (b) The volume re- (b) How much will the tank hold when the two spheres are in place?
maining equals the volume

Solutionof the tank less the volume
of the two spheres.

(a) As indicated in the diagram in Figure 8 the height is given by h 5 12 1 x,
where x is the distance from the bottom of the smaller sphere to the tip of the

FIGURE 7
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cone. In the diagram there are three similar triangles all sharing the acute angle
u, nCTF, nCSE, and nCDB. In the first two, we have

sin u 5
2

x 1 2
5

4
x 1 8

,

from which we can solve for x, x 5 4. Replacing x by 4, in nCTF the hy-
potenuse is 6, so the hypotenuse is three times as long as the short leg.

Since all three triangles are similar, the hypotenuse of nCDB must equal
3r, and h 5 12 1 x 5 16. The sides of nCDB thus have lengths 16, r, and 3r.
By the Pythagorean theorem.

162 1 r 2 5 ~3r!2,

8r 2 5 256 or r 5 4Ï2.

The dimensions of the conical tank are given by r 5 4Ï2 and h 5 16.
(b) Follow the strategy. If V1 is the volume of the tank, then

V1 5
1
3

p r 2 h 5
1
3

512p .

From the formula for the volume of the sphere, the spheres take up a total
volume of

4
3

p~4!3 1
4
3

p~2!3.

FIGURE 8
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Hence the volume remaining in the tank when the spheres are in place is
given by

V 5
1
3

512p 2
1
3

256p 2
1
3

32p 5
224

3
p . b

EXERCISES 7.1

Check Your Understanding

In the following exercises, assume the standard notation for
the sides and angles of a right triangle, where g 5 908.

Exercises 1–5 True or False. Give reasons.

1. There is no right triangle in which one of the angles is
1008.

2. There is a right triangle with sides a 5 2, b 5 3, and
c 5 4.

3. There is exactly one right triangle with angles a 5 328
and b 5 588.

4. In a right triangle, if c 5 6 and b 5 328, then the area
is 9 sin 648.

5. If in a right triangle the length of each leg (a and b) is
doubled, then the area of the resulting triangle is also
doubled.

Exercises 6–10. Fill in the blank so that the resulting
statement is true. For Exercises 6–7, in a right triangle a
and a are given.

6. A formula for c is c 5 .

7. A formula for the perimeter P is P 5 .

For Exercises 8–10, in a right triangle, a 5 8 and c 5 16.

8. Side b 5 .

9. Angle a 5 .

10. Angle b 5 .

Develop Mastery

Use the guidelines stated in this section for rounding off
results. In each case before performing computations with
your calculator, first write a formula for the desired quantity
in terms of the given data. Label angles and sides of a right
triangle following the convention used in this section.

Exercises 1–10 Solving Right Triangles Two parts of a
right triangle are given. Find the remaining angles or sides.

1. a 5 3.7, a 5 368 2. b 5 7.3, b 5 428

3. b 5 35, a 5 278 4. a 5 56, b 5 488

5. c 5 23.7, b 5 658209 6. c 5 4.36, a 5 538409

7. a 5 73, b 5 56 8. a 5 0.725, b 5 0.386

9. a 5 21.4, c 5 36.8 10. a 5 1648, c 5 2143

Exercises 11–16 Area Information about a right trian-
gle is given. Find its area.

11. a 5 348, b 5 0.48 12. b 5 638, a 5 1.4

13. c 5 1.56, a 5 52.48 14. c 5 0.843, b 5 57.38

15. c 5 2.53, a 5 1.36 16. c 5 7.52, b 5 3.84

17. A line passes through the two points (2, 6) and (4, 10).
Find the acute angle (to the nearest degree) that it
makes with the x-axis.

18. A line passes through the points ~21, 2! and (5, 8).
Find the acute angle that it makes with the y-axis.

19. Find the perimeter of the right triangle with a 5 1.6
and a 5 478.

20. Find the perimeter of the right triangle with c 5 4.73
and b 5 38.58.

21. One angle is 638159 in a right triangle with perimeter
43.71 cm. Find the lengths of the two legs.

22. An angle is 26.38 in a right triangle with perimeter
7.45 cm. Find the lengths of the two legs and the hy-
potenuse.

23. One leg is 3.20 cm in a right triangle with area 5.68 cm2.
Find the length of the other leg and the angle opposite
the given leg.

24. If the hypotenuse of a right triangle is c and its area
is K,

(a) show that K 5 S1
2D c 2 sin a cos a, where one

angle is a.
(b) Use identity (I–12) in Section 6.2 to show that

K 5 ~1
4
! c 2 sin 2a.

(c) For K 5 25 cm2 and c 5 12 cm, find angle a
and the lengths of the two legs.

25. A rope has one end tied to the top of a flagpole. When
it hangs straight down it is 2 feet longer than the pole.
When the rope is pulled tight with the lower end on the
ground, it reaches 8 feet from the base of the pole. How
high is the flagpole? (See the epigraph at the beginning
of this section.)
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Exercises 26–29 Use the diagram where triangle ABC is
inscribed in a circle with center O and radius 4.6. AB is a
diameter and b 5 268.

26. Find angle u and the lengths of chord AC and arc AC
C

.

27. Find the area of triangle ABC.

28. Find the area of (a) triangle AOC, (b) the circular sector
with central angle u, and (c) the shaded segment of the
circle.

29. Find the area of (a) triangle BOC, and (b) the circular
sector with arc BCC.

30. Find the area of an equilateral triangle with a side of
length 16 cm.

31. The equal sides of an isosceles triangle are 16.0 cm long
and the included angle is 58.08. Find the perimeter and
area of the triangle.

32. The equal sides of an isosceles triangle are 3.48 cm and
the equal angles are 52.68. Find the perimeter and the
area of the triangle.

33. A regular polygon (one with n equal sides) is inscribed
in a circle of radius 24 cm. Find the area of the region
inside the polygon if (a) n 5 3 (an equilateral triangle),
(b) n 5 4 (a square), (c) n 5 6 (a hexagon), (d) n 5 12
(a dodecagon).

Exercises 34–35 Height of a Flagpole Find the height
of the flagpole shown in the diagram.

34.

35.

36. Height of Mountain
(a) Find the height h of the mountain peak shown in the

diagram in terms of a, b and d.
(b) A surveyor finds that a 5 438, b 5 328, and

d 5 750 ft. What is the height of the peak?

37. Half-Angle Formula Prove identity (I–17) (Sec-
tion 6.3) for acute angles using the diagram. The hypot-
enuse of triangle ABC is 1 and side AC is extended 1 unit
to D, so _AD _ 5 1.

(a) Show that u 5
a

2
.

(b) Show that tan
a

2
5

sin a

1 1 cos a
,

38. Inaccessible Distance A civil engineer wishes to
determine the distance across a marshy area between
points A and C. An accessible point B is located and
_AB _ , _BC _ , and angle u are measured. (See the
diagram.) _AB _ 5 143 feet, _BC _ 5 125 feet, u 5
132.48. Find _AC _ .
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39. Volume of a Cone A sector with a central angle of
60.08 is cut from a circular piece of tin with a radius of
25.0 cm. The edges of the remaining piece are joined
together to form a cone. Find the volume of the cone.
(See the inside cover for a formula for the volume of a
cone.)

40. In the diagram ABand CD are perpendicular diameters
of a circle with center at O, point E is on AB, and
/ECO 5 308. Find the ratio of _EO _ to _AE _ .

41. Given the circle with equation x 2 1 y 2 2 4y 5 0 and
point P~5, 2!, draw a diagram to show the circle and the
two lines from P that are tangent to the circle. If the
points of tangency are A and B, find the angle between
the tangent lines, /APB.

42. Line L is tangent to circle x 2 1 y 2 2 10y 5 0 at point
P~3, 1!. Find the acute angle that L makes with the
x-axis. (Hint: Draw a diagram.)

43. In the diagram _AD _ 5 _DB _ 5 2, and /BDC 5 308.
(a) Show that _CD _ 5 Ï3 and that

_AB _ 5 2Ï2 1 Ï3.
(b) Show that /BAD 5 158.
(c) Find sin 158 and cos 158 in exact form. Check

your results by calculator.

44. A helicopter H and two ships (A and B) are in the same
vertical plane, as shown in the diagram. The pilot finds
that the angles of depression of A and B are 428 and 218,
respectively. If the altitude h of the helicopter is 3200
feet, find the distance between the two ships.

45. Distance to Horizon A lighthouse is located on the
shore of the Atlantic Ocean. The top of the lighthouse
(point A in the diagram) is at an elevation of h feet
above sea level and a ship S is sailing from Europe
toward the lighthouse. Express the distance d 5 _AD _
(in miles) at which the ship can first see the light from
A(along the tangent line AD) as a function of h. In the
diagram E is the center of the earth, and R is the radius
of the earth (53960 miles). Since h is small compared
to R, show that a good approximation of d is 1.22Ïh
miles. See Develop Mastery Exercise 43, Section 1.1.

46. The Nauset Light on Cape Cod rises to 114 feet above
the shore of the Atlantic Ocean. How far out will a ship
be able to see its beacon? Use Exercise 45.

47. Size of the Moon To determine the radius of the
moon, a person on the earth at point P measures the
angle u subtended by the moon to be 0.5138. The dis-
tance d from the earth to the moon (_PM _ in the dia-
gram) is about 239,000 miles. Find the radius r of the

moon. SHint: Show that r 5
d sin~uy2!

1 2 sin~uy2!
.D

48. How Far to the Moon? Neil Armstrong and Edwin
Aldrin made the first landing on the moon on July 20,
1969. Suppose that these men on the surface of the
moon at point M measured the angle u intercepted by
the earth to be /QMT 5 1.8688. (See the diagram,
where C is the center of the earth and the radius R of the
earth is known to be 3963 miles.) Find the distance d
from the moon to earth’s surface; that is, find _MP _ .
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49. In the diagram of the cross-section for Example 6, find
the area of the region that is inside nABC and outside
both circles.

50. Solve the problem in Example 6 if the radii of the
spheres are 3 and 2.

51. Two circles of diameter 2 are tangent to each other and
to the inside of a circle of radius 2, and a smaller circle
is tangent to all three others as shown. What is the
radius of the small circle?

52. The 20 sides of an equilateral triangle DEF form the
diameters of three semicircles. Find the area of the
region common to all three semicircles. Give the answer
in exact form. (Hint: Find the area of nABC and the
area of the segment between the arc ACC and the chord
AC.)

53. An equilateral triangle is inscribed in a square having
sides of length 8.0, as in the diagram. Find the length c
of the sides of the triangle. Give answer in exact form.
(Hint: First find x.)

54. In the diagram for Exercise 53, suppose nAEF is
isosceles with _AE _ 5 _AF _ and _EF _ 5 4.0. Find the
length of the equal sides.

55. An equilateral triangle ABC is placed inside a square
ABDE with sides of length s. (See the diagram.) The
diagonal AD of the square intersects BC at point M.
Find the area of nABM as a function of s.

Exercises 56–57 In right triangle ABC, suppose the hy-
potenuse c ~5_AB _ ! and the altitude h, from C to AB, are
known. Draw a diagram.

56. Strategy
(a) Give a verbal description of a strategy you would

use to determine the product a · b. (Hint: Consider
area.)

(b) After you know a · b, describe a strategy to find the
sum a 1 b. (Hint: Consider ~a 1 b!2.)

57. Explore
(a) For a given value of c, what values can be assigned

to h? For instance if c 5 12, can h be 4?, 6?
10? . . . .

(b) For given values of c and h, is it possible to deter-
mine unique values of a and b?
(Hint: Consider nABC as being inscribed in a circle
with AB as a diameter. From geometry, what do
you know about the angle at C?)
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7.2 L A W O F S I N E S

Since that summer . . . when I . . . tasted the fruits of discovery, I have not
wanted to do anything except mathematics or, more accurately, mathematics
and its applications . . . I had been stricken by an acute attack of a disease
which at irregular intervals afflicts all mathematicians and, for that matter, all
scientists: I became obsessed by a problem.

Mark Kac

In Section 7.1 we studied techniques for solving right triangles. However, one
frequently encounters triangles in which none of the angles is 908. Such triangles
are usually referred to as oblique triangles. Many problems that involve oblique
triangles can be solved by using right triangles as the preceding section showed.
However, we can derive formulas that provide more efficient methods for solving
oblique triangles. For instance, in Example 4 of Section 7.1, we saw how we could
determine the height of a mountaintop where we used right triangles but required
elaborate algebraic manipulations. After introducing the Law of Sines in this
section, we show a simpler solution. See Example 2.

We continue to work with the parts of a triangle, the three angles and the three
sides. We use the convention for labeling parts of a triangle introduced in Sec-
tion 7.1, as shown in Figure 9, where a is opposite angle a, b is opposite b, and c
is opposite g.

Solving Triangles

Our primary interest in this section and in the following one, is to develop tech-
niques for solving oblique triangles. As before, to solve a triangle means that we are
given sufficient information about its angles and sides to specify a triangle and weJust because my determine the remaining angles and sides.

mathematics has its origin One might first ask what information is sufficient to determine a triangle? In
in a real problem doesn’t

general, we need to know three of the six parts, but this does not mean any threemake it less interesting to
parts. For instance, knowing the three angles does not describe a specific triangle,me—just the other way

around. I find it makes the since many triangles have the same three angles. However, three sides uniquely
puzzle I am working on all determine a triangle, and we shall see how to proceed to find the three angles. Of
the more exciting. course, this assumes that the given numbers a, b, and c are such that the sum of theGeorge Dantzig

two smaller sides is greater than the other side. For instance, sides a 5 2, b 5 3,
and c 5 6 would not form a triangle.

We can classify problems of solving triangles into the following four cases
based on the given parts.

Case 1 One side and two angles (SAA or ASA)
Case 2 Two sides and the angle opposite one of them (SSA)
Case 3 Two sides and the included angle (SAS)
Case 4 Three sides (SSS)

In this section we develop the Law of Sines and see how it can be used to solve
Case 1 triangles. Then we use right triangle trigonometry to solve Case 2 triangles.
In the next section we will deal with Cases 3 and 4 when we introduce the Law of
Cosines.

FIGURE 9



A

b a

D B

C

a

h

b

AD B

C

a

h

b

180º – aa

pg390 [V] G2 5-36058 / HCG / Cannon & Elich cr 12-1-95 MP2

390 Chapter 7 Applications of Trigonometric Functions

Law of Sines and Its Application

Here we derive formulas that relate the angles and sides of a triangle. In triangle
ABC we draw a perpendicular (altitude CD) from vertex C to side AB as shown in
Figure 10. Let h 5 _CD _ . From the two right triangles ADC and BDC, we get:

sin a 5
h
b

and sin b 5
h
a

, so

h 5 b sin a and h 5 a sin b

Since b sin a and a sin b are both equal to h, we get a sin b 5 b sin a. Dividing
both sides by sin a sin b gives

a
sin a

5
b

sin b
.

In a similar manner,

a
sin a

5
c

sin g
and

b
sin b

5
c

sin g
.

The three equations derived here make up the Law of Sines, which can be written
in compact form.

Law of sines

Suppose a, b, and g are the three angles of a triangle, and a, b, and c are
the sides opposite those angles, respectively. Then we have

a
sin a

5
b

sin b
5

c
sin g

The triangle in Figure 11 is such that the altitude from vertex C is inside the
triangle. If the altitude CD falls outside triangle ABC, as shown in Figure 11, then
the derivation of

a
sin a

5
b

sin b

follows from the reduction formula sin(1808 2 a) 5 sin a.
The Law of Sines can be used to solve triangles where the given parts include

two angles and a side, or two sides and an angle opposite one of them (Cases 1 and
2). However, the Law of Sines cannot handle problems of the types in Cases 3 and
4. To see this, let us draw circles around the given parts in the Law of Sines equa-
tions. For Case 3, suppose, a, b, and g are given (two sides and the included angle).

ja

sin a
5

jb

sin b
5

c
sin jg

.

Now we have three equations, but it is clear that each equation involves two
unknown parts.

In a similar manner, for Case 4, where we are given the three sides, we have

ja

sin a
5

jb

sin b
5

jc

sin g
.

FIGURE 10

FIGURE 11
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HISTORICAL NOTE SNELL’S LAW AND FIBER OPTICS

Each of the three equations has two unknown parts.
The following examples illustrate techniques for solving triangles where the

given parts are described by SAA and SSA (Cases 1 and 2)

cEXAMPLE 1 Two angles and a side Suppose a 5 438, b 5 728, and
a 5 5.4. Find g, b, and c.

Solution
First, it is always helpful to draw a diagram of the triangle, and label the given data
as shown in Figure 12. Angle g can be determined by using a 1 b 1 g 5 1808.

g 5 1808 2 ~a 1 b! 5 1808 2 ~438 1 728! 5 658

To find b, use
b

sin b
5

a
sin a

, or b 5
a sin b

sin a
. Similarly, c 5

a sin g

sin a
.

b 5
5.4 sin 728

sin 438
and c 5

5.4 sin 658

sin 438

Evaluate and round off to two significant digits to get 7.5 for b and 7.2 for c. b

One exciting area of trigonometric
applications links modern
technology with experimental
observations made more than three
hundred years ago.

The speed of light in a vacuum
(186,000 miles per second) is one
of the important fundamental
physical constants, but light slows
down when passing through a
material such as water or glass. In
consequence, a light ray is bent, or refracted,
when it passes from one medium to another, say
from water to air. A person standing in water
appears to have shortened legs, and a fish in water
is not located where our eyes see it.

The amount of bending is related to the
speed of light in each medium. The relationship
discovered by the Dutch mathematician
Willebrord Snellius (or Snell) about 1624, may
be expressed as

sin u1

v1

5
sin u2

v2

,

where the angles are shown in the
figure and v1 and v2 are the
velocities of light in the two
materials (air and water in the
figure).

When a light ray strikes a surface
at a very small angle, the ratio of
sines in Snell’s law implies that the
ray will be completely reflected
back into the same medium. This
phenomenon, total internal

reflection, is the basis for the new technology of
fiber optics. Light entering one end of a tiny glass
fiber is transmitted faithfully to the other end even
though the fiber may be bent into curious shapes.

Narrow, flexible “light pipes” allow physicians
to examine the interior of a patient’s stomach or
intestine, or even a beating heart. Knee surgery
can now be done with less trauma for the patient
by the use of fiber optics in the arthroscope. High
fidelity sound can even be transmitted for long
distances through optical channels.

FIGURE 12
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cEXAMPLE 2 Height of a mountain In Figure 13 h represents the height
of a mountaintop. A surveyor finds the measurements

u 5 42.58, b 5 31.48, c 5 _AB _ 5 648 ft.

Find h. (See Example 4 of Section 7.1 for a different solution to a similar problem.)

Solution
Follow the strategy.

a 5 1808 2 u 5 1808 2 42.58 5 137.58

g 5 1808 2 ~a 1 b! 5 1808 2 168.98 5 11.18

From the Law of Sines, a 5
c sin a

sin g
. Therefore, from right triangle ADC,

h 5 a sin b 5 Sc sin a

sin g
Dsin b 5

c sin a sin b

sin g

h 5
648 sin 137.58 sin 31.48

sin 11.18
5 1184.74

To three significant digits, h is 1180 feet. b

Observe that we did not compute the value of a before calculating h. As noted
in Example 4 of Section 7.1, obtaining a complete expression for h before doing
any calculations is more efficient and accurate than recording and using any
intermediate computations.

cEXAMPLE 3 Area of a triangle Find the area of the triangle for which
a 5 608, g 5 488, and c 5 25 cm.

Solution
Follow the strategy. Figure 14 shows an altitude from vertex A to side BC. The
formula for the area of a triangle is

Area 5 S1
2D · ~base! · ~height!.

Therefore, Area 5 1
2 ah, where a is the base. First, find a and h.

b 5 1808 2 ~608 1 488! 5 728.

Using the Law of Sines to find a and right triangle ADB to find h,

a 5
c sin a

sin g
5

25 sin 608

sin 488
and h 5 c sin b 5 25 sin 728.

Finally,

Area 5
1
2

ah 5
1
2 F25 sin 608

sin 488
G~25 sin 728! < 346.3.

To be consistent with the given data, round off to two significant digits, and record
the area as 350 cm2. b

Strategy: First find the an-
gles of nABC and then use
the Law of Sines to solve for
a, which is the hypotenuse
of right nADC. Use right-
triangle relations to get h.

Strategy: The area equals
half of the base times the
height, where the height is
the length of the altitude to
any side chosen as base.
Draw a diagram with the
given parts and altitude h.
Express the remaining parts
of the triangle and h in
terms of the given data using
the Law of Sines and a right
triangle.

FIGURE 13

FIGURE 14
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Ambiguous Case (SSA)

Two sides and a nonincluded angle may determine one, two, or no triangles. It is
the possibility of two different triangles sharing the same sides and angle that has
given this case (Case 2, SSA) the name ambiguous case. Figure 15 illustrates
several possibilities for a given set of information, say a, b, and a. It is clear that
a given set, SSA does not always determine a unique triangle. The figure shows how
some people find it helpful to visualize a given side AC (length b) making an angle
a with the horizontal (opposite C), and then “hinging” the other side, CB (length
a) at C and letting it “swing,” to see if it can reach the horizontal. By comparing
CB with the altitude h~ 5 b sin a!, we can see the different possibilities.

To get an algebraic characterization of the possibilities pictured in Figure 15,
we look more carefully at the situation in Figure 15c. In Figure 16 we show the two
possibilities separately, where nABC and nAB1 C both have sides of lengths a and
b and angle a, and where in both diagrams the right triangle ACD is the same. If
_ CD _ 5 h and _ AD _ 5 m, then sin a 5 hyb, and cos a 5 myb, so that we have

h 5 b sin a and m 5 b cos a.

Similarly nBCD and nB1 CD are congruent, so if we let n 5 _ BD _ 5 _B1 D _ ,
then by the Pythagorean theorem,

n 5 Ïa2 2 h 2 5 Ïa2 2 ~b sin a!2

5 Ïa2 2 b 2 sin2 a.

In nBCD, we have c 5 m 1 n 5 b cos a 1 Ïa2 2 b 2 sin2 a;
in nB1 CD, we have c 5 m 2 n 5 b cos a 2 Ïa2 2 b 2 sin2 a.

These formulas summarize the ambiguous case and give us all the information
needed to determine the number of solutions (if any) for any given a, b, a.

Either geometrically or algebraically, it is the comparison of a with b sin a that
determines the nature of the solutions.

FIGURE 15

FIGURE 16
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Summary of the ambiguous case (SSA)

If a, b, and a are given, then

c 5 b cos a 6 Ïa2 2 b 2 sin2 a (1)

(i) If a2 2 b 2 sin2 a , 0, then there is no solution (“too short”)
(Fig. 15b).

(ii) If a2 2 b 2 sin2 a 5 0, then there is one solution (a right triangle)
(Fig. 15a).

(iii) If a2 2 b 2 sin2 a . 0, then there are either

two solutions if b cos a 2 Ïa2 2 b 2 sin2 a . 0, (Fig. 15c) or
one solution (Fig. 15d, e) if not.

Suggestion: In solving problems for the SSA case, rather than memorizing the
formula in Equation (1), it is wise to begin with a figure (as we recommend
whenever possible anyway) and use right triangle trigonometry. Such an approach
is easy to remember and provides greater understanding. In many instances, it is
easier to use the Law of Sines for the SSA case, as illustrated in the next two
examples.

cEXAMPLE 4 SSA using law of sines Suppose a 5 75, b 5 63, and
a 5 548. Find b, g, and c.

Solution
First draw a diagram that shows the given data; try drawing angle a first (see
Figure 17). From the diagram it is clear that we have the situation in Figure 15d,
where a . b, so there is just one solution. Using the Law of Sines we may find
angle b as follows.

sin b

b
5

sin a

a

sin b 5
b sin a

a
5

63 sin 548

75
< 0.67957

b 5 Sin21~0.67957! < 42.88.

Again, we recorded the number 0.67957 for purposes of illustration. When it
appears in the calculator display, evaluate Sin21 to get b directly.

Now find angle g.

g 5 1808 2 ~548 1 42.88! 5 83.28

Use the Law of Sines again to find c:

c 5
a sin g

sin a
5

75 sin 83.28

sin 548
< 92.05.

As a final step, round off answers to be consistent with the accuracy of the
given data: b is 438, g is 838, and c is 92. b

cEXAMPLE 5 SSA: two solutions? Suppose b 5 34, c 5 53, and b 5
328. Find g, a, and a.

Strategy: Draw a diagram.
Solve for sin b by the
Law of Sines and use
Sin21 to find b and then
g 5 1808 2 a 2 b.
Remember that there are
two angles between 08 and
1808 having the same sine. If
only one b fits the diagram,
we have a unique solution; if
there are two, we have two
solutions.

FIGURE 17

FIGURE 18
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3 3 + 55 < 12.6
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Solution
First, draw a diagram to show a triangle with the given parts (see Figure 18). To
find g, apply the Law of Sines:

sin g 5
c sin b

b
5

53 sin 328

34
< 0.82605.

Hence, g < Sin21 0.82605 < 55.78. For g 5 55.78 and b 5 328, a 5 1808 2
~b 1 g! 5 92.38.

To find side a, again apply the Law of Sines:

a 5
c sin a

sin g
5

53 sin 92.38

sin 55.78
< 64.1.

Round off the results to the accuracy of the given data,

g 5 568 a 5 928 a 5 64.

This gives us one solution, but from the diagram in Figure 18 we should be
able to see another possible solution. The altitude from A has length c sin 328, <
28, so we do indeed have two solutions. From Equation (1),

a 5 c cos b 6 Ïb 2 2 c 2 sin2 b < 64.109, 25.784.

We had already found a 5 64; for the second solution, a1 5 26. From the diagram
in Figure 19, nAC1C is isosceles, so g1 5 1808 2 g < 124.38 and a1 5 1808 2
~b 1 g1! < 23.78. Rounding off, the second solution is given by

g1 5 1248 a1 5 248 a1 5 26. b

cEXAMPLE 6 Ambiguous case in graphical form In the SSA Case, for
fixed b and a, the length c depends on the length a, as given by Equation (1).

c 5 b cos a 6 Ïa2 2 b 2 sin2 a

Suppose b 5 6 and a 5 308.

(a) Express c as a function of a and draw a graph.
(b) For what values of a is there no triangle? one triangle? two triangles?
(c) Draw the triangles corresponding to a 5 4 and to a 5 8.

Solution

(a) When b 5 6 and a 5 308,

b cos a 5 6~Ï3y2! 5 3Ï3, and b 2 sin2 a 5 36~1y2!2 5 9.

Thus

c 5 3Ï3 6 Ïa2 2 9.

(b) We want to graph Y1 5 3Ï3 1Ï(X2 2 9) and Y2 5 3Ï3 2 Ï(X2 2 9) . In @0, 12# 3 @0, 15#
we get a graph like Figure 20, where we have indicated the ranges of a for
which there is no solution ~a , 3!, one solution ~a 5 3 or a $ 6!, or two
solutions (when 3 , a , 6).

(c) When a 5 4, c 5 3Ï3 6 Ï7, giving the points P and Q in Figure 20, and
when a 5 8, c 5 3Ï3 1 Ï55 < 12.6 (point R). The corresponding trian-
gles are shown in Figure 21. b

FIGURE 19

FIGURE 20

FIGURE 21
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Looking Ahead to Calculus

We have mentioned several times throughout this book that exact forms for solu-
tions of some maximum/minimum problems require calculus. Some calculus
teachers are convinced that calculus is the only way to approach such problems,
even though technology can give excellent approximations. The next example asks
for a maximum volume, and we can get a good answer from our hand-held com-
puters (graphing calculator); using calculus to solve the same problem would be
at least as difficult, and would still have to involve some of the same kinds of tech-
nology.

cEXAMPLE 7 Maximizing volume Triangle ABC in Figure 22 is revolved
about the axis BC to give a solid consisting of the union of two cones shar-
ing a common base of radius _AD _ . The volume V of the solid depends on the
angle x.

(a) Find a formula for V.
(b) For what value of x is V maximum? What is the maximum volume?

Solution

(a) Thinking of the solid of revolution as the union of two cones, each generated
by revolving a triangle, we can find the volume of each and then take their sum
for V. The cone obtained by revolving the top triangle, nABD, has radius
r 5 _AD _ and height h1 5 _ BD _ . In terms of the angle x and the hypotenuse
4, r 5 4 sin x and h1 5 4 cos x, so the volume of the top cone is given by

V1 5
1
3

pr 2h1 5
1
3

p~4 sin x!2~4 cos x! 5
64p

3
sin2 x cos x.

For the lower cone, the Pythagorean theorem for nACD gives

h2 5 Ï82 2 r 2 5 Ï82 2 ~4 sin x!2 5 4Ï4 2 sin2 x.

The volume of the lower cone is then given by

V2 5
1
3

p~4 sin x!2 ~4Ï4 2 sin2 x! 5
64p

3
sin2 x Ï4 2 sin2 x.

Putting the pieces together and simplifying, we have a formula for the
volume,

V 5 V1 1 V2 5
64p

3
sin2 x~cos x 1 Ï4 2 sin2 x!.

(b) To find the maximum volume, we go to a graph. We are interested only in
values of x less than py2, and checking a few volume values suggests a window
something like @0, 1.6# 3 @1, 130#. The graph is shown in Figure 23. The
maximum volume is about 125.7 and corresponds to an x value of about 1.3
radians, just a little less than 758. b

FIGURE 22

FIGURE 23
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EXERCISES 7.2

Check Your Understanding

Assume the labeling of the sides and angles of nABC is as
in the text.

Exercises 1–5 True or False. Give reasons.

Exercises 1–3 nABC has a 5 538, b 5 318, and b 5 12.

1. b , a and a , c.

2. a 5
12 sin 318

sin 538
3. c 5

12 sin 848

sin 318

Exercises 4–5 A triangle has a 5 4, c 5 8, and g 5 648.

4. a 5 Sin21S sin 648

2 D
5. There is exactly one triangle with the given values for a,

c, and g.

Exercises 6–10 Fill in the blank so that the resulting
statement is true.

6. Given a, b and a, a formula for c is c 5 .

7. Given a, g and a, a formula for c is c 5 .

8. Given b, g and a, a formula for c is c 5 .

For Exercises 9–10, find the indicated side in exact form.

9. If a 5 308, b 5 608 and a 5 6, then b 5 .

10. If a 5 308, b 5 458 and b 5 8, then a 5 .

Develop Mastery

Round off all calculated results to be consistent with the
accuracy of the given data. See guidelines in Section 7.1.

Exercises 1–12 Solving a Triangle Three parts of a
triangle are given. Find the remaining parts. Begin by
drawing a diagram showing a triangle with the given parts
labeled.

1. a 5 24.08, b 5 75.08, a 5 15.0

2. b 5 47.08, g 5 36.08, a 5 253

3. a 5 43.08, b 5 116.08, c 5 83.0

4. a 5 48.78, b 5 74.28, c 5 138

5. b 5 318309, g 5 568159, b 5 7.45

6. a 5 598459, b 5 838159, a 5 65.2

7. a 5 31.98, b 5 58.18, b 5 45.0

8. a 5 32.78, g 5 81.48, b 5 4.57

9. a 5 57, b 5 68, a 5 568

10. a 5 46, b 5 64, b 5 1168

11. b 5 3.4, c 5 1.7, b 5 1248

12. a 5 33.0, c 5 65.0, a 5 30.58

Exercises 13–16 Area of Triangle Find the area of the
triangle that has the given measurements.

13. a 5 43.08, b 5 72.08, a 5 24.0

14. b 5 35.08, g 5 68.08, a 5 43.0

15. a 5 31.98, b 5 58.18, c 5 53.0

16. a 5 28.0, b 5 45.0, b 5 58.18

17. Height of Clouds To measure the height of clouds, a
spotlight is aimed vertically. Two observers at points A
and B, 364 feet apart and in line with the spotlight,
measure angles a and b as shown in the diagram.

a 5 72.58 b 5 47.88

How far from the ground is the bottom of the cloud
level?

18. Width of River A surveyor who wishes to determine
the width of a river sees a tree on the opposite bank. She
selects two accessible points, A and B, as shown in the
diagram and takes the following measurements:
_AB _ 5 64 feet, a 5 358, b 5 1288. Find the width of
the river.

19. Height of Blimp In order to find the height of the
Goodyear blimp, observers at A and B, 158 yards apart,
measure the following angles: a 5 45.08 and b 5
60.08. (See the diagram.) How high is the blimp?
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20. Height of Tower A vertical tower AB is located on a
hill that is inclined at 148. (See the diagram.) From point
C, 85 feet downhill from the base A of the tower, angle
a is measured and found to be 238. What is the height of
the tower?

21. Inaccessible Distance Bridget wishes to find the dis-
tance from point A to an inaccessible point D. (See the
diagram.) Points B and C are located and the following
measurements are found: _AB _ 5 216 ft, a 5 24.58,
b 5 32.38, g 5 124.58, u 5 73.48. Determine the dis-
tance from A to D.

22. Remote Locating Two forest rangers are stationed at
points A and B located on a coordinate system with
A~17, 33! and B~82, 16!. (See the diagram.) They spot a
forest fire at point C and measure angles a 5 288, and
b 5 1128. Find the coordinates of point C.

23. Use the following information to find the lengths of
BC and CD in the following diagram: a 5 368,
_BD _ 5 6.2, _AD _ 5 4.8.

24. Diameter and Law of Sines Triangle ABC is inscribed
in a circle as shown in the diagram. Show that the
diameter d of the circle is given by the ratio in the Law
of Sines

d 5
a

sin a

(Hint: Take point D on the circle so that BD passes
through the center; BD is a diameter. Recall from ge-
ometry that angle BDC is equal to angle BAC, which is
angle a. Also triangle BCD is a right triangle.)

25. In a triangle a 5 1.24, b 5 1.86, and b 5 2a. Find
angle a in degrees rounded off to one decimal place.
(Hint: Use the Law of Sines and a double-angle iden-
tity.)

26. In nABC, c 5 1.64b and g 5 2b. Find angle b in
degrees rounded off to one decimal place.

Exercises 27–28 Solve the problem in Example 6 for the
given value of b and a.

27. b 5 8, a 5 458 28. b 5 10, a 5 608

Exercises 29–30 Solve the problem in Example 7 for the
given lengths of sides AB and AC.

29. _AB _ 5 5, _AC _ 5 8 30. _AB _ 5 6, _AC _ 5 10

31. Maximum Area
(a) Express the area K of nABC in Example 7 as a

function of x.
(b) For what value of x is K maximum? What is the

maximum area?
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32. Repeat Exercise 31 if _AB _ 5 3, _AC _ 5 5.

33. In nABC, D is the midpoint of BC, _AC _ 5 16, and the
angles are as shown in the diagram.
(a) Find the area of nABC.
(b) Find the area of nBDE.

34. In nABC, angle a is bisected by AD as shown in the
diagram, where p 5 _CD _ and q 5 _BD _ . Show that
p
q

5
_AC _

_AB _
. (Hint: Use the Law of Sines for nACD and

for nABD. Also recall a reduction formula for
sin~1808 2 f!.)
(The result of this exercise is often used in advanced
Euclidean geometry, where it is usually stated as a the-
orem: Each angle bisector of a triangle divides the op-
posite side into segments proportional in length to the
adjacent sides.)

35. Leaning Tower The Leaning Tower of Pisa measures
184.5 feet from its base to its top. When a distance of
137.5 feet is measured along the ground from its base
in the direction of its lean, the angle of elevation to the
top of the tower is found to be 56.728. At what angle
(measured from the vertical) does the tower lean?

Exercises 36–37 The given information refers to the dia-
gram. Find the length x of the segment AB.

36. a 5 458, b 5 458, u 5 608, f 5 558, and d 5 75.2.

37. a 5 308, b 5 608, u 5 708, f 5 358, and d 5 72.6.

38. How Far Is Venus? Assume that Earth ~E! and
Venus ~V! rotate about the sun ~S! in circular orbits of
radii 93 million miles and 67 million miles, respec-
tively. Assume that both orbits lie in the same plane. An
astronomer measures angle u between the lines of sight
E to S and E to V. (See the diagram.)
(a) If u is 158, how far is Venus from the Earth? There

are two possible results.
(b) What is the largest possible value of u? How many

solutions are there for this angle?

39. How Far Is Mercury? In Exercise 38 replace Venus
by the planet Mercury, whose orbital radius is 36 mil-
lion miles.

Exercises 40–41 Geological Exploration Sound and
light both travel at different rates in different materials. For
example, sound travels 355 m/sec in air and about 1465
m/sec through water. Thus a sound traveling by paths
through two different media will be detected at different
times, just as we sometimes hear distinct echoes of a single
sound. This fact is used in geological exploration. Suppose
a sound is generated by a thumper truck at point P in the
diagram, and a detector is located 1000 meters away at Q,
where there is a (relatively) homogeneous layer of sandstone
150 meters deep with another denser layer below.

40. Express the distances _AB _ ~5 _CD _ !, _PB _ , and _BC _
as functions of angle u. If the speed of sound through
the upper and lower layers is 1500 and 4200 m/sec,



b

a

h
c

C

A

D B

g a – xx

pg400 [V] G2 5-36058 / HCG / Cannon & Elich kr 11-30-95 MP1

400 Chapter 7 Applications of Trigonometric Functions

respectively, use the relation distance 5 rate 3 time to
express the time along each of the following paths in
terms of the angle u.
(i) t1 along PB, (ii) t2 along BC,
(iii) total time t3 along PBCQ.
Show that the total time can be expressed by t3 5
5

21
1

14 2 5 sin u

70 cos u
, and evaluate the total time for

u 5 158, 208, 258, and 308. For what value of u is t3 a
minimum? What is the minimum time?

41. Looking Ahead to Calculus From your data in Exer-
cise 40, estimate the angle u for which sound travels
fastest from P to Q. What is the approximate time dif-

7.3 L A W O F C O S I N E S

When people ask [what I do and what kind of mathematician I am], I always
try to answer them. I say that there are lots of problems in mathematics that
are interesting and have not been solved, and every time you solve one you
think up a new one. Mathematics . . . expands rather than contracts.

Mary Ellen Rudin

In the preceding section we observed that the Law of Sines is not suitable for
solving triangles in Cases 3 and 4, where the known information consists of two
sides and the included angle or three sides. To handle the SAS and SSS type
problems, we introduce the Law of Cosines.

Consider triangle ABC shown in Figure 24. Suppose angle g and sides a and
b are given. We wish to find side c. Draw the altitude h from vertex A and then use
the two right triangles ADC and ADB as follows. From ADC, we have

x 5 b cos g and h 5 b sin g. (1)

Applying the Pythagorean theorem to triangle ADB gives

c 2 5 h 2 1 ~a 2 x!2 5 h 2 1 a2 2 2ax 1 x 2 (2)

Now substitute the expressions for x and h from Equation ~1! into Equation ~2!,
and then use identity (I-4):

I got a lot of my c 2 5 ~b sin g!2 1 a2 2 2a~b cos g! 1 ~b cos g!2

geometric approach from
5 a2 1 b 2~sin2 g 1 cos2 g! 2 2ab cos g[my father], and

excitement about 5 a2 1 b 2 2 2ab cos g.
mathematics too.

Therefore, c 2 is given by the formulaSometimes after dinner we
would get off on some

c 2 5 a2 1 b 2 2 2ab cos g. (3)topic. [For] example, my
brother asked how you We derived the formula for c 2 in Equation ~3! using the triangle shown in
would find the area of a

Figure 24, where the altitude from vertex A is inside the triangle. If the altitude fallstriangle in terms of its
outside the triangle, we still get the same formula; see Exercise 44.sides, so we all sat down

and spent a lot of time By a process similar to that used to get Equation ~3!, we can get analogous
deriving Heron’s formula. formulas for a2 and b 2. The formulas for a2, b 2, and c 2 are referred to as the Law

William Thurston of Cosines.

FIGURE 24

ference between sound traveling the fastest path and
sound through the air from P to Q? Through the upper
layer of rock from P to Q? The answer obtained in
calculus is u 5 Sin21 ~ 5

14!. How close is your estimate?

42. Use the Law of Sines to establish the identities

a 1 b
c

5
sin A 1 sin B

sin C

a 2 b
c

5
sin A 2 sin B

sin C

43. Is the following an identity?

a
b 1 c

5
sin A

sin B 1 sin C
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Law of cosines

Suppose a, b, and g are the angles of a triangle, and a, b, and c are the sides
opposite, respectively:

a2 5 b 2 1 c 2 2 2bc cos a

b 2 5 a2 1 c 2 2 2ac cos b

c 2 5 a2 1 b 2 2 2ab cos g

The following two examples illustrate two methods for solving the same trian-
gle in which two sides and the included angle are given. Example 1 uses the Law
of Cosines exclusively, and Example 2 uses both the Law of Cosines and the Law
of Sines.

cEXAMPLE 1 Using the law of cosines Suppose b 5 84.0, c 5 65.0, and
a 5 36.48. Find a, b, and g.

Solution
First, draw a triangle to show the given data. See Figure 25. To find side a, use the
first equation in the Law of Cosines:

a 5 Ïb 2 1 c 2 2 2bc cos a 5 Ï842 1 652 2 2~84!~65! cos 36.48

a < 49.91552597.

This is the final result given by a calculator to several decimal places. Since
subsequent computations will use a, store the full decimal approximation in the
calculator. However, when rounded off to be consistent with the given data, a 5
49.9.

To find angles b and g, use the second and third equations of the Law of
Cosines:

cos b 5
a2 1 c 2 2 b 2

2ac
5

a2 1 652 2 842

2 · a · 65
5 20.052309956.

cos g 5
a2 1 b 2 2 c 2

2ab
5

a2 1 842 2 652

2 · a · 84
< 0.634710394.

The computations use the value of a stored in the calculator. Angles b and g are

b < Cos21~20.052309956! < 92.99858

g < Cos21~0.634710394! < 50.60158.

Apply the guidelines for linear-angular measurements stated in Section 7.1 and
round off to one decimal place to get 93.08 for b and 50.68 for g.

Here we recorded numbers to several decimal places only for purposes of
illustration. In practice we would not even record the values of cos b and cos g, but
when their values appear in the calculator display we would evaluate Cos21 and
merely record the final rounded-off answers.

Note that after finding b, determining g would have been easy using g 5
1808 2 ~a 1 b!. However, it is always wise to have a check on computations. Take
the results and see if the sum of the three angles is 1808.

a 1 b 1 g 5 36.48 1 93.08 1 50.68 5 1808 b

FIGURE 25
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In the next example we consider the same problem as in Example 1, but we use
the Law of Sines to determine the angles.

cEXAMPLE 2 Care must be taken when using the law of sines Suppose
b 5 84.0, c 5 65.0, and a 5 36.48. Find a, b, and g.

SolutionStrategy: For SAS, use the
Law of Cosines to find a, To find a, apply the Law of Cosines as in Example 1 (a 5 49.9 rounded off, but the
then find the remaining full decimal approximation is stored in the calculator).
angles using either the Law

To find angle b, apply the Law of Sines.of Sines or the Law of Co-
sines. Always check to see
that the angle sum is 1808. sin b 5

b sin a

a
5

84 sin 36.48

a
< 0.998630897.

This could lead to the conclusion that

b < Sin21~0.998630897! < 87.08.

We could then find g by g 5 1808 2 ~a 1 b! < 56.68.
Comparing b 5 87.08, g 5 56.68 with the results of Example 1, where b 5

93.08 and g 5 50.68, we see that there is a serious discrepancy. On closer inspec-
tion, there are two possible angles b between 08 and 1808 for which sin b 5
0.998630897. Since sin~1808 2 b! 5 sin b is an identity, the desired angle is the
supplement of that given by the inverse sine. Hence, b 5 1808 2 87.08 5 93.08,
which agrees with the value of b determined in Example 1. b

The pitfall we encountered in solving Example 2 suggests a word of caution:

WARNING: Exercise care in applying the Law of Sines to determine angles.

Look at the solutions to the same problem in Examples 1 and 2 and notice that
the Law of Cosines as in Example 1 gives only one angle b between 08 and 1808
that satisfies the equation cos b 5 20.0523, and that angle is given by the inverse
cosine function. Recall from Section 5.5 that the inverse cosine function is always
a number in the interval @0, 1808#, while the inverse sine gives values in the interval
@2908, 908#.

In conclusion we generally recommend using the Law of Cosines to solve
triangles when there is a choice. Before calculators, lengthy computations were
performed using tables of logarithms. However, logarithmic computations are not
helpful to add or subtract numbers, and for this reason people avoided using the Law
of Cosines whenever possible. Calculators eliminate the need to use logarithms for
computations; the calculator can handle all needed computations with ease.

In the next example, we illustrate the method for solving triangles in which the
three sides are given.

cEXAMPLE 3 Given three sides Suppose a 5 53, b 5 86, and c 5 62.
Find the three angles.

SolutionStrategy: For SSS, we must
We can solve each of the equations in the Law of Cosines for the cosine of the anglesolve an equation in the Law

of Cosines for the cosine of in terms of the three sides. For example,
an angle. For instance,

cos a 5
b 2 1 c 2 2 a2

2bc
5

862 1 622 2 532

2 · 86 · 62
cos g 5

a2 1 b 2 2 c 2

2ab
.
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Evaluate by calculator, and with the result in the display, evaluate Cos21 to get
a 5 388 (rounded off ).

Similarly, using the second and third equations from the Law of Cosines,
b 5 968 and g 5 468.

As a check, compute the angle sum:

a 1 b 1 g 5 388 1 968 1 468 5 1808. b

Area of a Triangular Region

In the next example we consider the problem of finding the area of a triangular
region. Following common practice, we often refer to the “area of a triangle” rather
than the more precise “area of the region enclosed by a triangle,” and we will often
use K to denote the area. The formula underlying all area questions is

Area 5
1
2

~base!~height!,

where any side can be used as the base, and the height is the length of the altitude
to the side used as the base.

In the case where we know two sides and the included angle, the area formula
has another convenient form. Given sides a and b, if the included angle g is not 908
(in which case the area is 1

2 ab), we have one of the two diagrams in Figure 26.
Whether the altitude h from A is inside or outside the triangle, the area equals 1

2 ah,
and sin g 5 h

b , so that h 5 b sin g. Substituting for h, we have

Area 5
1
2

ab sin g. (1)

In words, the area equals half the product of the adjacent sides, times the sine of
the included angle.

cEXAMPLE 4 Area of a triangle Suppose a 5 3.4 cm, b 5 2.7 cm, and
g 5 258. Find the area K of the region enclosed by nABC.

Solution
While we can apply Equation (1) without a diagram, it is always wise to draw a
picture. See Figure 27. Equation (1) clearly applies, so using the given informa-
tion, we have

K 5
1
2

ab sin g 5
1
2

~3.4!~2.7!sin 258 < 1.9398.

Rounding off to two significant digits, the area is 1.9 cm2. b

Other Kinds of Given Information

In the next example we see how we may use graphs to solve triangles. From the
equation relating the area of a triangle to a base and altitude, it might appear that
an area, a side, and the altitude to that side should allow us to solve the triangle.
There are times, however, when ambiguities arise, as Example 6, in which we
illustrate techniques for solving triangles when an altitude is part of the given
information. Example 7 illustrates a rather unusual application.

FIGURE 26
Area 5 1

2 ah 5 1
2 ab sin g

FIGURE 27
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cEXAMPLE 5 SAS and graphs In Figure 28 nABC is shown with a 5 6.5,
b 5 8.5. The included angle is x~5 g!, and the opposite side is y~5 c!.

(a) Express y as a function of x and draw a graph. Use the graph to find
(b) the value of y when x 5 728 and
(c) the value of x when y 5 12.
(d) For what value of x is the area of the triangle a maximum?

Solution

(a) From the Law of Cosines,

y 5 Ï6.52 1 8.52 2 2~6.5!~8.5!cos x 5 Ï114.5 2 110.5 cos x.

A graph, using x in degrees, is shown in Figure 29.
(b) When x 5 728, y < 8.96.
(c) When y 5 12, x < 1068.
(d) The area is given by K 5 1

2 ~6.5!~8.5! sin x 5 27.625 sin x. The maximum area
will occur when sin x 5 1, or x 5 908. The maximum area is 27.6. b

cEXAMPLE 6 Given angle, side, altitude Given b 5 24.68, b 5 15.2, and
the altitude from vertex C given by h 5 10.4. Find a, c, g.

Solution
Follow the strategy. In both diagrams in Figure 30, we can find a from right
triangle BCD:Strategy: A diagram shows

two possibilities. In each, use
right triangle BDC and find sin b 5

h
a

, a 5
h

sin b
5

10.4
sin 24.68

< 25.0.side a. Then express c in
terms of _AD _ and _DB _ . For

For the acute triangle in Figure 30a, using the full decimal value of a in theg use Law of Cosines.
calculator, c 5 _AD _ 1 _DB _ 5 Ïb 2 2 h 2 1 Ïa2 2 h 2 < 33.8. Finally, for g,

cos g 5
a2 1 b 2 2 c 2

2ab
< 20.37827, so g < 112.28.

For the obtuse triangle in Figure 30b,

c1 5 _DB _ 2 _AD _ 5 Ïa2 2 h 2 2 Ïb 2 2 h 2 < 11.6,

and the Law of Cosines for g1 gives g1 < 18.68. b

cEXAMPLE 7 A roofing application To add a room, we are going to enclose
a 12 foot by 8 foot corner porch. The roof is to match the present roof lines as
indicated in the diagram, coming to a low point at A, 8 feet above the floor. The new
roof will be the parallelogram ABCD shown. It is not a rectangle even though the
floor below is. In Figure 31b we cut off everything below A, showing only the
parallelogram with diagonals BD and AC. The corners B and D are 6 feet higher
than A, and the top corner C is 12 feet higher than A. The diagonal AC is the
hypotenuse of a vertical right triangle CAT whose bottom leg AT is itself the
hypotenuse of right triangle ART with legs of lengths 8 feet and 12 feet. Find
(a) the angles at A and B and (b) how much larger the roof area K will be
compared to the area of the porch (96 ft2).

FIGURE 28

FIGURE 29

FIGURE 30
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Solution

(a) The Pythagorean theorem gives us the sides:

a 5 _AB _ 5 _CD _ 5 Ï62 1 122 5 6Ï5,

b 5 _AD _ 5 _BC _ 5 Ï62 1 82 5 10,

and the diagonals:

c 5 _BD _ 5 _RS _ 5 Ï82 1 122 5 4Ï13,

d 5 _AC _ 5 Ï122 1 82 1 122 5 4Ï22.

Then from the Law of Cosines,

cos a 5
102 1 ~6Ï5!2 2 ~4Ï13!2

2~10!~6Ï5!
, so a < 74.48,

cos b 5
102 1 ~6Ï5!2 2 ~4Ï22!2

2~10!~6Ï5!
, so b < 105.68.

(b) The area is twice the area of nABC, or

K 5 2S1
2D~6Ï5!~10!sin b < 129 ft2.

Thus the area of the roof is more than a third larger than the area of the present
porch. b

EXERCISES 7.3

Check Your Understanding

Assume that in nABC the sides and angles are labeled as in
the text.

Exercises 1–5 True or False. Give reasons.

1. There is no triangle with b 5 12, c 5 10, and
g 5 1008. (Hint: Draw a diagram.)

2. If a 5 2, b 5 4, and c 5 4, then cos a 5 7
8 .

3. If a 5 12, b 5 35, and c 5 37, then g 5 908.

4. There is exactly one triangle ABC for which b 5 10,
a 5 308, and h 5 5, where h is the length of the alti-
tude from C.

5. If a2 1 b 2 , c 2, then g is less than 908.

Exercises 6–10 Fill in the blank so that the resulting
statement is true.

6. If a 5 2, b 5 4, and g 5 308, then c 5 .

7. If b 5 5, c 5 5, and a 5 1208, then a 5 .

8. If a 5 Ï3, c 5 Ï5, and b 5 2 Ï2, then b 5 .

FIGURE 31

9. If b 5 Ï10, a 5 2 and c 5 Ï6, then b 5 .

10. If a 5 4.35, b 5 Ï18.6, c 5 10 sin 288, then the
largest angle 5 .

Develop Mastery

Round off calculated results to be consistent with the accu-
racy of the data. See the guidelines stated in Section 7.1.
Begin your solution by drawing a diagram.

Exercises 1–14 Solving Triangles Three parts of a tri-
angle are given. Find the remaining parts.

1. a 5 35, b 5 68, g 5 488

2. b 5 28, c 5 54, a 5 758

3. a 5 80.5, c 5 53.7, b 5 115.48

4. a 5 0.43, b 5 0.55, c 5 0.68

5. a 5 53.4, b 5 42.7, c 5 68.4

6. a 5 75.4, b 5 68.5, c 5 48.2

7. b 5 7.45, c 5 6.31, a 5 53.78
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8. a 5 5.73, c 5 4.58, b 5 23.68

9. a 5 53, b 5 45, c 5 28

10. a 5 36, b 5 81, c 5 85

11. a 5 64, b 5 57, c 5 88

12. a 5 49, b 5 32, c 5 58

13. a 5 45, b 5 28, g 5 908

14. a 5 36, b 5 81, g 5 908

Exercises 15–18 Triangle Area (a) Find the altitude
from vertex A to side BC. (b) Determine the area of the
triangle.

15. a 5 7.3, b 5 6.4, g 5 438

16. a 5 3.5, c 5 5.8, b 5 748

17. a 5 5.43, c 5 7.52, b 5 112.48

18. a 5 4.58, b 5 6.37, g 5 125.48

Exercises 19–22 Altitude and Area Find (a) angle a,
(b) the altitude to side b, (c) the area of the triangle.

19. a 5 37.0, b 5 62.0, c 5 45.0

20. a 5 4.7, b 5 3.5, c 5 6.7

21. a 5 2.45, b 5 3.41, c 5 4.36

22. a 5 3.46, b 5 5.31, c 5 4.27

23. If a 5 43, b 5 65, and c 5 52, find the largest angle.

24. If a 5 7.3, b 5 6.5, and c 5 4.2, find the smallest an-
gle.

25. If a 5 7.2, b 5 3.8, and g 5 688, find the perimeter of
the triangle.

26. If b 5 7.50, c 5 6.80, and a 5 53.08, find the perime-
ter of the triangle.

Exercises 27–28 Integer Coordinates The coordinates
of the vertices of triangle ABC are given. Find (a) the
perimeter of the triangle rounded off to the nearest whole
number, (b) the largest angle rounded off to the nearest
degree.

27. A~7, 4!, B~25, 2!, C~3, 8!

28. A~25, 3!, B~2, 25!, C~3, 6!

Exercises 29–30 Coordinates, Vertices, Midpoints The
coordinates of the vertices of triangle ABC are given. Find
(a) the midpoint M of side BC, (b) angles BAM and CAM
rounded off to the nearest degree.

29. A~6, 2!, B~25, 4!, C~3, 6!

30. A~23, 4!, B~5, 26!, C~3, 8!

Exercises 31–32 Side a, angle g, and area K of a triangle
are given. Find side b. (Hint: First find a formula for the
area in terms of a, b, and g.)

31. a 5 36, g 5 458, K 5 25

32. a 5 4.3, g 5 368, K 5 3.8

Exercises 33–34 SAS and Graphs Solve the problem in
Example 5 for the given values of a and b.

33. a 5 12, b 5 15 34. a 5 6.5, b 5 9.3

Exercises 35–36 Side, Angle and Altitude Solve the
problem in Example 6 for the given values of b, b, and h.
Find only the solution for which g . 908.

35. b 5 32.88, b 5 12.5, h 5 8.35

36. b 5 438, b 5 8.0, h 5 5.6

Exercises 37–38 Two Sides and Area From the given
information determine the third side. Find only the solution
for which g . 908.

37. a 5 36.0, b 5 24.0, Area 5 216

38. a 5 30.0, b 5 20.0, Area 5 150

39. Strategy Suppose a, b, and the area K of nABC are
given. Give a verbal description of the strategy you
would use to determine c. You should first draw and
label a diagram.

40. Your Choice Using Exercise 39, state a problem of
your choice in which you give values a, b, and K. What
restrictions are necessary in choosing a value for K?
Find c for your problem.

Exercises 41–42 Using Graphs Three sides are given,
D is any point on side AB, x 5 /CDB, and y 5 _CD _ ; see
diagram. (a) Express y as a function of x. What is the
domain? (b) From the diagram, estimate the value of x that
gives a minimum value of y. What is the minimum value of
y? Draw a graph and check your guess. From the graph, find
(c) the value of y when x 5 728, (d) the values of x for
which y 5 9.5.

41. a 5 12, b 5 10, c 5 16

42. a 5 14, b 5 12, c 5 20

43. If ABC is a right triangle with g 5 908, show that the
third equation in the Law of Cosines reduces to c 2 5
a2 1 b 2, which is consistent with the Pythagorean the-
orem.

44. In this section the formula for c 2 was derived using the
diagram in Figure 24, where the altitude from vertex A
was inside the triangle. Derive the formula for c 2 when
the altitude is outside the triangle, as shown in the dia-
gram. You should get the same formula.
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45. Given the isosceles triangle shown in the diagram,
(a) use the Law of Cosines to show that

r 5
3

Ï2 2 2 cos u
.

(b) Show that r is also given by 1.5 csc
u

2
.

46. A triangle with sides of lengths 40, 60, and 80 has three
altitudes.
(a) What is the length of the shortest altitude?
(b) Find the area of the triangle. Give results to two

significant digits.

47. In a triangle with sides of lengths 12, 16, and 23
(a) what is the length of the longest altitude?
(b) What is the area of the triangle?

48. Katharine walks due east for a distance of 3.0 miles,
turns 1208 to her left and then walks 4.0 miles in the new
direction. How far is she from her starting point?

49. Beginning at 8 A.M. Horacio leaves home and walks due
east for 1 hour at the rate of 4 mph, turns 1208 to his left,
and then walks in the new direction for t hours at the rate
of 3 mph.
(a) Express his distance d from home as a function of t.
(b) How far is he from home at noon?
(c) At what time will he be 12 miles from home?

Exercises 50–51 The lengths of the three sides of a triangle
are related by the equation. Find the angle opposite c.

50. ~a 1 b 1 c!~a 1 b 2 c! 5 ab

51. ~a 1 b 1 c!~a 1 b 2 c! 5 ~2 1 Ï3!ab

52. The lengths of two sides of a parallelogram are 45 and
63, and one angle is 688. Find the lengths of the two
diagonals.

53. (a) Find the central angle u of a sector of a circle where
the radius is 24.0 and the length of the chord is 18.0
Give the result in radians.

(b) What is the area of the circular sector?

54. Find an equation for the area of a segment of a circle
(the shaded region shown in the diagram) in terms of
the radius r and central angle u, where 0 , u , p .

55. Tangent Circles Three circles are tangent to each
other as shown in the diagram where A, B, and C are the
centers and the radii are 3.4, 5.2, and 6.3, respectively.
Find the largest angle in triangle ABC.

56. In Exercise 55, find the area of the shaded region be-
tween the circles in the diagram.

57. For the triangle shown in the diagram, M is the mid-
point of side BC, and _AB _ 5 6, _AC _ 5 10, _AM _ 5
5. Find the length of BC. (Hint: Use the Law of Cosines
to get cos u in terms of x from nABM and get
cos~1808 2 u! from nACM.)
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58. Inaccessible Distance Jennifer wishes to find the dis-
tance between two points A and D on opposite sides of
a lake. See diagram. She locates two accessible points,
B and C, and gets the following measurements: _AB _ 5
426 ft, _BC _ 5 537 ft, _CD _ 5 562 ft, b 5 106.48,
g 5 112.58. Find the distance from A to D.

59. Inaccessible Distance Ashley is on the south bank of
a river and wishes to determine the distance between
points A and B on the north side. See the diagram. She
measures the distance from C to D as 72 meters and the
angles as shown in the diagram. Use this information to
find the distance from A to B.

60. In triangle ABC, a 5 4.3, b 5 5.2, and c 5 4.1. If the
triangle is inscribed in a circle, find the radius of the
circle.

61. In the diagram quadrilateral OABC is inscribed in a
quarter circle where _AB _ 5 4 and _BC _ 5 8. Find the

area of the quadrilateral and give your answer in exact
form as a 1 bÏ2 where a and b are whole numbers.

62. Piston Displacement A piston is driven by a rotating
wheel with a radius of 16.0 cm, as shown in the dia-
gram. The driving arm AB is 27.0 cm long and is at-
tached to the piston at B, and pivots at A. Suppose the
wheel rotates clockwise at the rate of 128 per second.
Let t represent the time in seconds and suppose the
wheel starts with A located at point E when t 5 0. If x
denotes the displacement of the piston, as shown in the
diagram, find x when

(a) t 5 2 sec, ~a 5 248!
(b) t 5 10 sec, ~a 5 1208!
(c) Find an equation that gives x as a function of t.

63. Suppose we want to roof-in a porch as in the diagram,
where the new roof consists of two congruent triangles,
nABC and nADC. The porch is 12 feet 3 12 feet and
the height at the back corner is 19 feet.

(a) Are the angles at B and D right angles?
(b) What is the total area of nABC and nADC?
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7.4 T R I G O N O M E T R Y A N D C O M P L E X N U M B E R S

@M#athematics is the science of skillful operations with concepts and rules
invented just for this purpose. Most more advanced mathematical concepts,
such as complex numbers, algebras, linear operators, Borel sets . . . were so
devised that they are apt subjects on which the mathematician can
demonstrate his ingenuity and sense of formal beauty.

Eugene P. Wigner

In Section 1.3 we briefly discussed the system of complex numbers as an extension
of the system of real numbers. The only direct application of complex numbers that
we have made so far in this book is in connection with the zeros of polynomial
functions. Trigonometry allows us another way of viewing complex numbers. In
this section we discuss the trigonometric or polar form for representing complex
numbers and apply it to the task of finding products and quotients. Then we
introduce DeMoivre’s theorem to find the roots of complex numbers and to explore
some geometric relationships.

Recall from Section 1.3 that we may establish a correspondence between the
set of complex numbers and the set of points in the plane by letting the complex
number x 1 yi correspond to the point with coordinates ~x, y!. This identification
deals with the complex plane, and a point may be labeled either ~x, y! or x 1 yi.
Real numbers are associated with points on the x-axis, x 5 x 1 0i ↔ ~x, 0!, and
pure imaginary numbers of the form yi are associated with points on the y-axis,
yi 5 0 1 yi ↔ ~0, y!. In the complex plane the x-axis is called the real axis and the
y-axis is called the imaginary axis.

Each point P in the plane may also be identified by a pair of numbers ~r, u!
where r is the distance from P to the origin, _OP _ , and u is the angle from the
positive x-axis to OP. Since u is in standard position, the coordinates of any point
on the terminal side are expressible as (r cos u, r sin u). Thus if P is identified with
the complex number x 1 yi, then P has coordinates ~x, y! and

x 5 r cos u and y 5 r sin u.

See Figure 32. We may also write the complex number x 1 yi as

x 1 yi 5 ~r cos u! 1 i~r sin u! 5 r~cos u 1 i sin u!.

To my astonishment and
dismay high school
students do not learn
complex numbers
nowadays, possibly because
high school teachers don’t
know them. The students I
met in a recent graduate
course never heard of
DeMoivre’s theorem; even
absolute values and
complex conjugates made The form r~cos u 1 i sin u! is called the trigonometric or polar form of x 1 yi.
them feel insecure. The nonnegative number r is called the absolute value or modulus, and u is the

Paul Halmos argument of the complex number. Any angle that is coterminal with u is also an

FIGURE 32
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argument for the same complex number. Because the coordinates ~x, y! are rectan-
gular coordinates, the standard form of a complex number, x 1 yi, is its rectangu-
lar form. We summarize the relations between rectangular and trigonometric
forms of a complex number and rectangular and polar coordinates of a point.

Trigonometric form of a complex number

Suppose z is the complex number x 1 yi. The rectangular coordinates of z
are ~x, y! and the polar coordinates of z are ~r, u!, where

x 5 r cos u, and y 5 r sin u

r 5 Ïx 2 1 y 2 and tan u 5
y
x

The trigonometric or polar form of z is given by

z 5 r~cos u 1 i sin u!

The nonnegative number r is the modulus of z, and u is an argument of z.
The complex number zero has a modulus of 0, but is not normally assigned
any argument.

cEXAMPLE 1 Change to trigonometric form Sketch in the complex plane
and express in trigonometric form using degree measure.

(a) z 5 1 1 i (b) w 5 21 1 2i

Solution
The complex numbers are shown in Figure 33.

(a) For z, the figure shows that u 5 458 and r 5 Ï12 1 12 5 Ï2, so a trigono-
metric form is z 5 Ï2(cos 458 1 i sin 458).

(b) For the modulus, r 5 Ï~21!2 1 22 5 Ï5. From the figure, u is a second-

quadrant angle with cos u 5 21

Ï5
, so u 5 Cos21S21

Ï5
D < 116.68. Therefore,

w < Ï5(cos 116.68 1 i sin 116.68). b

cEXAMPLE 2 Change to rectangular form Sketch in the complex plane
and express in rectangular form.

(a) z 5 2Ï3(cos 1208 1 i sin 1208) (b) w 5 2(cos 3.7 1 i sin 3.7)

Solution
To sketch a complex number from its polar form, first draw the angle and then
locate the point at the distance r along the ray from the origin, as shown in
Figure 34.

(a) Since cos 1208 5 2 1
2 and sin 1208 5 Ï3

2
,

z 5 2Ï3 S2
1
2

1 i
Ï3

2 D 5 2Ï3 1 3i.

(b) In radian mode the calculator returns cos 3.7 < 20.85 and sin 3.7 < 20.53.
Thus an approximate rectangular form for w is 2~20.85 2 0.53i! <
21.7 2 1.1i. b

FIGURE 33

FIGURE 34
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Trigonometric form gives a very specific representation for a complex number.
The modulus r must be nonnegative, and the expression in parentheses must have
the precise form cos u 1 i sin u. For example, neither of the complex numbers
21(cos 2 2 i sin 2) or 1(2cos 2 1 i sin 2) is in trigonometric form. The next
example illustrates how to express such complex numbers in trigonometric form.

cEXAMPLE 3 Trigonometric form Express in trigonometric form.

(a) z 5 3(cos 608 2 i sin 608) (b) w 5 23(sin 388 1 i cos 388)

Solution

(a) First express z in rectangular form.Strategy: One possibility is
to convert each number to
rectangular form and plot, z 5 3~cos 608 2 i sin 608! 5

3
2

2
3Ï3

2
i

then use the diagram to
write each in trigonometric

Now draw a diagram to show z (see Figure 35), then find r as follows:form. Reduction formulas
should help identify the
quadrants and angles. r 5 ÎS3

2D
2

1 S2
3Ï3

2 D2

5 Î9
4

1
27
4

5 Ï9 5 3.

The diagram shows a 308–608 right triangle, so we may take u 5 2608.
Therefore, in trigonometric form,

z 5 3@cos~2608! 1 i sin~2608!#.

(b) w 5 23(sin 388 1 i cos 388) 5 3(2sin 388 2 i cos 388). Find an angle u such
that cos u 5 2sin 388 and sin u 5 2cos 388. Since both cos u and sin u are
negative, u will be a third-quadrant angle (see Figure 36). Use reduction for-
mulas from Section 5.4 to get

cos~2708 2 t! 5 2sin t and sin~2708 2 t! 5 2cos t

Therefore, take u 5 2708 2 388 5 2328. In trigonometric form,

w 5 3~cos 2328 1 i sin 2328!. b

Rectangular form is convenient for addition and subtraction of complex num-
bers, but trigonometric form gives a geometric interpretation of multiplication and
division.

Multiplication and Division in Trigonometric Form

Suppose complex numbers z1 and z2 are written in trigonometric form:

z1 5 r1~cos u1 1 i sin u1! and z2 5 r2~cos u2 1 i sin u2!.

To find a trigonometric form for the product z1z2, first multiply as complex num-
bers, and then use the sum identities for cos~u1 1 u2! and sin~u1 1 u2!.

z1z2 5 r1~cos u1 1 i sin u1! · r2~cos u2 1 i sin u2!

5 r1r2@~cos u1 cos u2 2 sin u1 sin u2! 1 i~sin u1 cos u2 1 cos u1 sin u2!#

5 r1r2@cos~u1 1 u2! 1 i sin ~u1 1 u2!#

The quotient z1
z 2

can be handled in much the same way, and the derivation is left to
the exercises (see Exercise 69).

FIGURE 35

FIGURE 36
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Product and quotient in trigonometric form

Suppose z1 and z2 are complex numbers expressed in the form

z1 5 r1~cos u1 1 i sin u1! and z2 5 r2~cos u2 1 i sin u2!.

The product of z1 and z2 is

z1z2 5 r1r2@cos~u1 1 u2! 1 i sin~u1 1 u2!#. (1)

If z2 5/ 0, then the quotient
z1

z2

is

z1

z2

5 Sr1

r2
D@cos~u1 2 u2! 1 i sin~u1 2 u2!#. (2)

When multiplying two complex numbers in trigonometric form, the
modulus is the product of the moduli, and the argument is the sum of the
arguments.

When dividing two complex numbers in trigonometric form, the modulus
is the quotient of the moduli, and the argument is the difference of the
arguments.

When multiplying, add arguments; when dividing, subtract arguments.

cEXAMPLE 4 Product and quotient Given z1 5 1 1 i, z2 5 2 2 2Ï3i,Strategy: Both product and
quotients are easier to com- and z3 5 2Ï3 2 i. Evaluate in both trigonometric form and rectangular form.
pute from trigonometric
forms, so begin by express- (a) z1z2 (b)

z2

z3

.ing all three in trigonometric
form and then use Equations
(1) and (2). Solution

Follow the strategy. Proceeding in a manner similar to the solution in Example 1,

z1 5 Ï2~cos 458 1 i sin 458!, z2 5 4~cos 3008 1 i sin 3008!

z3 5 2~cos 2108 1 i 2108!

(a) For z1z2, Equation ~1! gives

z1z2 5 Ï2 · 4@cos~458 1 3008! 1 i sin~458 1 3008!#

5 4Ï2~cos 3458 1 i sin 3458!.

To express the product in rectangular form, you can evaluate cos 3458 and
sin 3458, but to get exact form it is simpler to multiply directly, as in Sec-
tion 1.3:

z1z2 5 ~1 1 i!~2 2 2Ï3i! 5 ~2 1 2Ï3! 1 ~2 2 2Ï3!i

Therefore, the product z1z2 in trigonometric form is 4Ï2(cos 3458 1
i sin 3458). In rectangular form it is ~2 1 2Ï3! 1 ~2 2 2Ï3!i.

(b) Using the trigonometric form of z2 and z3 and Equation ~2!,

z2

z3

5 S4
2D@cos~3008 2 2108! 1 i sin~3008 2 2108!#

5 2~cos 908 1 i sin 908!.
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Since cos 908 5 0 and sin 908 5 1,

z2

z3

5 2~0 1 i · 1! 5 2i.

The two forms for
z2

z3

are 2(cos 908 1 i sin 908) and 2i. b

DeMoivre’s Theorem

By repeated application of Equations ~1! and ~2!, we may derive an important theo-
rem for computing powers and roots of complex numbers. Let z 5 r~cos u 1 i sin u!.
By repeated application of Equation ~1!, it is easy to see that

z 2 5 r 2~cos 2u 1 i sin 2u!

z 3 5 r 3~cos 3u 1 i sin 3u!

z 4 5 r 4~cos 4u 1 i sin 4u!.

For negative exponents, Equation ~2! gives

z21 5
1
z

5
1~cos 08 1 i sin 08!

r~cos u 1 i sin u!
5 r21@cos~2u! 1 i sin~2u!#

Similarly,

z22 5 r22@cos~22u! 1 i sin~22u!#.

The pattern exhibited in the above computations holds for every integer n. The
result is known as DeMoivre’s theorem. A formal proof can be made by mathe-
matical induction (see Exercise 34, Section 8.5).

DeMoivre’s theorem

Suppose n is any integer and z 5 r~cos u 1 i sin u!, then

z n 5 r n~cos nu 1 i sin nu!.

cEXAMPLE 5 DeMoivre’s theorem Use DeMoivre’s theorem to calculate

(a) ~1 1 i!4

(b) S21 1 Ï3i
2 D6

.

Solution

(a) If z 5 1 1 i, then, from Example 1, in polar form z 5 Ï2(cos 458 1
i sin 458). Apply DeMoivre’s theorem:

~1 1 i!4 5 ~Ï2!4@cos~4 · 45!8 1 i sin~4 · 45!8#

5 4~cos 1808 1 i sin 1808! 5 4~21 1 i · 0! 5 24.

Hence ~1 1 i!4 5 24.
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(b) A trigonometric form for 21Ï3i
2 is 1(cos 1208 1 i sin 1208). Use DeMoivre’s

theorem:

S21 1 Ï3i
2 D6

5 16@cos~6 · 1208! 1 i sin~6 · 1208!#

5 1~cos 7208 1 i sin 7208!

5 1~cos 08 1 i sin 08! 5 1.

Therefore, ~21 1 Ï3i
2 !6 is another name for the number 1. b

Graphical Display of Powers of a Complex Number

Using parametric equations and an appropriate t-step value, we can get our calcu-
lators to display the nth roots of any number, as outlined in the following.

Powers of a complex numberTECHNOLOGY TIP r

By DeMoivre’s theorem, if z 5 r~cos u 1 i sin u!, the nth power of z can be
expressed in the form z n 5 r n~cos nu 1 i sin nu!, corresponding to the point
in the complex plane with coordinates ~r n cos nu, r n sin nu!.

To represent these points with a graphing calculator for given values of
r, u, we can use parametric mode, first storing the values of r and u, and
then setting X 5 (R^T) COS Tu, Y 5 (R^T) SIN Tu.

DeMoivre’s theorem applies only with integer values of n, so how do we
get the calculator to show only integer values of t? Probably the easiest way
is to use a t-step of 1, so we choose an appropriate t-range and set T step 5 1
with x- and y-ranges chosen to allow us to see the points of interest.

cEXAMPLE 6 Graphical representations of powers Let z 5 1 1 i. Then
display the powers z21, z 0, z 1, z 2, z 3, z 4, z 5 on the complex plane.

Solution
From Example 5, in polar form, z 5 Ï2 ~cos 458 1 i sin 458!. Following the
Technology Tip, we put the calculator in parametric (and degree) mode and enter
X 5 (Ï2^T) COS 45T, Y 5 (Ï2^T) SIN 45T.. We want all integer t-values from 21 to 5, so we set
TMIN 5 21 , and TMAX 5 5 and Tstep 5 1 . The resulting graph is shown in Figure 37. We
have shown the graph in connected mode, which connects the points of interest, as
labeled. In dot mode, the graph would only show the points corresponding to the
powers, but such a graph is difficult to see. It is much easier to see the points
connected.

Note that the point corresponding to z 4 has coordinates ~24, 0!, in agreement
with Example 5a, where we found that z 4 5 ~1 1 i!4 5 24. b

Finding Roots of Complex Numbers

In Example 5, we found that 1 1 i is a complex number whose fourth power is 24,
that is, 1 1 i is a fourth root of 24. Similarly, 21 1 Ï3i

2 is a sixth root of 1.
We already know that 1 and 21 are sixth roots of 1, because 16 5 1 and

~21!6 5 1. According to the Fundamental Theorem of Algebra in Chapter 3, the

FIGURE 37
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HISTORICAL NOTE DEMOIVRE’S THEOREM AND EULER’S FUNCTIONS

polynomial equation x 6 5 1 has six roots, so there should be three more in
addition to 1, 21, and 21 1 Ï3i

2 . DeMoivre’s theorem can be used to find all of the
nth roots of any complex number z. For a given complex number z, we can find all
roots of the equation x n 5 z.

Let the given complex number z be written in trigonometric form as z 5
r~cos u 1 i sin u! and suppose that w is a solution to the equation x n 5 z. The
number w also has a trigonometric form, say w 5 R~cos a 1 i sin a!. We wish to
determine the modulus R and the argument a so that w satisfies the equation
x n 5 z. Using DeMoivre’s theorem, w n 5 Rn~cos na 1 i sin na!. If w n 5 z, then

Rn~cos na 1 i sin na! 5 r~cos u 1 i sin u! (3)

Two complex numbers in trigonometric form are equal if and only if their moduli
are equal and their arguments are coterminal. Thus, from Equation ~3! we must
have Rn 5 r. To find the modulus R, we are interested only in the nonnegative
solution to Rn 5 r, so R 5 r 1yn. It follows that all roots of the equation x n 5 z have
the same modulus, namely the positive real number r 1yn.

It soon becomes apparent to
anyone who considers the history of
mathematics that new discoveries
seldom occurred in the order we
learn them in school. We observed
in the Historical Note in
Section 5.3 that sines and cosines
did not originate as functions;
they were lengths of chords of
circles whose value depended
on the size of the circles. Likewise,
logarithms were not viewed
as inverses of exponential
functions, but as computational
aids for trigonometric
calculations.

Credit for the discovery of new theorems
or ideas is often given to individuals who may
have had little to do with the original
discoveries. DeMoivre’s theorem was known to,
and used by, Abraham DeMoivre (1667–1754),
but he never formally proved it. DeMoivre
was born in France, but spent most of his life
in England. He was closely acquainted
with both Newton and Leibnitz. His name

as attached to a trigonometric
identity that was certainly not as
important to him as his work in
probability. A probability frequency
distribution usually attributed to
Laplace or Gauss was first
described by DeMoivre and might
more properly be called the
DeMoivre distribution.

Leonhard Euler, on the other
hand, did state and prove
DeMoivre’s identity in a paper
DeMoivre quoted. Euler is the one
who first treated sines and cosines
as functions. He used the unit circle
for his definitions, freeing these

functions from dependence on the size of the
circle. Furthermore, Euler used DeMoivre’s
identity to derive relationships among
trigonometric, exponential, and logarithmic
functions. He derived the equation eix 5
cos x 1 i sin x; thus he saw that exponentials
may be viewed as disguised trigonometry, and
vice versa. Mathematicians still marvel at Euler’s
insight and intuition.

The theorem credited to
Abraham DeMoivre (pictured
above) was actually proved by

Leonhard Euler.
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To satisfy Equation ~3!, the angle na must be equal to one of the angles that
are coterminal with u. This includes any angle of the form u 1 k · 3608, where k
can be any integer. We must have na 5 u 1 k · 3608, so, dividing by n,

a 5
u

n
1 k ·

3608

n
.

As k ranges through 0, 1, 2, . . . , n 2 1, we get n distinct arguments. Hence any
given nonzero complex number has n distinct complex nth roots.

Roots of a complex number

Suppose n is any positive integer, then the nonzero complex number

z 5 r~cos u 1 i sin u!

has exactly n district n th roots, which are given by

wk 5
nÏrFcosSu

n
1 k ·

3608

n D 1 i sinSu

n
1 k ·

3608

n DG (4)

where k 5 0, 1, 2, . . . , n 2 1.

Geometrically, the n roots of a complex number all lie on the circle in the
complex plane centered at the origin with radius

nÏr. Furthermore, they are
equally spaced, like the spokes of a wheel, starting with w0, at arguments differing

by
3608

n
. We illustrate this in the next example, in which we find all of the fifth roots

of 3 1 4i.

cEXAMPLE 7 Fifth roots Find the fifth roots of 3 1 4i and locate them in
the complex plane.

Solution
First we write 3 1 4i in polar form:

r 5 Ï32 1 42 5 5, u 5 Tan21~4y3! < 53.138, so

3 1 4i 5 5~cos u 1 i sin u!.

For the fifth roots ~n 5 5!, we use Equation (4) with 3608
5 5 728:

wk 5
5Ï5ScosSu

5
1 k · 728D 1 i sinSu

5
1 k · 728DD,

for k 5 0, 1, . . . , 5. To get decimal approximations of the roots, we store
5Ï5 and

uy5 with full calculator accuracy. To three decimal-place accuracy, the roots are

w0 5 1.356 1 0.254i

w1 5 0.177 1 1.368i

w2 5 21.247 1 0.591i

w3 5 20.948 2 1.003i

w4 5 0.661 2 1.211i

Figure 38 shows these five numbers in the complex plane, located on a circle
of radius

5Ï5. b
FIGURE 38

The fifth roots of 3 1 4i
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TECHNOLOGY TIP r Roots in the complex plane

Not only can a graphing calculator plot the points corresponding to the roots
of a given complex number, but the plot makes the computations much
simpler. The nth roots of the number z 5 r~cos u 1 i sin u! are the numbers

wk 5 r 1ynFcosSu

n
1 3608

k
nD 1 i sinSu

n
1 3608

k
nDG.

Using the previous Technology Tip, we can plot the n roots directly. It is also
efficient to do some computations on the home screen and store them. We
illustrate with the numbers from Example 7. Remember we are working in
degree mode.

Given z 5 3 1 4i 5 5~cos u 1 i sin u!, and n 5 5.

1. Store the length: 5^~1y5! A R.

Store the angle uy5: (TAN21(4y3))y5 A A.

Calculate the increment
3608

n
, in this case

3608

5
5 728.

2. Enter the functions parametrically: X 5 R COS (A 1 72 T) , Y 5 R SIN (A 1 72 T) .
3. Set Tmin 5 0 , Tmax 5 5 , and Tstep 5 1 . (Setting Tmax 5 5 closes the polygon.)
4. The resulting graph connects the n points, representing the n roots

w0, w1, w2, . . . , wn21, wn 5 w0, trace, and read the coordinates.

cEXAMPLE 8 Roots of an equation Find graphical approximations (three
decimal places) for the roots of x 4 1 x 3 1 x 2 1 x 1 1 5 0.

Solution
The equation x 5 2 1 5 ~x 2 1!~x 4 1 x 3 1 x 2 1 x 1 1! is an identity. (Check
by multiplying.) Thus the roots of the given equation are the same as the roots of
x 5 2 1 5 0 except for 1. To solve the equation x 5 2 1 5 0, we rewrite the equa-
tion in the form x 5 5 1 5 1 ~cos 0 1 i sin 0!.

We can used the same pattern as in Example 7 and in the Technology Tip
above, with R 5 1 and A 5 0y5 5 0. Also as above, 360

5 5 72, so we enter the parametric
equations X 5 COS (72 T), Y 5 SIN ~72 T!, with t-settings as in the Tip. The graph is shown
in Figure 39 and includes the root 1 (5 (1, 0)) as well as the other four which are
the roots of the given equation. We can read the coordinates as we trace along the
graph: w1 5 0.309 1 0.951i, w2 5 20.809 1 0.588, w3 5 20.809 2 0.588,
w4 5 0.309 2 0.951i. We observe that the coefficients of the equation are all
integers, and there are two pairs of conjugate roots, w1 and w4, and w2 and w3, as
we know there must be by the conjugate zeros theorem from Chapter 3. b

EXERCISES 7.4

Check Your Understanding

Exercises 1–5 True or False. Give reasons.

1. A trigonometric form for 1 2 i is
Ï2(cos 458 2 i sin 458).

2. If z is any point in QI of the complex plane, then 2z is
in QII.

3. A cube root of
1
2

1
Ï3

2
i is cos 208 1 i sin 208.

4. For any angle u, (cos u 2 i sin u)4 5 cos 4u 2 i sin 4u.

5. S 1

Ï2
2

1

Ï2
iD16

is equal to 1.

FIGURE 39
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Exercises 6–10 Fill in the blank so that the resulting
statement is true. Exercises 6–9 refer to the complex plane.

6. The number 2 2 3i is in Quadrant .

7. cos 1508 1 i sin 1508 is in Quadrant .

8. cos 508 1 i sin 508 is in Quadrant .

9. The number of 18th roots of 1 in the first quadrant
is .

10. The smallest prime number greater than _ 3 1 4i _2

is .

Develop Mastery

Exercises 1–8 Trigonometric Form Sketch in the com-
plex plane and express in trigonometric form using degree
measure.

1. (a) 23, (b) 2i

2. (a) 1 2 i, (b) 1 1 Ï3i

3. (a) 3 1 5i, (b) 2 2 3i

4. (a) 2 1 3i, (b) 4 2 i

5. (a) 2i 1 Ï3, (b) i 2 i 2

6. (a)
i 2 1

2
, (b) i 3 1 i 2

7. (a)
1
i

, (b)
1

1 1 i

8. (a)
1 1 i
1 2 i

, (b)
1 2 Ï3i

1 1 Ï3i

Exercises 9–14 Polar to Rectangular Sketch in the com-
plex plane and express in rectangular form.

9. 2~cos 458 1 i sin 458!

10. Ï3~cos 1508 1 i sin 1508!

11. 4~cos 4508 1 i sin 4508!

12. 2@cos ~22708! 1 i sin~22708!#

13. 1@cos~21208! 1 i sin~21208!#

14. Ï2~cos 4808 1 i sin 4808!

Exercises 15–20 Trigonometric Form Explain why the
number is not in trigonometric form, and then express it in
trigonometric form.

15. 2~cos 458 2 i sin 458!

16. 2Ï3~cos 1508 1 i sin 1508!

17. 24~cos 4508 1 i sin 4508!

18. 2~cos 368 2 i sin 368!

19. sin 608 2 i cos 608

20. 2~sin 308 2 i cos 308!

Exercises 21–24 Complex Number Arithmetic Perform
the indicated operation and express the result in both
trigonometric and rectangular form. (Hint: To apply the

product and quotient formulas, the numbers must first be in
trigonometric form.)

21. ~cos 178 1 i sin 178!~cos 438 1 i sin 438!

22. ~cos 478 2 i sin 478!~cos 438 2 i sin 438!

23.
cos 478 1 i sin 478

cos 138 2 i sin 138

24.
8~cos 1508 1 i sin 1508!

2~cos 308 1 i sin 308!

Exercises 25–30 Complex Number Arithmetic Let

z1 5 Ï3 1 i and z2 5
21 1 Ï3i

2
. Perform the indicated

operation and express the result in both trigonometric and
rectangular form. Recall that z denotes the complex conju-
gate of z; that is, if z 5 a 1 bi, then z 5 a 2 bi.

25. z1z2 26. z1z2 27.
z1

z2

28.
1
z2

29. ~z1!
3 30. ~z2!

3

Exercises 31–44 Powers of Complex Numbers Per-
form the indicated operation and express the result in
trigonometric and rectangular form. Give the result in exact
form when it is reasonable to do so; otherwise in decimal
form with numbers rounded off to two decimal places.

31. ~cos 308 1 i sin 308!4

32. @cos~2458! 1 i sin~2458!#4

33. ~cos 408 1 i sin 408!23

34. ~cos 188 1 i sin 188!25

35.
16

@2~cos 458 1 i sin 458!#4

36.
81

@3~cos 158 1 i sin 158!#4

37. @2~cos 158 1 i sin 158!#4

38. @22~cos 458 1 i sin 458!#4

39. ~1 2 i!8 40. ~2Ï2 1 Ï2i!4

41. ~2Ï2 1 Ï2i!22 42. ~2 2 i!4

43.
1

~1 1 Ï3i!6
44.

~1 1 2i!4

~1 2 2i!2

Exercises 45–50 Roots of a Complex Number Without
using a calculator graph, find the indicated roots (2 decimal
places) of z. Locate the roots in the complex plane. See
Example 7.

45. z 5 2i, cube roots

46. z 5 21 1 i, cube roots

47. z 5 5(cos 648 1 i sin 648), fourth roots

48. z 5 4(cos 808 1 i sin 808), fifth roots



pg419 [R] G1 5-36058 / HCG / Cannon & Elich cr 11-20-95 QC1

7.5 Vectors 419

49. z 5 4 2 3i, cube roots

50. z 5 6 1 8i, fourth roots

Exercises 51–56 Roots Using a Graph Use a graph to
find the specified roots (2 decimal place accuracy). Show
the roots in the complex plane. See Example 8.

51. Fourth roots of 4 1 3i

52. Third roots of 4 2 3i

53. Sixth roots of 1

54. Square roots of 4(cos 408 2 i sin 408)

55. Cube roots of 8(cos 908 2 i sin 908)

56. Fourth roots of (cos 1608 2 i sin 1608)

Exercises 57–61 Solve the equation (2 decimal place
accuracy).

57. x 5 2 1 5 0

58. x 4 1 Ï3 2 i 5 0

59. x 4 1 i 5 0

60. x 2 2 3 1 4i 5 0

61. x 4 2 2x 2 1 2 5 0

7.5 V E C T O R S

I was always interested in practical applications . . . . At Westinghouse, Varga
and I related vector lattices to nuclear reactors.

Garrett Birkhoff

Introduction and Definition

This short introduction foreshadows a very long subject. Vectors are becoming
more and more common in applications of mathematics. Entire books are devoted
to vector applications; vector analysis forms a significant portion of most calculus
books and many introductory physics and engineering texts; courses in linear
algebra develop tools to handle vectors and matrices for applications in business
and the social and natural sciences as well as the traditional physical sciences.
Although our treatment is limited to two-dimensional vectors, the ideas are funda-
mental to all of vector analysis.

We can describe many of the things we deal with in the real world by a single
number; distance, area, mass, volume, time, temperature, etc. These numbers
answer questions of magnitude such as how much, how long, how fast, how heavy?

Many questions, however, require more than a single number. Both magnitude
and direction may be vital:

“But Officer, I was only doing 20 miles an hour!” “Yes, but this is a one-way
street, and you were going the wrong way.”

Exercises 62–65 Complex Roots Find the roots of the
equation (3 decimal places) using any algebraic or graphi-
cal technique. See Example 8.

62. x 3 1 x 2 1 x 1 1 5 0

63. x 5 1 x 4 1 x 3 1 x 2 1 x 1 1 5 0

64. x 4 2 x 3 1 x 2 2 x 1 1 5 0

65. x 5 2 x 4 1 x 3 2 x 2 1 x 2 1 5 0

Exercises 66–67 Patterns For the given z, En 5 z n 1
z2n where n 5 1, 2, 3, . . . . Evaluate E1, E2, E3, E4, E5, and
E6. Find a formula for En. What is the value of E45? E48?

66. z 5
1
2

1
Ï3

2
i

67. z 5
Ï3

2
1

1
2

i

68. Solve the equation x 6 2 1 5 0.
(a) By factoring, x 6 2 1 5 ~x 3 1 1!~x 3 2 1!, and

factor further.
(b) Graphically by finding the sixth roots of 1. Com-

pare with answers in part (a).

69. Use identities for cos~u1 2 u2! and sin~u1 2 u2! to estab-
lish the quotient form for dividing two complex num-
bers in trigonometric form (Equation (2)).



v = ,a, b.
= ,x2 – x1, y2 – y1.
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P(x1, y1)
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In birling, two competitors get on a floating log and set the log spinning. The
object is to use the spin to make your opponent lose balance and end up in the
water. The direction of the spin is at least as important as the strength of the
thrust applied.

Quantities that have both magnitude and direction are called vectors. We
restrict ourselves here to vectors that can be specified by ordered pairs of numbers.
The vectors considered in this section can all be represented by directed line seg-
ments in the plane.

To begin, we give a definition.

Definition: vectors

A vector v is an ordered pair of real numbers, denoted 〈a, b 〉. The individual
numbers a and b are called the components of v. The magnitude of v,
denoted by _ v _ , is the number Ïa2 1 b 2, and the direction of v is the
direction in the plane from the origin to point ~a, b!. Vector notation looks
like

v 5 〈a, b 〉 and _ v _ 5 Ïa2 1 b 2.

Equality of Vectors

For vectors u 5 〈a, b 〉 and v 5 〈c, d 〉, we say that u and v are equal if and only
if a 5 c and b 5 d. Two vectors are equal if and only if their corresponding
components are equal.

Geometric Representations of Vectors

It is customary to represent a vector as a directed line segment, as shown in
Figure 40, where we may also denote vector v by PQ. While a vector is technically
just a pair of numbers, we will also occasionally use the name vector for a directed
line segment that represents the vector, so that we may write v 5 PQ. P is
the initial point (or tail) and Q is the terminal point (or tip or head). The length
of the directed line segment is the magnitude of the vector, and the arrow indicates
the direction. The components of the vector PQ are given by

PQ 5 〈x2 2 x1, y2 2 y1〉, for the points P~x1, y1! and Q~x2, y2!. (1)

It follows that the vector v 5 〈a, b 〉 can be represented just as well by any other
directed line segment RS for which the components, the changes in coordinates
going from R to S, are a and b, respectively. This means that v can be represented
by any directed segment that has the same length and direction. If the two directed
line segments RS and PQ represent the same vector, we write RS 5 PQ.

In a coordinate system it is often convenient to represent the vector v 5 〈a, b 〉
by a line segment with its initial point at the origin, in which case the terminal point
must be the point with coordinates ~a, b!, as in Figure 41 for Example 1. We will
call such a representation the standard representation or standard position for
v. The angle between two vectors is the angle between standard representations
of the vectors.
cEXAMPLE 1 Representing a vector Points O~0, 0!, P~3, 4!, R~4, 1!,
S~7, 5!, and T~22, 21! are shown in Figure 41. Suppose v is the vector 〈3, 4〉, so
v 5 OP. (a) Find the components and the magnitude of v. (b) Show that RS
represents the same vector v. (c) Find the point U such that TU 5 v.

If Conway’s genius is
more than one percent
inspiration, then it’s
because he adds up to
more than one hundred
percent! He does
thousands of calculations,
looks at thousands of
special cases, until he
exposes the hidden pattern
and divines the underlying
structure.

Richard K. Guy, of
John Horton Conway

FIGURE 40

FIGURE 41
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Solution

(a) The components of v are 3 and 4. Its magnitude is

_ v _ 5 Ï32 1 42 5 Ï25 5 5.

(b) From Equation ~1!, RS 5 〈7 2 4, 5 2 1〉 5 〈3, 4〉, so RS 5 v.
(c) To have TU 5 v, the vector TU must have components 〈3, 4〉. If U has coordi-

nates ~u, w!, this implies that

TU 5 〈u 1 2, w 1 1〉 5 〈3, 4〉,

so by the definition of equality of vectors, u 1 2 5 3 and w 1 1 5 4. Thus U
has coordinates (1, 3). The directed line segment TU is shown in Figure 41.

b

Algebra of Vectors

The standard operations for vectors include vector addition and multiplication of
a vector by a number (called scalar multiplication, to emphasize that we are not
multiplying two vectors). Two other kinds of product can be defined for some
vectors, the dot product and the cross product, but we will not discuss either of
them here.

Definition: vector addition and multiplication by a scalar

Given vectors v 5 〈a, b 〉 and w 5 〈c, d 〉, the sum of v and w is a vector
whose components are the sums of the corresponding components of v
and w.

v 1 w 5 〈a 1 c, b 1 d 〉.

If k is any real number, the scalar product kv is defined by

kv 5 〈ka, kb 〉.

Thus, to add two vectors, add components, and to multiply a vector by a
number, multiply both components by the number. The geometric interpretation of
vector addition and scalar multiplication is immediate. If v 5 〈a, b 〉 and w 5
〈c, d 〉, then their standard representations are directed line segments OP and OQ
as shown in Figure 42. It follows by the definition that their sum v 1 w is repre-
sented by the directed line segment OR, which is the diagonal of the parallelogram
with adjacent edges OP and OQ. In the parallelogram OPRQ, the directed line
segment QR is another representation of v and PR is another representation of w.
Thus the vector sum v 1 w is represented by the diagonal of the parallelogram.
This is the parallelogram method of adding vectors.

Parallelogram method of adding vectors

For a representation of the vector sum v 1 w, take any directed line segment
PQ to represent v and a directed line segment QR to represent w (with the
tail of w at the tip of v). The directed line segment PR represents the sum
v 1 w. It should be obvious that the vector sum satisfies w 1 v 5 v 1 w
and ~u 1 v! 1 w 5 u 1 ~v 1 w!.

FIGURE 42
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cEXAMPLE 2 Vector addition Given vectors u 5 〈3, 21〉, v 5 〈22, 4〉,
and w 5 〈23, 1〉, find the vector sums u 1 v and u 1 w. Show the sums as
directed line segments in standard position.

Solution
From the definition of vector addition, u 1 v 5 〈3 2 2, 21 1 4〉 5 〈1, 3〉 and
u 1 w 5 〈3 2 3, 21 1 1〉 5 〈0, 0〉 5 0. Figure 43 shows standard representa-
tions for u, v, and w. The parallelogram method tells us that OR represents u 1 v,
but u 1 w is the zero vector, and we cannot show a vector of length zero on the
diagram. b

It is often convenient to use polar representation for a point in the plane to
express a vector v 5 〈a, b 〉. The terminal point of v in standard position is the point
with coordinates ~a, b!. As Figure 44 shows, the coordinates ~a, b! can be expressed
in terms of the length of the vector, r, and the angle u from the positive x-axis to
the segment that represents v in standard position. Then

v 5 〈a, b 〉 5 〈r cos u, r sin u 〉,

where a2 1 b 2 5 r 2 and tan u 5
b
a

.

cEXAMPLE 3 Angle between two vectors For the vectors u 5 〈3, 21〉
and v 5 〈22, 4〉, find the angle between u and v.

Solution
By the definition of the angle between vectors, we want the angle between standard
representations, the angle u 5 /QOP in Figure 45. The Law of Cosines can help
if we have the lengths of the three sides of the triangle QOP. The lengths of two of
the sides are the lengths of the vectors u and v, and the distance formula can
provide the length of QP.

_ u _ 5 Ï32 1 ~21!2 5 Ï10 _ v _ 5 Ï~22!2 1 42 5 Ï20

_QP _ 5 Ï~3 1 2!2 1 ~21 2 4!2 5 Ï50.

From the Law of Cosines,

cos u 5
10 1 20 2 50

2Ï10Ï20
5

21

Ï2
so u 5

3p

4
, or 1358.

Alternative Solution Using the polar representations for v and u where v 5
〈r1 cos u1, r1 sin u1〉 and u 5 〈r2 cos u2, r2 sin u2〉, the angle u is given by u 5
u1 2 u2. See Figure 45, and so tan u1 5 22 and tan u2 5 2 1

3 . Using identity
(I-11),

tan u 5 tan ~u1 2 u2! 5
tan u1 2 tan u2

1 1 tan u1 tan u2

5

22 1
1
3

1 1 2S1
3D

5

2
5
3

5
3

5 21.

As above, u 5 1358. b

FIGURE 43

FIGURE 44

FIGURE 45
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If u 5 〈a, b 〉 and v 5 〈2a, 2b 〉, then u 1 v 5 〈0, 0〉 5 0; we say that v is the
negative of u and write v 5 2u. It is clear that multiplying any vector by zero gives
the zero vector. Multiplying by the number 1 doesn’t change a vector, while mul-
tiplying by 21 changes a vector to its negative, that is, reverses its direction. We
can also use the negative of a vector to define the operation of subtraction, much
as we do for real numbers. We summarize these observations for convenient refer-
ence.

Additional properties of vectors

0 · v 5 0 1 · v 5 v

21 · v 5 2v, where 2v is the vector such that v 1 ~2v! 5 0.
For subtraction, u 2 v 5 u 1 ~2v!.

A unit vector is any vector of length 1. Given any nonzero vector v, the
unit vector in the direction of v is the vector u 5 1

_ v _ v; that is, multiply v by
the number 1

_ v _
.

cEXAMPLE 4 Vector arithmetic Let v 5 〈6, 28〉 and w 5 〈22, 23〉.
(a) Find the unit vector u in the direction of v. (b) Find v 2 2w.

Solution

(a) The length of v is given by _ v _ 5 Ï62 1 ~28!2 5 10, so to find u, multiply
v by 1

10 : u 5 〈 6
10 , 2 8

10〉 5 〈0.6, 20.8〉.
(b) v 2 2w 5 〈6, 28〉 2 2 〈22, 23〉 5 〈6, 28〉 1 〈4, 6〉 5 〈10, 22〉. b

Compass Directions for Vectors

We have used a coordinate system and directed line segments to identify vectors.
It is often useful to describe the direction of a vector with compass directions, so
a vector may have a given length in the direction 308 east of north, or 17.58 north
of west. To represent such vectors in a coordinate plane, we usually take the
positive y-axis as north and the positive x-axis as east.

cEXAMPLE 5 Adding with compass directions Vector u has length 3.0
and direction 208 south of east; v has length 4.0 and direction 308 east of north.
Find the length and direction of u 1 v.

Solution
First draw a diagram (always an essential step) in the coordinate plane to show
standard representations OA and OB for u and v. See Figure 46. The diagram
shows u 1 v as the diagonal OC of the parallelogram OACB. Find the length and
direction of OC. Both the length and direction can be described by solving the
triangle OAC in the diagram, where a 5 /OAC 5 1008. (Why?) If we let
b 5 /COA, then the angle of inclination of segment OC is given by u 5 b 2 208.
Let d 5 _OC _ . (See Figure 46b.)

By the Law of Cosines,

d 2 5 32 1 42 2 2 · 3 · 4 · cos 1008 < 29.16756, d < 5.4.FIGURE 46
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Using either the Law of Sines or the Law of Cosines, b < 478, from which
u < 278. Therefore u 1 v is the vector of length 5.4, directed 278 north of east (or
638 east of north). b

cEXAMPLE 6 Vector distances Mamie and Jody are approaching an inter-
section O. At noon, Mamie is a half-mile (2640 ft) from O and traveling south at
60 mph (88 ft/sec.) At the same time, Jody is one third-mile (1760 ft) from O and
traveling west at 45 mph (66 ft/sec). See the diagram (Figure 47).

(a) Express the position of each at t seconds after noon as a vector function. When
will each reach the intersection?

(b) Find their speed and location relative to O when t 5 20, t 5 30.
(c) Find a formula for the distance d~t! between their cars at time t. Draw a graph

of the distance and find how close they come to each other. At what time are
they closest to each other?

Solution

(a) Using O as the origin with the usual orientation in Figure 47, their positions at
time t are given by

m~t! 5 〈0,2640 2 88t 〉, j~t! 5 〈1760 2 66t, 0〉.

Mamie reaches the intersection when 2640 2 88t 5 0, or t 5 30. Similarly,
Jody gets to O when 1760 2 66t 5 0, or when t 5 26 2

3 . Thus Jody passes
through the intersection 3 1

3 seconds before Mamie.
(b)

m~20! 5 〈0, 880〉, j~20! 5 〈440, 0〉.
m~30! 5 〈0, 0〉, j~30! 5 〈2220, 0〉.

Thus at 20 seconds after noon, Mamie is twice as far from the intersection as
Jody, and 10 seconds later, Jody is 220 feet beyond the intersection when
Mamie arrives.

(c) The distance can be calculated either as the length (absolute value) of the vector
m 2 j or by using the distance formula between their locations at time t. In
either case the distance is given by

d~t! 5 Ï~66t 2 1760!2 1 ~2640 2 88t!2.

We can enter the function in this rather messy form, or we can simplify,
collecting terms and factoring.

d~t! 5 22Ï25t 2 2 1440t 1 20800.

From the information in part (b) and checking some values of d~t!, we graph
Y 5 22Ï~25X2 2 1440X 1 20800! in @20, 40# 3 @100, 500# and get something like Fig-
ure 48. Tracing, we find that the minimum distance occurs at about 29 sec-
onds, when they are about 176 feet apart. b

The simplification of the formula for d~t! in part (c) above is mostly for our
benefit, because the calculator will plot points just as quickly in either form. We,
however, may be able to observe relationships from the simpler form that are not
apparent in the more complicated form. In this instance for example, we may notice
that we are taking the square root of a quadratic function. The minimum will

FIGURE 47

FIGURE 48
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obviously occur at the vertex of the parabola y 5 25t 2 2 1440t 1 20800, which
we can locate without the use of technology. The vertex occurs when t 5 2b

2a 5
1440

50 5 28.8, and d~28.8! 5 176, information that we were able only to approxi-
mate from the calculator graph. Whether the greater precision of an exact form is
valuable depends, of course, on the problem. In this instance, most of us would
question whether part of a foot has any significance at all for Mamie and Jody. It
isn’t hard to imagine circumstances, though, in which a foot could make a vital
difference. The point is that we must learn how to use and interpret a mathematical
model in ways that are productive for our purposes, not for some arbitrary expec-
tation set in some textbook.

cEXAMPLE 7 Air flight A direct air route from Denver to Chicago runs
about 108 north of east. An airplane flies at a constant airspeed of 500 mph at a
heading of 158 north of east while the jet stream is blowing at a constant speed of
100 mph due east. What is the velocity (speed and direction) of the plane relative
to the ground?

Solution
Represent the airspeed of the plane as vector DB of magnitude 500 in the direction
158 north of east. The jet stream contribution is vector BC of magnitude 100
directed due east. The ground speed of the plane is the vector sum DB 1 BC. The
sum is represented by the directed line segment DC in Figure 49, at a heading of
u north of east. By the Law of Cosines, the length is

_ DC _ 5 Ï5002 1 1002 2 2 · 500 · 100 · cos 1658 < 597.

Angle u is also included in nBDC, u 5 /BCD, and the Law of Sines is conve-
nient:

u 5 Sin21S500 sin 1658

597 D < 12.58.

The ground speed of the plane is nearly 600 mph, but the heading of 12.58 north
of east will take the plane too far north, and a correction will be needed to reach
Chicago. b

EXAMPLE 8 Variable jet stream Suppose that in Example 7 the jet stream
is blowing due east but at a speed of x miles per hour. Then the flight time T is a
function of x, equal to distance/ground speed.

(a) Find a formula for T~x!, assuming a distance of 1000 miles.
(b) From a graph of T~x!, find the flight time, and the number of minutes less than

2 hours, when the jet stream is blowing at 40 mph, at 80 mph, at 100 mph, at
120 mph.

Solution

(a) We can use the vector diagram in Figure 49, with a label of x for BC. As in
Example 7, the ground speed is given by the length of DC. By the Law of
Cosines,

_ DC _ 5 Ï5002 1 x 2 2 2 · 500 · x cos 1658

< Ïx 2 1 965.9x 1 250,000.

FIGURE 49
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Then the flight time, in hours, is given by

T~x! 5 1000yÏx 2 1 965.9x 1 250,000.

(b) In @20, 140# 3 @1, 2# we get a graph like that in Figure 50, from which we can
read approximate flight times as follows:

T~40! < 1.86 hr < 111 min (about 9 minutes less than 2 hours)

T~80! < 1.73 hr < 104 min (about 16 minutes less than 2 hours)

T~100! < 1.67 hr < 100 min (about 20 minutes less than 2 hours)

T~120! < 1.62 hr < 97 min (about 23 minutes less than 2 hours) b

EXERCISES 7.5

Check Your Understanding

Exercises 1–5 True or False. Give reasons.

1. Vectors 〈2, 23〉 and 〈3, 22〉 are directed in opposite
directions.

2. Vectors 〈3, 4〉 and 〈26, 28〉 are directed in opposite
directions.

3. The magnitude of vector 〈3, 4〉 is greater than the mag-
nitude of 〈22, 25〉.

4. When a jet stream is blowing at 80 mi/hr in the direc-
tion 458 north of east, then for an airplane traveling
east, the ground speed is greater than the speed of the
instrument panel.

5. Answer Exercise 4 if the jet stream is blowing in the
direction 458 south of west.

Exercises 6–10 Fill in the blank so that the resulting
statement is true.

6. If v is directed 458 north of east and _ v _ 5 2, then
v 5 .

7. Vector v is directed 458 north of west. Vector u is in the
opposite direction and _ u _ 5 4, then u 5 .

8. If u and v are unit vectors, u is directed east and v is
directed south, then u 1 v 5 .

9. If u is any nonzero vector, then the number of unit
vectors perpendicular to u is .

10. If _ v _ 5 16 and v is directed 308 south of west, then
v 5 .

Develop Mastery

For the first 26 exercises, vectors u, v, and w are given by
u 5 OP, v 5 OQ, and w 5 OR, where O is the origin and
the other points are P~1, 1!, Q~2, 25!, and R~22, 1!.

Exercises 1–8 Components Find the components of
each vector and draw a diagram to show the vector as a
directed line segment in standard position.

1. 4u 2. 22v

3. 3w 4. u 1 v

5. v 2 u 6. u 2 2v

7. 22v 1 3w 8. v 1 u 1 w

9. Find a vector x that, when added to u, gives w.

10. Find a vector x that, when subtracted from 2v, gives w.

11. Find a vector x that, when added to v 1 w, gives u.

12. Find a vector x that, when added to u 2 v 1 w,
gives 0.

Exercises 13–15 Angle Between Vectors Find the angle
(to the nearest degree) between the pair of vectors.

13. u and v 14. u and w 15. w and v

16. Find all unit vectors OX such that OX is perpendicular
to OP.

17. Find all unit vectors OX such that OX is perpendicular
to OR.

18. If x 5 2u 1 v 1 w, show that x and u are perpendicu-
lar to each other.

Exercises 19–25 Length of Vector Find the lengths of
the vectors.

19. u and 2u 20. v and 2v

21. w and 23w 22. u, v and u 1 v

23. u and ku, where k . 0.

24. u and ku, where k , 0.

25. w, v and aw 1 bv

26. Is there a positive integer n such that the vector nu has
integer length? Explain your answer.

FIGURE 50
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27. Find a vector v of length 4 whose first component is
twice its second component.

28. Find all vectors v of length 8 whose components are
equal in magnitude, but have opposite signs.

29. If u 5 〈3, 21〉, find all vectors v 5 〈x, 2〉 for which
_ v 2 u _ 5 Ï34.

30. If u 5 〈3, 21〉, find all vectors v 5 〈x, 2〉 for which
_ u 1 v _ 5 Ï17.

31. If u 5 〈3, 21〉, find all vectors v 5 〈x, y 〉 for which
_ u 1 v _ 5 2.

32. Given point P~21, 2!, find all points Q~x, 2! for which
the vector PQ has length 4.

33. Given point P~21, 2!, find all points Q~2, y! for which
the vector PQ has length 5.

34. Given point P~21, 2!, find all points Q~x, y! for which
the vector PQ has length 4.

35. Vector Sum Suppose A and B are points on opposite
shores of a lake as shown in the diagram. A man starts
at point A and reaches point B by walking from A to C
(48Ï2 m 458 south of east), C to D (36 m east), D to B
(72 m north). If he went directly by rowboat, how far and
in what direction should he go? (Hint: Express each leg
of his walk as a vector.)

36. A boat sails from port 72 km due east, then turns 608
toward the south and travels 48 km in the new direction.
How far and in what direction is the boat now located,
relative to port?

37. In playing golf Patty takes two putts to get the ball into
the hole. The first putt takes her ball 8.0 feet 308 north
of east. She then sinks the ball by putting 1.5 feet due
north. To execute the putt in one stroke how far and in
what direction should she have hit the ball?

38. Patty’s golfing partner (from Exercise 37) ended up on
the green exactly 20 feet due north of Patty’s ball be-
fore her first putt. How far and in what direction should
he aim his putt to hole out in one stroke? Is his putt
easier or more difficult than Patty’s (assuming that the
green is level in all directions)?

39. A small motorboat has a speed of 5.0 mph in still water.
It heads perpendicularly across a river whose current is
3.5 mph. Find the true heading and speed of the boat.

(Hint: Draw a diagram to show both the heading and
speed of the boat and the direction and speed of the
current as vectors.)

40. Solve the problem in Example 6 if Mamie is 2
3 mile (3520

ft) from 0 and Jody is 1
3 mile (1760 ft) from 0 at noon.

41. Solve the problem in Example 6 if Mamie is driving at

96
ft

sec S65.5
mi
hrD and Jody is driving at 72

ft
sec S49

mi
hrD.

42. Velocity of Airplane The instrument panel of a plane
indicates a speed of 400 mph and a compass heading due
north. If there is a cross wind of 80 mph from the south-
west (blowing 458 east of north), what is the actual veloc-
ity (speed and direction) of the plane relative to the
ground?

43. Variable Jet Stream In Exercise 42, suppose the cross
wind is x mph in the direction 458 east of north. Find a
formula for (a) the ground speed and (b) direction of the
airplane as a function x. (c) If x is positive, the wind is
from the southwest. If x is negative, in what direction is
the wind blowing? (d) Use graphs to determine the speed
and direction of the airplane when x is

(i) 40 (ii) 80 (Exercise 42)
(iii) 120 (iv) 250 (See Example 8).

44. In Exercise 43, let T~x! be the time it takes for the plane
to travel 1600 miles. Give a formula for T~x!. Use a
graph to determine how long it takes when (a) x 5 50,
(b) x 5 100, (c) x 5 260.

45. An airplane has an airspeed of 500 mph in a north-
easterly direction (458 north of east) and the jet stream
is blowing at 100 mph due east. Find the velocity (speed
and direction) of the plane relative to the ground.

46. Variable Jet Stream In Exercise 45, suppose the jet
stream is blowing at x mph due east. Find formulas for
the (a) ground speed and (b) direction of the airplane as
a function of x. (c) Use graphs to determine the speed
and direction of the airplane when x is
(i) 50 (ii) 100 (Exercise 45)
(iii) 280. Explain what x 5 280 means.

47. In Exercise 46, determine a formula for the (a) time,
T~x!, it takes for the airplane to travel 2400 miles.
(b) Use a graph to find the time when x is
(i) 40 (ii) 100 (iii) 260.

48. Repeat Exercise 46 if the jet stream is x mph in the
direction 458 south of west rather than due east.

49. Air Flight Time Suppose an airplane has an airspeed
of 500 mph and the jet stream is blowing at 100 mph
due east. If the plane has to travel from Seattle to Salt
Lake City (900 miles at a heading 458 south of east), in
what direction should the plane head? How long will the
flight take?

50. Repeat Exercise 49 for the return flight, from Salt Lake
City to Seattle, with the same airspeed and jet stream.
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CHAPTER 7 REVIEW

Test Your Understanding

True or False. Give reasons.

1. In a right triangle suppose the hypotenuse c and angle

b are given. Side b can be found by using b 5
c

sin b
.

2. In a right triangle the area A is given by A 5
1
2 c 2 sin a sin b.

3. In a right triangle the area A is given by A 5 1
4 c 2 sin 2a.

4. Suppose angle b and the perimeter P of a right triangle
are given. The hypotenuse c is given by

c 5
P

1 1 sin b 1 cos b
.

5. If a 5 2b in a right triangle, then a 5 2b.

6. There is exactly one triangle for which a 5 3.2, b 5
4.1, and g 5 248.

7. Exactly one triangle is determined by b 5 7.3, c 5 8.7,
and g 5 1208.

8. There is no triangle with a 5 3.6, b 5 3.6, and g 5
1358.

9. There is exactly one triangle ABC for which b 5 6,
a 5 308, and h 5 3, where h is the altitude from C to
AB.

10. There are two triangles for which a 5 6, b 5 8, and
g 5 408.

11. If a 5 5, b 5 8, and c 5 10, then g is an obtuse angle.

12. If a 5 4, b 5 6, and c 5 7, then a is an acute angle.

13. If a 5 3, b 5 5, and c 5 6, then a 1 b . 908.

14. In triangle ABC, if a 5 508, b 5 608, then c must be
the longest side.

15. A triangle with a 5 5, b 5 12, and c 5 13 is a right
triangle.

16. A triangle with a 5 Ï3, b 5 Ï5, and c 5 2Ï2 is a
right triangle.

17. If each side of a triangle is doubled, then its area is also
doubled.

18. If a 5 308 and a 5 16, then b 5 32 sin b.

19. If b 5 458 and b 5 5Ï2, then c 5 10 sin g.

20. The area of a triangle with a 5 Ï3, b 5 8, and
g 5 608 is a whole number.

21. If in a right triangle a 5 Ï3 and a 5 308, then b is a
whole number.

22. The area of a triangle with a 5 2, b 5 4, and g 5 408
is twice that of a triangle with a 5 2, b 5 4, and
g 5 208.

23. The area of a triangle with a 5 4, b 5 16, and g 5 438
is twice that of a triangle with a 5 2, b 5 8, and
g 5 438.

24. If the area of a triangle is 16 and g 5 308, then the
product a · b is equal to 32.

25. In a triangle with a 5 7.5, b 5 5.3, and c 5 5.6, the
largest angle is a.

26. The area of a triangle with a 5 4Ï5, b 5 Ï15, and
g 5 608 is equal to 15.

27. If c 2 . a2 1 b 2, then cos g is negative.

28. If b 2 . a2 1 c 2, then b is an obtuse angle.

29. If a2 5 b 2 1 c 2, then g is a right angle.

30. If g is an obtuse angle, then c . Ïa2 1 b 2.

31. If c . Ïa2 1 b 2, then a must be an acute angle.

32. If b, b, and g are given, then c 5
b sin b

sin g
.

33. If a, b, and c are given, then b 5
c sin b

sin~a 1 b!
.

34. If a 5 2b, then a 5 2b.

35. If b 5 2c, then sin b 5 2 sin g.

36. If a 5 2c, then sin a 5 sin 2g.

37. If a 5 2b, then a 5 2b cos b.

38. In any triangle sin~a 1 b! 5 sin g.

39. If z 5 23 1 4i, then _ z _ 5 5.

40. A square root of 2i is 1 1 i.

41. A cube root of 8i is Ï3 1 i.

42. A polar form for Ï3 1 i is 2(cos 608 1 i sin 608).

43. Vectors 〈21, 1〉 and 〈1, 21〉 are perpendicular to each
other.

44. The angle between vectors 〈1, 21〉 and 〈0, 1〉 is
1358.

45. If u 5 〈21, 3〉 and v 5 〈22, 1〉 then _ u 1 v _ 5 5.

46. If u 5 〈2, 21〉 and u 1 v 5 〈22, 1〉 then v 5 〈24, 2〉.
47. Vectors 〈2, 24〉 and 〈24, 2〉 are in opposite direc-

tions.

48. The vector 〈3, 23〉 is in the direction of 458 north of
west.

49. If the jet stream is blowing in the southeast direction,
then the ground speed of an airplane traveling north is
greater than its air speed.
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50. If the jet stream is blowing in a southwesterly direction,
then for an airplane traveling north, the ground speed is
greater than the air speed.

Review for Mastery

In the following exercises assume standard labeling of parts
of a triangle where a, b, and c denote the lengths of the sides
and a, b, and g are the angles opposite the respective sides.
For right triangles g 5 90 8.

1. In a right triangle c 5 37.4 and b 5 258209. Find a, a,
and b.

2. Find the area of a right triangle in which c 5 2.56 and
a 5 348109.

3. The area of a right triangle is 0.924 m2 and one of the
angles is 378209. Find the length of the hypotenuse.

4. The hypotenuse of a right triangle is 6.5 cm and its area
is 8.4 cm2. Find the two acute angles.

5. Determine the area of an isosceles triangle with equal
sides of length 8.6 cm and opposite (base) angles of 368.

6. Given a 5 368, b 5 418, and a 5 7.6, find c.

7. Given a 5 3.75, c 5 5.76, and b 5 137.48, find b.

8. If a 5 3.48, c 5 5.63, and g 5 62.78, find b.

9. If a 5 3.7, b 5 7.5, and c 5 6.8, determine angle a.

10. Given a 5 2.8, b 5 3.7, and b 5 548, find c and g.

11. If a 5 1.53, b 5 6.41, and g 5 37.48, find the area of
the triangle.

12. If b 5 3.7, c 5 5.3, and a 5 1158, find the perimeter
of the triangle and length of the altitude to side c.

13. An equilateral triangle is inscribed in a circle of radius
12.4 inches. What is the area of the triangle?

14. The area of triangle ABC is 427 m2, g 5 35.28 and
a 5 23.5 m. Find b.

15. The perimeter of a right triangle is 125 cm and one
angle is 35.08. Find the hypotenuse and the area of the
triangle.

16. In the diagram, _ AC _ 5 2.45 km, a 5 21.48, and
g 5 125.38. Find h, where h 5 _ BD _ .

17. In the diagram the radius of the circle with center at C
is 1.7 cm and the central angle u 5 438. Find the area
of (a) triangle ABC, and (b) the shaded region.

18. The perimeter of triangle ABC is 145 cm, a 5 36.08,
and b 5 77.08. Find the length of side c.

19. Height of Building From the top of a building at point
A, the angle of depression to point C on the ground is
56.08, while from a point B, 48.0 feet directly below A,
the angle of depression to point C is 41.08. Find the
height of the building. See the diagram.

20. A circle is inscribed inside an equilateral triangle having
sides of length 12. Find the area of the region that is
inside the triangle and outside the circle.

21. Ambiguous Case In triangle ABC, a 5 5, b 5 8, x
and y are as shown in the diagram.
(a) Find a formula for y as a function f of x for the first

diagram, and for y as a function g of x in the second
diagram.

(b) Use graphs of f and g on the same screen to find y
when x is 258.

(c) For what values of x are there two solutions?
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22. Maximum Angle In triangle ABC, a 5 6, b 5 3, x
and u are as shown in the diagram.
(a) Find a formula for u as a function f of x.
(b) From a graph of f find u when x 5 368.
(c) For what values of x is u 5 128?
(d) What is the maximum value u can have?

23. Maximum Volume In triangle ABC, b 5 10, c 5 5.
Let b be a variable angle, b 5 x. If nABC is revolved
about side BC, a solid consisting of two cones joined
together, is generated.
(a) Find a formula for the volume V~x! of the solid.
(b) Use a graph to find the value of x that will give a

maximum volume. What is the maximum volume?

24. Point E is the midpoint of side BC of square ABCD. Find
sin u, where u is the angle formed by AE and the diagonal
AC. (Hint: First draw a diagram.)

25. In the diagram show that cot u 2 cot f 5
b
c

.

26. Height of CN Tower The CN Tower of Toronto is the
world’s tallest self-supporting structure. From a point on
the ground 845.0 feet from the tower’s base, the angle of
elevation to the top is measured as 65.118. What is the
height of the tower?

27. Perimeter, Area of Octagon A regular octagon is in-
scribed in a circle of radius 24 feet.
(a) What is the perimeter of the octagon?
(b) What is the area of the region bounded by the oc-

tagon?

28. Inaccessible Distance Two cabins are located at
points A and B on the shore of a lake (see the diagram).
From the information in the diagram, find how far a
boat would have to travel from A to B.

the information in the diagram, find how far a boat
would have to travel from A to B.

29. Vertices as Coordinates Points A~12, 7!, B~7, 12!, and
C~0, 0! are vertices of a triangles.
(a) Find the measure of angle u 5 /ACB to the

nearest tenth of a degree.
(b) What is the length of the altitude from C to AB?
(c) What is the area of the region bounded by nABC?

30. For points A~2, 1!, B (5, 5), and C~6, 4! in the plane, find
the measure of /ABC (a) in degrees (to 1 decimal
place) and (b) in radians (to 1 decimal place).

31. Find the measure to the nearest tenth of a degree of each
angle of the parallelogram with vertices at A~22, 4!,
B~2, 1!, C~5, 3!, and D~1, 6!.

32. Find the largest angle to the nearest degree in the trian-
gle with sides of lengths 39, 80, and 89.

33. Three mutually tangent circles with centers at A, B,
and C have radii of 3.0, 4.0, and 5.0, respectively, as
shown in the diagram. What is the area of the shaded
region?

34. Height of a Building At a certain point A on the
ground, the angle of elevation to the top of a building is
37.18. At a point 64.2 feet farther away, the angle of
elevation is 30.28.
(a) What is the height of the building?
(b) How far from the base of the building is point A?

35. Height of a Tree A tree stands vertically on a hill that
slopes 358 from the horizontal. At a point 86 feet down-
hill from the tree, the angle of elevation to the top of the
tree is 538. See the diagram. How tall is the tree?
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36. The lengths of the diagonals of a parallelogram are
12 cm and 18 cm. If the smaller angle where the diago-
nals intersect is 328, what are the lengths of the sides?

Exercises 37–42 How many triangles (if any) have the
given parts?

37. a 5 3.6, b 5 7.5, g 5 758

38. a 5 5.6, b 5 4.5, b 5 248

39. a 5 408, b 5 1158, g 5 258

40. a 5 7.3, b 5 2.8, c 5 5.4

41. b 5 8.2, c 5 3.7, b 5 438

42. a 5 478, b 5 658, a 5 24

Exercises 43–48 Powers of Complex Numbers Eval-
uate the expression. Give the answer in rectangular form for
complex numbers, a 1 bi, where a and b are real numbers.
Whenever reasonable, give the result in exact form; other-
wise give a and b rounded off to two decimal places.

43. (a) ~1 1 i!5 (b) ~3 2 2i!6

44. (a) ~1 1 i!22 (b) ~2 1 3i!22

45. (a) ~Ï3 1 i!6~1 1 i!24 (b) ~3 2 2i!4~1 1 2i!23

46. (a) S1
2

1
Ï3

2
iD12

(b) S 1

Ï5
1

2

Ï5
iD28

47. (a) F2Scos
p

12
1 i sin

p

12DG
6

(b) Scos
p

8
1 i sin

p

8D24

48. (a) Scos
4p

15
1 i sin

4p

15D10

(b) Scos
2p

15
1 i sin

2p

15D210

49. Find the roots of (a) z 2 2 2iz 2 2 5 0 and
(b) z 2 2 ~2 2 i!z 2 i 5 0.

50. Find the cube roots of
Ï3 2 i

2
.

51. Find the fourth roots of
3 2 4i

5
.

52. Find the sixth roots of 2729.

53. Find the fourth roots of 8Ï23~2 1 i! .

54. Find all complex number roots of the equation
x 5 1 1 5 0.

Exercises 55–57 Vector Arithmetic Vectors u and v are
given by u 5 〈21, 3〉, v 5 〈0, 24〉.
55. Find (a) u 1 v and (b) 2u 2 v

56. Find (a) _ u _ and (b) _ u 2 v _

57. Find the angle between u and v.

58. A boat travels 64 km due west from port, then turns 608
toward the north and travels 48 km in the new direc-
tion. How far and in what direction is the boat’s loca-
tion relative to the port?

59. An airplane has an airspeed of 400 mph in the direction
308 east of north. If there is a wind of 80 mph blowing
due east, (a) what are the speed and direction of the
plane relative to the ground? (b) How long will it take
for the plane to fly a distance of 1000 ground miles?

60. Air Flight The instrument panel of an airplane indi-
cates a speed of 400 mph and a compass heading due
south. (a) If there is a cross wind of x mph in the
direction 458 east of north, find a formula for the
ground speed of the airplane as a function of x.
(b) Use a graph to find the ground speed when x 5 40;
x 5 100.

61. In Exercise 60, find a formula that gives the time it
takes for the airplane to travel 1500 miles. Use a graph
to find the time when x 5 20; x 5 80; x 5 120.

62. Minimum Distance Two cars are traveling on high-
ways that interesect at right angles. At noon car A is
2400 feet south of the intersection and is traveling
north at a speed of 80 ft/sec, while car B is 2100 feet
west of the intersection and is traveling east at a speed
of 60 ft/sec.
(a) What is the speed of each car in miles per hour?
(b) Express the position of each car as a vector function

of t, the number of seconds after noon.
(c) Find a formula that gives the distance d~t! between

the cars. Use a graph to find t for which d~t! is a
minimum.
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THE UNIFYING THEME OF THIS chapter is the set of natural numbers. Functions
defined on that set, called sequences, are discussed in the first three sections.
Throughout this book we have invited you to explore and discover mathematics
yourself. Number patterns encourage this curiosity, and they are a primary source
of the fascination mathematics has always had for humans. Section 8.2 is a
calculator-based exploration of limits and convergence. Section 8.4 is devoted to
questions about patterns that illustrate where mathematical ideas come from and
how theorems are discovered. Section 8.5 introduces mathematical induction, as
both a productive way of thinking and a powerful tool to establish the validity of
statements about the natural numbers. One such statement, the binomial theorem,
is the focus of Section 8.6.

8.1 I N T R O D U C T I O N T O S E Q U E N C E S ;
S U M M A T I O N N O T A T I O N

In some cases such as the weather, the phenomenon always appears to be
random but in other cases such as the dripping faucet, sometimes the dripping
is periodic and other times each drip appears to be independent of the
preceding one, thereby forming an irregular sequence.

B. J. West

We live in a world largely ordered by numbers, most often by the natural numbers.
Record books list many firsts; a runner in the Boston Marathon may be proud to
come in 367th or 893rd. We sometimes use incredibly large numbers to identify

DISCRETE MATHEMATICS:
FUNCTIONS ON THE SET
OF NATURAL NUMBERS

8.1 Introduction to Sequences; Summation Notation

8.2 Graphs and Convergence

8.3 Arithmetic and Geometric Sequences

8.4 Patterns, Guesses, and Formulas

8.5 Mathematical Induction

8.6 The Binomial Theorem

433
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things: nine digits suffice to provide unique Social Security numbers for 250 million
Americans, but look at some of the numbers on insurance forms.

A familiar example from mathematics is the sequence of prime numbers,
where 2 is the first, 3 is the second, 5 is the third, and so on. This order defines a
function, with the rule of correspondence

f ~n! 5 the nth prime number.

Euclid proved that there are infinitely many primes, which means that the domain
of the prime number function is infinite, the set N of all natural numbers. There is
no last prime. We have no simple formula to compute the millionth prime,
f ~1,000,000!, but we know that it exists.

Sequences and Notation

A sequence (sometimes, for emphasis, an infinite sequence) can be thought of as
a list, with a term for every natural number, even though we sometimes use
sequences like a0, a1, a2, . . . or b4, b5, b6, . . . . Each has a first term, a second
term, and so on. It is convenient to define a sequence in terms of its domain, but
equivalent domains could be used, as well.

Definition: sequence

A sequence is a function whose domain is the set of natural numbers.

The rule that defines a sequence can be either given by a mathematical formula
or stated in words. The terms of a sequence, the function values, can be listed as

f ~1!, f ~2!, f ~3!, . . . , f ~n!, . . . ,

or we may use subscript notation, where f ~n!, the nth term of the sequence, is
denoted by an. We sometimes denote the whole list of sequence values by $an%:

a1, a2, a3, . . . , an, . . . is equivalent to $an%.

cEXAMPLE 1 Evaluating terms List the first four terms and the tenth term
of the sequence (a) f ~n! 5 2n 2 1, (b) bn 5 n2 2 4, and (c) an 5 ~21!n.

Solution

(a) f ~1! 5 2 · 1 2 1 5 1, f ~2! 5 2 · 2 2 1 5 3, f ~3! 5 2 · 3 2 1 5 5,
f ~4! 5 2 · 4 2 1 5 7, f ~10! 5 2 · 10 2 1 5 19.

(b) b1 5 12 2 4 5 23, b2 5 22 2 4 5 0, b3 5 32 2 4 5 5, b4 5 42 2
4 5 12, b10 5 102 2 4 5 96. The sequence begins 23, 0, 5, 12, . . . .

(c) a1 5 ~21!1 5 21, a2 5 ~21!2 5 1, a3 5 ~21!3 5 21, and a4 5 ~21!4 5 1.
The sequence begins 21, 1, 21, 1, . . . , and a10 5 ~21!10 5 1. The same
sequence is given by the rule

an 5 H21 if n is odd
1 if n is even

. b

cEXAMPLE 2 Evaluating terms List the first five terms.

(a) an 5 2n
(b) bn 5 ~n 2 1!~n 2 2!~n 2 3! 1 2n

(c) cn 5 H2n for n 5 1, 2, 3
0 for n $ 4

By the time I was well
enough to go back to
school I had missed more
than two years. My parents
arranged to have me
tutored by a retired
elementary school teacher.
One day she told me that
you could never carry the
square root of 2 to a point
where the decimal began
to repeat. She knew that
this fact had been proved,
although she did not know
how.

Julia Robinson
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Solution
The sequences begin:

(a) $an% 5 2, 4, 6, 8, 10, . . .
(b) $bn% 5 2, 4, 6, 14, 34, . . .
(c) $cn% 5 2, 4, 6, 0, 0, . . . b

Example 2 illustrates an important point. Giving a few terms does not define
a sequence. Infinitely many sequences begin 2, 4, 6, . . . . Test makers sometimes
ask for “the next term in the sequence 2, 4, 6, . . . ,” expecting a response of “8,”
but as Example 2 shows, that question has no single correct response. Consider
some less obvious sequences that begin 2, 4, 6, . . . :

Sequence Beginning Rule (Function)

2, 4, 6, 10, 16, 26, . . . Each term after the second is the sum of the two
preceding terms.

2, 4, 6, 1, 3, 5, 0, . . . The term an is the remainder when 9n is divided
by 7.

2, 4, 6, 2, 3, 4, . . . The sequence is taken from the decimal
expansion for p starting in the 374th place,
then listing every other digit.

Sequences Defined Recursively

We can define a sequence by stating the rule of correspondence, either by a formula
or in words. Another useful method is to use recursion, continuing a sequence,
based on known terms of the sequence, as illustrated in the following examples.

cEXAMPLE 3 Compare sequences Evaluate several terms of the sequences

(a) a1 5 4 and an 5 an21 1 3 for n . 1 (b) bn 5 3n 1 1.

Solution

(a) Start with a1 5 4. The second part of the definition says that when n is greater
than 1, each term is obtained by adding 3 to the preceding term, so a2 5 a1 1
3 5 4 1 3 5 7, a3 5 a2 1 3 5 7 1 3 5 10, and so on. The sequence begins
4, 7, 10, 13, 16, . . . , and continues by adding 3 each time.

(b) With a closed (explicit) formula, calculate the first few terms directly: 4, 7, 10,
13, 16. The sequence begins with exactly the same terms as those in part a. b

To be identical, two sequences must do more than agree for the first few terms;
they must continue to agree. In Example 3, $an% and $bn% have the same first five
terms. Are they identical sequences? Notice how bn is related to bn21. The formula
gives bn21 5 3~n 2 1! 1 1 5 3n 2 2 and bn 5 3n 1 1 5 ~3n 2 2! 1 3, so
bn 5 bn21 1 3. The two sequences satisfy the same recursive relation, so they are
identical sequences.

Example 3 also shows that a sequence defined recursively, $an%, may also be
given by a formula in closed form, $bn%. Both methods are useful. Recursive
relations often occur naturally and they lend themselves to computer programming,
but an explicit formula gives any particular term directly, without the need to

Strategy: (a) Evaluate
the terms of a recursive
sequence in order, using one
term to get the next. In this
case, given one term, we get
the next one by adding 3.
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HISTORICAL NOTE THE FIBONACCI SEQUENCE

calculate earlier terms. For example, the first sequence in the table above is given
recursively as:

a1 5 2 a2 5 4 and an 5 an21 1 an22 for n . 2.

To get a10, we would need a9 and a8, for which we would need a7 and a6, etc. The
term a64 is defined, but it requires considerable work to determine that

a64 5 21,220,419,715,446.

The Fibonacci sequence

The Fibonacci sequence $ fn% is defined recursively by

f1 5 1, f2 5 1, fn 5 fn21 1 fn22 for n . 2.

Check to see that the Fibonacci sequence begins 1, 1, 2, 3, 5 . . . .

Factorials

An important sequence is often defined recursively as

F0 5 1 and Fn 5 nFn21 for n . 0.

Among the many sequences that
mathematicians have studied, surely
none is more fascinating than the
Fibonacci sequence that begins

1, 1, 2, 3, 5, 8, 13, 21, 34, 55, . . . ,

where each term after the second is
the sum of the two preceding terms.

The sequence first appeared in
print in the year 1202. Leonardo of
Pisa, also known as Fibonacci,
wrote a Book of Counting (Liber
Abaci) that introduced the then modern
mathematics of North Africa (including Arabic
numerals) to Europe. The book was one of the
most important sources of mathematical learning
in Europe for several hundred years. One of the
more trivial problems in the book dealt with the
growth of a colony of rabbits and led to the
sequence of numbers that now bears Fibonacci’s
name.

Once a person becomes aware of the numbers
in the Fibonacci sequence, the numbers seem to
pop up everywhere. All kinds of growth processes
involve the sequence. As a simple example, the

next time you pick up a pine cone
or look at a sunflower head, count
the number of spirals at some fixed
angle. They will turn out to be
Fibonacci numbers. The golden
rectangle of Greek architecture, the
rectangle considered to have the
most pleasing proportions, has sides
whose ratio is approached by ratios
of successive Fibonacci numbers.
The Fibonacci numbers also occur
as sums of binomial coefficients
taken along diagonals of Pascal’s

triangle. An entire journal, The Fibonacci
Quarterly, is devoted to discoveries related to
Fibonacci numbers and the Fibonacci sequence.

The Fibonacci sequence is probably the only
mathematical entity to have made the London
stage. A recent play is based on the life of Alan
Turing, the British mathematician who laid the
theoretical foundations for modern computers and
the study of artificial intelligence and who helped
crack Germany’s supersecret code in World War II.
In the play Turing explains to the other characters
the fascination of the Fibonacci sequence.

Fibonacci
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The first few items are easily calculated.

F0 5 1 F5 5 5 · F4 5 120

F1 5 1 · F0 5 1 F6 5 6 · F5 5 720

F2 5 2 · F1 5 2 F7 5 7 · F6 5 5,040

F3 5 3 · F2 5 6 F8 5 8 · F7 5 40,320

F4 5 4 · F3 5 24 F9 5 9 · F8 5 362,880

The terms of the sequence grow very rapidly. F10 exceeds 3 million, and F13 is
nearly 8 billion.

This sequence is the sequence of factorials; we reserve a special notation for
factorials:

Fn 5 n! (read “n factorial”).

The sequence has a recursive definition.

Factorial sequence (recursive form)

Suppose n is any nonnegative integer. The factorial sequence $n!% is given by

0! 5 1

n! 5 n~n 2 1!! for n . 0.

A formula in closed form for n! is suggested by the following examples.

2! 5 2~1!! 5 2 · 1, 3! 5 3~2!! 5 3 · 2 · 1, 4! 5 4~3!! 5 4 · 3 · 2 · 1.

It can be shown that for any positive integer n, n! is the product of all the integers
from 1 to n inclusive. This gives a closed-form definition.

Factorial sequence (closed form)

If n is any nonnegative integer, then the factorial sequence is given by

0! 5 1

n! 5 n~n 2 1! . . . 3 · 2 · 1 if n $ 1

cEXAMPLE 4 Factorials (a) Evaluate 8!
4! 4! . (b) Express the sum 7!

2! 5! 1
7!

3! 4! as a single fraction and then check by evaluating each expression.

Solution

(a) Using the closed form for n!, write out each factorial as a product and then
simplify.

8!
4! 4!

5
8 · 7 · 6 · 5 · 4 · 3 · 2 · 1
4 · 3 · 2 · 1 · 4 · 3 · 2 · 1

5
8 · 7 · 6 · 5

4 · 3 · 2
5 70

(b) Follow the strategy.

7!
2! 5!

1
7!

3! 4!
5

3 · 7!
~3 · 2!!5!

1
5 · 7!

3! ~5 · 4!!
5

3 · 7!
3! 5!

1
5 · 7!
3! 5!

5
3 · 7! 1 5 · 7!

3! 5!
5

~3 1 5!7!
3! 5!

5
8 · 7!
3! 5!

5
8!

3! 5!

Strategy: (b) To add
fractions, find a common
denominator that contains
all factors of both given
denominators. Since 5! 5
5 · 4! and 3! 5 3 · 2!, the
common denominator is
3! 5!; multiply the first term
by 3

3 and the second by 5
5 .
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Thus

7!
2! 5!

1
7!

3! 4!
5

8!
3! 5!

.

As a check,

7!
2! 5!

1
7!

3! 4!
5 21 1 35 5 56 and

8!
3! 5!

5
8 · 7 · 6
1 · 2 · 3

5 56. b

Partial Sums and Summation Notation

We will often be interested in the sum of certain terms of a given sequence. To
illustrate, consider the sequence $bn% given by bn 5 2n 2 1. This sequence begins
1, 3, 5, 7, . . . . There is a related sequence denoted by $Sn%, which we call the
sequence of partial sums,

S1 5 b1 5 1

S2 5 b1 1 b2 5 1 1 3 5 4

S3 5 b1 1 b2 1 b3 5 4 1 5 5 9

S4 5 b1 1 b2 1 b3 1 b4 5 9 1 7 5 16.

The emerging pattern suggests that the general term is given by the formula Sn 5 n2.
It is cumbersome to write out the partial sum for many terms of a sequence. For

instance, S100 is the sum of 100 terms, b1 1 b2 1 b3 1 · · · 1 b100. We introduce
some special notation to denote such sums, using the Greek letter sigma S:

S100 5 o
100

k51
bk 5 b1 1 b2 1 b3 1 · · · 1 b100

The summation notation is a convenient shorthand. We suggest frequent practice
to become familiar with it.

Definition: sequence of partial sums

Suppose $an% is any sequence of real numbers. The corresponding sequence
of partial sums is $Sn% where

Sn 5 o
n

k51
ak 5 a1 1 a2 1 a3 1 · · · 1 an.

The sigma notation (m
k51 ak simply means the sum of the first m terms of the

sequence $an%. The letter k does not appear in the expanded form and is sometimes
called a dummy variable. Any other letter would do as well. For example,
(3

k51 ak 5 a1 1 a2 1 a3, and the same sum is given by (3
j51 aj, which also equals

a1 1 a2 1 a3. In (m
k51 ak the integer 1 is called the lower limit for the sum, and m

is the upper limit.
The sigma notation is useful in many other contexts, including differences of

partial sums. Suppose we are interested in S6 2 S3. In expanded form,

S6 2 S3 5 ~a1 1 a2 1 a3 1 a4 1 a5 1 a6! 2 ~a1 1 a2 1 a3!

5 a4 1 a5 1 a6

5 o
6

k54
ak.
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In general, for m . n,

Sm 2 Sn 5 o
m

k5n11
ak

It should also be clear that the sequence of partial sums has a recursive form.

Sequence of partial sums (recursive form)

Suppose $an% is any sequence of real numbers. The corresponding sequence
of partial sums $Sn% is

S1 5 a1 and Sn 5 Sn21 1 an for n . 1.

cEXAMPLE 5 Expanding sums Write out the sum in expanded form and
evaluate.

(a) o
4

k51
k~k 1 2!2

(b) o
6

i53
~i 2 2!i 2

Solution

(a) o
4

k51
k~k 1 2!2 5 1~1 1 2!2 1 2~2 1 2!2 1 3~3 1 2!2 1 4~4 1 2!2

5 9 1 32 1 75 1 144 5 260.

(b) o
6

i53
~i 2 2!i 2 5 ~3 2 2!32 1 ~4 2 2!42 1 ~5 2 2!52 1 ~6 2 2!62

5 9 1 32 1 75 1 144 5 260. b

Observe that the sums in Example 5 are identical even though they appear quite
different in the compact sigma notation. We may write the same sum with any
specified lower limit if we make appropriate adjustments in the upper limit and the
defining formula. When rewriting a sum in sigma notation, always check at least the
first and last terms to verify that your limits and formula give correct values.

cEXAMPLE 6 Converting to sigma notation Express the following in
sigma notation.

1
1 · 2

1
1

2 · 3
1

1
3 · 4

1
1

4 · 5
1

1
5 · 6

Solution
Sigma notation requires a formula that describes each term of the given sum. For
this purpose it helps to identify what remains fixed and what changes from term to
term. In each term the numerator is 1 and the denominator is the product of two
consecutive integers, k~k 1 1!. In the first term, k 5 1, and in the last, k 5 5. The
desired sum may be written as

o
5

k51

1
k~k 1 1!

, or o
6

n52

1
~n 2 1!n

. b
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EXERCISES 8.1

Check Your Understanding

Exercises 1–5 True or False. Give reasons.

1. o
147

k51
~21!k 5 1. 2. o

4

k51
k 2 5 So4

k51
kD2

.

3. The sequence given by bn 5 2n 1 9 2 n2 contains
only positive integers.

4. For every positive integer n, ~n 1 4!! 5 n! 1 4!.

5. o
4

k51

1
k

5 o
5

j52

1
j 2 1

.

Exercises 6–10 Fill in the blank so that the resulting
statement is true.

6. If an 5 2n 1 1, then a5 2 a2 5 .

7. If bn 5
n! 1 4

n!
, then b4 5 .

8. If an 5 8 2 2n, then a5 5 .

9. o
4

k51
~k 2 2!2 5 .

10. If an 5 ~21!n~2n 2 1!, then o
4

k51
ak 5 .

Develop Mastery

Exercises 1–12 Evaluate Terms Find the first four
terms and the eighth term.

1. f ~n! 5 3n 1 1 2. f ~n! 5 10 2 2n

3. g~n! 5 52n 4. g~n! 5 ~21!n · 22n

5. f ~n! 5 n2 1 n 1 41 6. f ~n! 5 2n 2 1

7. an 5 1 2
1
2n 8. an 5

1
1 2 2n

9. bn 5
~2n!!

n!
10. bn 5

n!
2n

11. cn 5 4n2 2 10n 1 8 12. cn 5 S1 1
1
nDn

Exercises 13–24 Recursive Sequences Find the first
four terms of the sequence defined recursively.

13. a1 5 3 and an 5 an21 2 4 for n $ 2

14. a1 5 5 and an 5 3 2 an21 for n $ 2

15. b1 5 2 and bn 5 3 · bn21 for n $ 2

16. b1 5 21 and bn 5 22 · bn21 for n $ 2

17. a1 5 1, a2 5 2 and an 5 an21 · an22 for n $ 3

18. a1 5 2, a2 5 3 and an 5 an21 1 an22 for n $ 3

19. a1 5 2, a2 5 4 and an 5 an21 1 an22 for n $ 3

20. a1 5 700 and an 5
an21

10
for n $ 2

21. a1 5 1, a2 5 2 and an 5
an21 1 an22

2
for n $ 3

22. a1 5
1
2

, an 5 an21 1
1
2n for n $ 2

23. a1 5 1, an 5
an21

n !
for n $ 2

24. a1 5 2, an 5 Ï~an21!
2 1 1 for n $ 2.

Exercises 25–30 Partial Sums A formula for the kth
term of a sequence is given. Find the first four terms of the
corresponding partial sum sequence.

25. ak 5 2k 1 1 26. ak 5 5 2 2k

27. ak 5
1
2k 28. ak 5 S3

2Dk

29. ak 5
1
k

30. ak 5
1

~k 1 1!~k 1 2!

Exercises 31–36 Expanded Form Write out the terms
for the given summation and then evaluate the sum.

31. o
10

k51
~k 1 1! 32. o

5

j51

1
j 1 1

33. o
5

j51
S 1

j 1 1
2

1
jD 34. o

6

i51

i 1 1
i

35. o
4

k51
S1 2

1
2kD

36. o
5

k51
Pk where Pk is the kth prime number.

Exercises 37–42 nth Term Formula The first few terms
of a sequence are given. Determine a formula for the nth
term. The answers are not unique, since many sequences
could have the same starting terms. See Example 2.

37. 1
2 , 1

4 , 1
8 , 1

16 , . . .

38. 1
2 , 2 2

3 , 3
4 , 2 4

5 , . . .

39. 1
4 , 2 2

9 , 3
16 , 2 4

25 , . . .

40. 5, 8, 11, 14, . . .

41. 2, 3, 7, 25, 121, 721, . . .
(Hint: 1! 5 1, 2! 5 2, 3! 5 6, 4! 5 24.)

42. 1
2 , 3

4 , 7
8 , 15

16 , 31
32 , . . .

Exercises 43–46 Graph Sequence A formula for a se-
quence is given. Draw a graph to show the values of func-
tion f for n 5 1, 2, 3, 4, and 5. (Hint: The graph consists of
isolated points.)

43. an 5 f ~n! 5 ~21!n 44. an 5 f ~n! 5
n

n 1 1
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45. an 5 f ~n! 5
~21!n~n 1 1!

n

46. an 5 f ~n! 5
~21!n

2n21

Exercises 47–52 Sigma Notation Express the sum in
sigma notation.

47. 1
2 1 1

3 1 1
4 1 1

5 1 1
6 1 1

7

48. 1 1 4 1 9 1 16 1 25 1 36 1 49 1 64

49. ~1 2 1
2! 1 ~1

2 2 1
3! 1 ~1

3 2 1
4! 1 ~1

4 2 1
5!

50. 1
2 2 1

4 1 1
6 2 1

8 1 1
10 2 1

12

51. 1
1 · 2 2 1

2 · 3 1 1
3 · 4 2 1

4 · 5 1 1
5 · 6

52. ln 2 1 ln 3 1 ln 4 1 ln 5 1 ln 6

Exercises 53–56 Factorials Evaluate the expression.

53.
6!

2! 4!
54.

12!
8!

55.
50!
48!

56.
15!

5! 10!

Exercises 57–58 Simplify Factorials Express each sum
as a single fraction involving factorials. Do not evaluate.
(Hint: See Example 4b.)

57.
8!

3! 5!
1

8!
4! 4!

58.
10!

3! 7!
1

10!
4! 6!

59. The decimal expansion for 5
33 is given by 5

33 5
0.1515151515 . . . . A sequence is described by
an 5 the nth decimal digit of 5

33 . For instance, a1 5 1,
a2 5 5, a3 5 1.
(a) Find a17 and a36.

(b) Evaluate o
6

k51
ak and o

60

k51
ak.

60. A representation of the number 1
7 is the repeating

decimal 0.142857. The sequence $an% is described by
an 5 the nth decimal digit of 1

7 . For instance, a1 5 1,
a2 5 4, and a3 5 2.
(a) Find a4, a17, and a24.

(b) Evaluate o
6

k51
ak and o

25

k51
ak.

Exercises 61–62 Compare Sums Write out the terms
and compare the two sums. Are they identical?

61. (a) o
4

k51

1
k~k 1 1!

(b) o
6

j53

1
~ j 2 1!~ j 2 2!

62. (a) o
6

k51
k · 2k11 (b) o

7

j52
~ j 2 1! · 2j

Exercises 63–66 Closed Form Evaluate several terms
of the sequence and look for a pattern that will help you
guess a formula for an in closed form.

63. a1 5 1, an 5 2 1 an21 for n $ 2

64. a1 5 2, an 5 2 · an21 for n $ 2

65. an 5 o
n

k51

1
2k 66. an 5 o

n

k51
S1

k
2

1
k 1 1D.

Exercises 67–70 Recursive Sequence Write out the first
five terms of the sequence $an% defined recursively.

67. a1 5 1, a2 5 2 an12 5 ~an11!
2 1 ~an!

2 for n $ 1

68. a1 5 2 an11 5
n 1 1

an
for n $ 1

69. a1 5 1, a2 5 2 an12 5 ~an11!~an! for n $ 1

70. a1 5 2 an11 5 an
2 for n $ 1

71. Two sequences $an% and $bn% are defined by b1 5 3,
bn11 5 bn 1 2n and an 5 n2 2 n 1 3 for n $ 1.
(a) Evaluate the first five terms of each sequence.
(b) Are the sequences identical? Justify your answer.
(c) Compute b60.

72. A sequence $an% is defined recursively by a1 5 1, a2 5
4, an12 5 an11 2 an for n $ 1.
(a) Write out the first ten terms of the sequence.
(b) What is the sum of the first 36 terms? Of the first 96

terms? Of the first 110 terms?

73. The increasing sequence 2, 3, 5, 6, 7, 8, 10, . . . con-
sists of all positive integers that are not squares of in-
tegers, that is, all natural numbers not in the sequence
1, 4, 9, . . . . (a) What is the 60th term of the se-
quence? (b) How many terms of the sequence precede
the number 124?

Exercises 74–76 The 3N 1 1 Sequence A curious se-
quence has been studied by many people; it is often called
the 3N 1 1 sequence and is defined recursively as:

a1 5 any positive integer

an11 5 5an

2
3an 1 1

if an is an even integer

if an is an odd integer

74. (a) Find several terms for each of the sequences start-
ing with a1 5 4, a1 5 5, a1 5 24, a1 5 27. In each
case, continue the sequence until you observe
something interesting happening.

(b) Try different starting numbers of your own for a1

and see if your observations in part (a) are still
valid. Make a guess about what happens with any
starting positive integer a1.

75. It has been conjectured that starting with any positive
integer a1, the 3N 1 1 sequence eventually reaches 1,
after which it repeats the loop 1, 4, 2, 1, 4, 2, . . . .
Define a 3N 2 1 sequence in essentially the same way:
begin with any positive integer a1 and continue by
defining an11 5

an

2 if an is even, and an11 5 3an 2 1 if
an is odd.
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(a) Take several odd, positive integers for a1 and write
out enough terms of the 3N 2 1 sequence to reach
a repeating loop.

(b) Show that not every positive integer reaches the
same loop (as appears to be the case for the 3N 1 1
sequence). How many different loops can you find?

76. Programs for computers or programmable calculators
often use an IF . . . THEN . . . instruction that termi-
nates the programs if certain conditions hold but branch
to other instructions otherwise. Describe the kind of
difficulties that we could conceivably encounter if we
programmed a computer to run the 3N 1 1 sequence
and print out the terms until reaching 1.

Exercises 77–78 Compare Sequences

77. Evaluate the first five terms of $an% and $bn% where

an 5 2n21, bn 5
n4 2 6n3 1 23n2 2 18n 1 24

24
.

Are the sequences identical?

78. (a) Evaluate the first six terms of $an% where

an 5 Ïn 1 Ïn 1 9 2 6Ïn.

Use your calculator to simplify each term. Is an 5 3
for every n $ 1? Explain.

(b) If bn 5 Ïn 1 _ Ïn 2 3 _ , are the sequences $an%
and $bn% identical? Explain.

8.2 G R A P H S A N D C O N V E R G E N C E

...the vast scope of modern mathematics. I have in mind an expanse swarming
with beaut@y#,... worthy of being surveyed from one end to the other and
studied even in its smallest details: its valleys, streams, rocks, woods and
flowers.

Arthur Cayley

Calculus is based on the study of limits. At this point, we use only intuitive ideas
of limits, but we can use graphs and their end behavior to get strong feelings about
the existence or nonexistence of limits of certain sequences. Without making a
precise definition, when a sequence $an% has a limit L, we say that $an% converges
to L and we write lim

nA`
an 5 L.

Since a sequence is a function, we can draw a graph; but we are only interested
in those points for which the x-pixel values are positive integers. In general, our
graphs will be drawn with an x-range of @0, c#, where c is the number of pixel
columns on our calculator, and in almost all graphs we will want to use dot mode.

Exercises 79–80 Large Numbers

79. The factorial sequence $n!% increases very rapidly. For
instance,

10! < 3.6 3 106 20! < 2.4 3 1018

50! < 3.0 3 1064 70! < 1.2 3 10100

To get some idea of how large these numbers are,
look at 20!. Simple computation gives 20! 5
2,432,902,008,176,690,000. Now suppose a computer
printer that operates at 100 characters per second were
to print out a manuscript with 20! characters. How long
would it take the printer to do the job?

80. For the manuscript described in Exercise 79, suppose
each page contains about 4000 characters. How thick
would the manuscript be? The thickness of a ream of
paper (500 pages) is approximately 2 inches. For com-
parison, the distance from the earth to the sun is 93
million miles.

Exercises 81–82 Fibonacci Sequence Use the definition
on page 436.

81. Show that fn11yfn 2 1 5 fn21yfn for n $ 2.

82. Explore Write out the first twelve terms of the Fi-
bonacci sequence. Make a guess as to which terms are
divisible by 2, by 3.

It just came to me that I
could use this technique,
this theorem, in connection
with these curves in Hilbert
space that I was dealing
with—and get the answer!
It just came to me out of
the blue one day. It has
always struck me as so
amazing. One half of me
had been bouncing around
with this theorem a lot and
the other half had been
doing this problem, and
they had never gotten
together.

Andrew Gleason
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Pixel columnsTECHNOLOGY TIP r

The number of pixel columns, c, for several calculators is as follows:

Model acols Model acols

TI-81 95 HP-38,48 130
TI-82 94 Casio fx-7700 94
TI-85 126 Casio fx-9700 126

To illustrate convergence, we look at the end behavior for several sequences in
the first example.

cEXAMPLE 1 Convergence Use a graph to make a reasonable determina-
tion of the end behavior for the sequence, and then support your conclusion alge-
braically.

(a) an 5
n 2 1
n 1 2

(b) bn 5 3n 2 1 (c) cn 5 ~21!n n
n 1 3

Solution

(a) Graphical Draw a graph of y 5 x 2 1
x 1 2 using @0, c# 3 @0, 2# (see Technology Tip

above). See Figure 1. The right portion of the graph appears to be horizontal,
but we know that the calculator has only so many pixels available. Tracing
along the curve indicates that the y-coordinate is approaching 1 as x increases.
That is, it appears that lim

nA`
an 5 1; we say that the sequence $an% converges

to 1.

Algebraic If we divide the numerator and denominator of an by n, we get

an 5
n 2 1
n 1 2

5

1 2
1
n

1 1
2
n

.

In this form, it should be clear that an A 1 as n A `.
(b) Graphical and Algebraic The graph of y 5 3x 2 1 is a line with slope 3. If we

use an x-range of @0, c#, we need a correspondingly large y-range or the graph
goes off scale almost immediately, but even without a graph for this particular
function we know the end behavior of a line. The values of bn continue to
increase without bound and do not approach any number. We say that the
sequence $bn% diverges. In this case, as in Chapter 3 when working with
rational functions, we write lim

nA`
bn 5 `.

(c) Graphical Graphing y 5 ~21!xxy~x 1 3! in @0, c# 3 @23, 3# gives very dif-
ferent looking graphs in connected or dot modes. Whichever you choose, make
sure that each x-pixel coordinate is an integer and that you know how to
interpret what the graph shows. Tracing (in either mode) shows that as x
increases, the y-values jump back and forth, with the positive values approach-
ing 1 and the negative values approaching 21. We conclude that $cn% diverges
because the cn values do not approach a single number as n A `.

FIGURE 1
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Algebraic Disregarding the ~21!n, the expression n
n 1 3 does have a limit,

lim
nA`

n
n 1 3

5 lim
nA`

1

1 1
3
n

5 1.

It follows that cn A ~21!n, so that when n is even, cn A 1 and when n is odd,
cn A 21. Again, $cn% diverges because the cn values do not approach a single
number as n A `. b

Sequences Defined Recursively

For sequences defined recursively we cannot enter functions for graphing as we did
in Example 1. Nevertheless, functionality built into our graphing calculators makes
it possible to investigate limits of some such sequences quite easily. Consider the
sequence $an% defined by

a1 5 2, an11 5 1 1
3
an

for n $ 1. (1)

We want to calculate a number of terms of the sequence without having to go
through all the steps of the recursive definition for each term. We describe some
options in the following Technology Tip, and then look at additional examples.

TECHNOLOGY TIP r Calculating recursively defined sequences

For algebraic operation calculators (TI, Casio, and HP–38), essentially all of
the steps for evaluating the sequence in Equation (1) can be handled on the
home screen by making use of the machine capacity to store values.

Begin by storing the initial value 2 in the x-register: 2 A X , ENT .
Then compute and store the next value: 1 1 3yXAX , ENT .

The calculator displays the computed value, 2.5, which has been stored.
When we press ENTER again, the same computation is repeated with the new
x-value and displayed value, 2.2, is our a3. As we ENTER repeatedly, the terms of
the sequence are displayed. It soon becomes clear that the terms are
approaching a limit, <2.3027756.

On the HP–48, we can write a simple program to accomplish the same
thing.

Press ,, .. (above the subtract key) to begin a program. Then type
A X91 1 3X9 A Num (above 57EVAL ) and ENTER . What the program does is to take the
number on the stack, call it x, compute 1 1 3yx symbolically, convert the
symbolic computation to a number. The result is displayed on the stack so
that the process can be repeated.

To use the program, we need to store it as a variable, so we type a name,
say ’RECR’ for “recursive”. Then ENTER and 57STO . The name RECR should appear on
your 57VAR menu. Now enter 2 on the stack, press the soft key beneath 57RECR ,
and the new value appears. By repeatedly pressing 57RECR , the value continues
to change, approaching 2.3027756.
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cEXAMPLE 2 Nested square roots Sequence $an% is defined by

a1 5 Ï3, an11 5 Ï3 1 an for n $ 1.

(a) Write out the first three terms in exact form.
(b) Use the Technology Tip (page 444) to approximate the first few terms of the

sequence and find the apparent limit of the sequence (six decimal places).
(c) Justify your conclusion in (b) algebraically.

Solution

(a) a1 5 Ï3, a2 5 Ï3 1 a1 5 Ï3 1 Ï3,

a3 5 Ï3 1 a2 5 Ï3 1 Ï3 1 Ï3 .

(b) Following the Technology Tip, for all machines except the HP-48, we storeÏ3
in the x-register, and then enter Ï(3 1 X) A X. Repeating the computation gives a
sequence beginning 1.732051, 2.175328, 2.274935, 2.296723, . . . . After sev-
eral more terms, the sequence settles on a number approximately equal to
2.302776. On the HP-48, we must change the recursive part of the definition
in our program RECR by pressing the tick-mark key and the soft key under RECR .
With ’RECR’ on the stack, we press 57EDIT and go into the program, replacing ’1 1 3yX’

by the recursive part of our new sequence, ’Ï~3 1 X)’. With the new program, we
enter Ï3 and then repeat the soft key under RECR , getting the same sequence of
terms.

(c) Following the strategy, we want to solve the equation c 5 Ï3 1 c for c.
Squaring both sides, we get the equation c 2 5 3 1 c, or c 2 2 c 2 3 5 0. By
the quadratic formula, taking the positive sign (why not 6?), we get c 5
~1 1 Ï13!y2 < 2.302775638, obviously the number we were approximating
in part (b). b

cEXAMPLE 3 Nested cube roots Repeat Example 2 for the sequence $cn%
defined by

c1 5
3Ï2, cn11 5

3Ï2 1 cn for n $ 1.

Solution

(a) c1 5
3Ï2, c2 5

3Ï2 1 c1 5
3Ï2 1 3Ï2,

c3 5
3Ï2 1 c2 5

3Ï2 1
3Ï2 1 3Ï2.

(b) On algebraic operation machines, we store 2^(1y3) in the x-register, and then
enter (2 1 X)^(1y3) A X. The sequence begins 1.259921, 1.482754, 1.515797,
1.520575, 1.521264, . . . . The sequence settles on a number approximately
equal to 1.5213797. On the HP-48, we enter ’(2 1 X)^(1y3)’ as the recursive part of
the definition in RECR . After entering

3Ï2 on the stack, repeating the soft key
under RECR gives the same sequence of terms.

(c) Since it appears that the sequence converges to a number c, both cn and cn11

must approach the same number c, so the recursive portion of the definition
gives an equation which can be cubed:

c 5
3Ï2 1 c, or c 3 2 c 2 2 5 0.

The cubic equation is not one we can solve in exact form conveniently, but by
graphical methods, or by using a solve routine, or by using Newton’s Method
from Chapter 3, the one real zero is approximately 1.5213797. b

Strategy: For (c), if the
sequence converges to a
number c, both an and an11
approach c, leading to the
equation c 5 Ï3 1 c. Then
solve for c.
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Continued Fractions

Continued fractions is a topic studied in number theory courses that has applica-
tions in many areas, including the programming of routines for computers and
graphing calculators. In the next example we illustrate the continued fraction,

1 1
1

1 1
1

1 1
1

1 1 . . .

, as a recursively defined sequence.

cEXAMPLE 4 Continued fractions Sequence $an% is defined by

a1 5 1, an11 5 1 1 1yan for n $ 1.

(a) Write out the first four terms, first without simplifying, and then as a simple
fraction.

(b) Approximate the first few terms of the sequence and find the apparent limit of
the sequence.

(c) Justify your conclusion in (b) algebraically.

Solution

(a) a1 5 1, a2 5 1 1
1
1

5
2
1

, a3 5 1 1
1
a2

5 1 1
1
2

5
3
2

,

a4 5 1 1
1
a3

5 1 1
1

1 1 1
2

5 1 1
1
3
2

5 1 1
2
3

5
5
3

.

The numbers in the numerator and denominator of the fractions remind us of
the Fibonacci sequence $ fn% from page 436: 1, 1, 2, 3, 5, 8, 13, . . . . That is,
a1 5 f2yf1, a2 5 f3yf2, a3 5 f4yf3, a4 5 f5yf4, and a reasonable guess is that
an 5 fn11yfn.

(b) For decimal approximations, we use the Technology Tip, beginning with 1 and
using 1 1 1yX A X for the recursion. The sequence appears to settle down on a
number c < 1.618034.

(c) If both an11 and an approach c, then in the limit the recursion relation becomes

c 5 1 1
1
c
.

Multiplying through by c leads to the quadratic equation c 2 2 c 2 1 5 0,
whose positive root is given by c 5 1 1 Ï5

2 < 1.618034. b

The limit number of the sequence, 1 1 Ï5
2 , is called the Golden Ratio, reflecting

some aesthetic considerations of the ancient Greeks. It is a number that turns up in
many diverse applications. See Exercise 27.

In the next example, we see another instance of a sequence that diverges even
though parts of the sequence, called subsequences, converge. We had one such
sequence in Example 1, given by cn 5 ~21!n n

n 1 3 . From the graph in dot mode,
we saw that the sequence consisting of the even-numbered terms $c2, c4, c6, . . .%
converges to 1; the odd-numbered terms form a subsequence that converges to 21.
The same kind of behavior is possible with a recursively defined sequence.
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cEXAMPLE 5 Subsequences Sequence $an% is defined by

a1 5 3, an11 5
2an

~an 2 2!
for n $ 1.

Write out the first few terms. Does the sequence have a limit? Describe some
convergent subsequences of the sequence.

Solution
Either by using the Technology Tip (page 444) or by direct computation, it is clear
that the sequence begins 3, 6, 3, 6, 3, 6, 3, 6, . . . . The sequence has no limit
because the terms are not getting close to any number as n A `. The subsequence
of odd-numbered terms contains only 3, $a2n21% 5 $3, 3, 3, 3, . . .%, which obvi-
ously converges to 3. Similarly, the subsequence consisting of even-numbered
terms $a2n% 5 $6, 6, 6, . . .% converges to 6. b

TECHNOLOGY TIP r Calculating with two-step recursions

Any graphing calculator can be programmed to calculate more involved
recursively defined sequences, but general programming is not our focus in
this text. To learn about programming on your calculator, consult your
instruction manual. The Texas Instrument TI-82 and TI-85, HP–38, and the
Casio fx7700 and fx9700, allow us to handle two-step recursively defined
sequences, such as the Fibonacci sequence, directly on the home screen, as
described below.

The Fibonacci sequence (page 436) is defined by

f1 5 1, f2 5 1, fn 5 fn22 1 fn21, n . 2.

On the home screen, we store the initial values and their sum:

1 A A: 1 A B: A 1 B A C and ENTER

(The colon is located above the decimal point on TI and HP–38, and on the
PRGM menu on the Casio.) The display shows f3 as 2. We must reassign values
for the next step:

B A A:C A B: A 1 B A C .

Now ENTER and we see 3 as f4, and we can repeat for as many terms as desired.
We revisit this problem in matrix form in Exercise 70 of Section 9.6.

Equations of the Form F (x) 5 x

When looking for the roots of an equation it is sometimes possible to isolate an x,
writing the equation in the form F~x! 5 x. Under certain circumstances it is
possible to use an iterative process to approximate a root of such an equation to
great accuracy. Basically, the solution is found as the limit of a recursive sequence.
We begin with an initial approximation a1 and define an11 5 F~an!. Determining
the conditions under which such an iteration converges requires calculus, but we
illustrate the procedure in Example 6.
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cEXAMPLE 6 Solving an equation
(a) Approximate the root of the equation 2x 2 cos x 5 0 from a graph.
(b) Write the equation in the form f ~x! 5 x and use the approximation from part
(a) as a1 and let an11 5 f ~an!. Iterate to approximate the limit L of the sequence to
8 decimal places and verify that L satisfies the original equation.

Solution

(a) From a graph, we can see that there is a root of the equation near 0.5.

(b) The equation is equivalent to x 5
cos x

2
, so we take f ~x! 5

cos x
2

and define

the sequence by

a1 5 0.5, an11 5
cos an

2
.

Following the Technology Tip for recursive sequences, we store 0.5 A X , ENT.
Then follow with (COS X)y2 A X , ENT and iterate, getting a sequence beginning
0.43879128, 0.45263292, . . . . The sequence settles quickly on the number
L 5 0.45018361, and when we substitute L for x in the expression 2x 2 cos
x, we get a number very near 0, as desired. b

EXERCISES 8.2

Check Your Understanding

It will be helpful to use the Technology Tip (page 444) to get
the first several terms of $an%.

Exercises 1–5 True or False. Give reasons. Use sequence

$an% defined by a1 5 1 and an11 5 1 1
1
an

.

1. Every term of $an% is less than or equal to 2.

2. The sequence is decreasing; that is an11 , an for ev-
ery n.

3. The even-numbered terms are greater than the odd-
numbered terms.

4. The subsequence consisting of the odd-numbered
terms, $a1, a3, a5, . . .%, is decreasing.

5. The subsequence consisting of the even-numbered
terms, $a2, a4, a6, . . .%, is increasing.

Exercises 6–10 Fill in the blank so that the resulting
statement is true.

Exercises 6–8 Sequence $an% is defined by a1 5 1 and
an11 5 an 1 4 for n . 1.

6. The smallest integer greater than a5 is .

7. The number of terms of $an% between 8 and 20
is .

8. The sum of the first 5 terms is .

Exercises 9–10 Sequence $bn% is defined by b1 5 1 and
bn11 5 Ï1 1 bn

2 for n $ 1.

9. b5 5 .

10. The smallest prime number that is greater than b5 is
.

Develop Mastery

Exercises 1–10 Does it Converge? Use a graph to help
you determine whether or not the sequence appears to con-
verge. Explain.

1. an 5 2n 2 5 2. an 5
~21!n~n 1 1!

n

3. an 5
2n 1 3
n 1 1

4. an 5
n 1 1
n2 1 1

5. an 5 3 2 22n 6. an 5 S1 1
1
nDn

7. an 5 2 1 S1 2
1
nDn

8. an 5 S1 1
2
nDn

9. an 5 Ïn 1 Ïn 1 64 2 16Ïn

10. an 5 Ïn 1 _ Ïn 2 5 _
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Exercises 11–16 Sequences Defined Recursively Use
the Technology Tip (page 444). (a) Give the first three terms
of $an%. (b) The sequence converges to a number c. Use your
calculator to get a six-decimal-place approximation for c.
(c) Justify your answer algebraically. See Examples 2
and 3.

11. a1 5 Ï3, an11 5 Ï3 2 an for n . 1.

12. a1 5 Ï5, an11 5 Ï5 1 an for n . 1.

13. a1 5 Ï7, an11 5 Ï7 2 an for n . 1.

14. a1 5
3Ï5, an11 5

3Ï5 2 an for n . 1.

15. a1 5
3Ï6, an11 5

3Ï6 1 an for n . 1.

16. a1 5
4Ï5, an11 5

4Ï5 1 an for n . 1.
Exercises 17–22 Continued Fractions (a) Find the
first three terms of $cn%. (b) Find a 6-decimal-place ap-
proximation for the limit to which $cn% appears to converge.
(c) Justify algebraically. See Example 4.

17. c1 5 3, cn11 5 3 1
1
cn

for n . 1.

18. c1 5 5, cn11 5 5 1
1
cn

for n . 1.

19. c1 5 3, cn11 5 3 2
1
cn

for n . 1.

20. c1 5 1, cn11 5 1 1
1
cn

2 for n . 1.

21. c1 5 3, cn11 5 3 1
1
cn

2 for n . 1.

22. c1 5 2, cn11 5 2 2
1
cn

2 for n . 1.

Exercises 23–24 Repeating Terms Sequence $an% is
defined recursively. (a) Give the first six terms. Does $an%
converge? You may wish to use the Technology Tip.
(b) Determine a60 and the sum of the first sixty terms.

23. a1 5 2, an11 5 1 2
1
an

.

24. a1 5 2, an11 5 1 1
2
an

.

Exercises 25–26 Recognizing a Pattern Find the first
four terms of $an%. Make a generalization and justify alge-
braically.

25. (a) a1 5 1, an11 5 0.5San 1
1
an
D

(b) a1 5 2, an11 5 0.5San 1
4
an
D

(c) a1 5 3, an11 5 0.5San 1
9
an
D

(d) a1 5 4, an11 5 0.5San 1
16
an
D

26. (a) a1 5 1, an11 5 2an 2
1
an

(b) a1 5
1
2

, an11 5 5an 2
1
an

(c) a1 5
1
3

, an11 5 10an 2
1
an

(d) a1 5
1
4

, an11 5 17an 2
1
an

27. Fibonacci Related For a1 5 3, an11 5 3 2 1
an

,
(a) Write the first six terms as simple fractions.
(b) Guess a relationship between $an% and the

Fibonacci sequence.

28. For a1 5 Ïln 2, an11 5 Ïln 2 1 an,
(a) use the Technology Tip to find a six-decimal-place

approximation to the limit c to which $an% con-
verges.

(b) Show that c is a root of ex22x 2 2 5 0.

Exercises 29–30 Golden Ratio, 1 1 Ï5
2 Given that $an%

converges to the number c, use an algebraic approach to
verify that c is the number given. Then use the Technology
Tip to get a calculator check.

29. a1 5 2, an11 5 Î1 1
1

an
2 ; c is the square root of the

golden ratio.

30. a1 5 3, an11 5
1
an

2 1; c is the negative of the golden

ratio.

Exercises 31–32 Explore The recursive formula for
an11 is given along with different values of a1. In each case
use the Technology Tip to get the first three terms and the
limit (six decimal places) to which the sequence converges.
Try other values of a1. Describe the role that a1 plays.

31. an11 5 Î1 1
1
an

2 ,

(a) a1 5 1 (b) a1 5 8 (c) a1 5 24

32. an11 5 1 1
1
an

,

(a) a1 5 1 (b) a1 5 3
(c) a1 5 25

Exercises 33–36 Subsequences (a) Does $an% con-
verge? (b) Find subsequences of $an% that converge. See
Example 5.

33. an 5
~21!nn
n 1 1

34. an 5
~21!~2n!

n 1 1

35. an 5 sinSnp

2 D 36. an 5 cos~np!
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Exercises 37–40 Your Choice Give a sequence $an% of
your choice that meets the given conditions.

37. an . 0 if n is odd, an , 0 if n is even.

38. The sequence $an% does not converge, but the subse-
quence of odd-numbered terms (all of which are greater
than 2) converges to 2, while the subsequence of even-
numbered terms (all of which are less than 22) con-
verges to 22.

39. For every n, 0 , an , 1, and $an% converges to
(a) 1; (b) 0.5.

40. For all odd n, 0 , an , 1, and for all even n,
1 , an , 2, and $an% converges to 1.

Exercises41–43 RepeatingTerms (a) Give thefirst four
terms of $an%. (b) What is a47? a72? (c) Find the sum of
the first twenty terms. (d) Explain the repeating behavior
of $an%. (Hint for Exercise 41: Consider f ~x! 5 2xy~x 2 2!,
and show that f 21~x! 5 f ~x!. What is f 21~ f ~x!!?)

41. a1 5 6, an11 5
2an

an 2 2

42. a1 5 1, an11 5
23an

2an 1 3

43. a1 5 4, an11 5
3an

2an 2 3

Exercises 44–50 Roots of f~x! 5 x Follow the instruc-
tions for Example 6 for the given equation.

44. cos x 5 x 45. 5x 2 2 cos x 5 0

46. x 5 e2x 47. x 5 cos~xy4!

48. x 5 cosS4 1 x
4 D 49. x 5 ln~4 1 x!

50. x 1 4 5 ex

Exercises 51–52 Roots of 2x 5 x 10 Find the limit L of
$an% to eight decimal places. Show that L is a root of the
equation 2x 5 x 10.

51. a1 5 50, an11 5
10 ln an

ln 2
52. a1 5 1, an11 5 20.1an

53. Explore In the recursive formula for Exercise 30,
an11 5 1

an
2 1, many different initial values give se-

quences that converge to the same value. There are
initial values that do not work, however. We obviously
cannot use a1 5 0 because a2 would then be undefined,
and we cannot use a number as an initial value that

would lead to 0. For example, solving 1
an

2 1 5 0, we get
an 5 1. If we were to try a1 5 1, we would get a2 5 0 and

then a3 would be undefined. (a) Solve
1
an

2 1 5 1 and

find another inadmissible value for a1. (b) Find a se-
quence in exact form of inadmissible initial value num-
bers. (c) Show that a1 5 3y5 is inadmissible by comput-
ing the first few terms in exact form. (d) Try a1 5 0.6 and
compute the first few terms by using the Technology Tip
(page 444). Explain the difference in results from part (c).

54. The sequence $an% is given by an 5 x n 1 x2n, where

x 5
21 1 Ï3 i

2
.

(a) Use DeMoivre’s theorem to evaluate x n 1 x2n,
then show that an 5 2 cos(n · 1208).

(b) Write out the first six terms of the sequence and find
their sum.

(c) What is the sum of the first 100 terms?

Exercises 55–60 Sequence $an% converges to a number L.
(a) Use the Technology Tip to approximate L. (b) Use
algebra to find the exact value of L.

55. a1 5 1 an 5
1
2San21 1

4
an21

D for n $ 2

56. a1 5 2 an 5
1
2San21 1

3
an21

D for n $ 2

57. a1 5 1 an 5
1
2San21 1

2
an21

D for n $ 2

58. a1 5 Ï2 an 5 Ï2 1 an21 for n $ 2

59. a1 5 Ï6 an 5 Ï6 1 an21 for n $ 2

60. a1 5 1 an 5
4

an21
2 Ï2 for n $ 2

Exercises 61–62 Sequences $an% and $bn% converge; se-
quence $cn% diverges. (a) Find approximations (6 decimal
places) for the limits of $an% and $bn%. (b) Find subsequences
of $cn% that converge and approximate their limits.

61. a1 5 1, an11 5 4 1
1
an

; b1 5 1, bn11 5 4 2
1
bn

c1 5 1, cn11 5 4 1
~21!n

cn

62. a1 5 4, an11 5 4 1
3
an

; b1 5 4, bn11 5 4 2
3
bn

c1 5 4, cn11 5 4 1
~21!n3

cn
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8.3 A R I T H M E T I C A N D G E O M E T R I C S E Q U E N C E S

Whenever you tell me that mathematics is just a human invention like the
game of chess I would like to believe you. But I keep returning to the same
problem. Why does the mathematics we have discovered in the past so often
turn out to describe the workings of the Universe?

John Barrow

Two kinds of regular sequences occur so often that they have specific names,I remember that when I
arithmetic and geometric sequences. We treat them together because some obvi-was about twelve I learned

from [my uncle] that by the ous parallels between these kinds of sequences lead to similar formulas. This also
distributive law 21 times makes it easier to learn and work with the formulas. The greatest value in this
21 equals 11. I thought

association is understanding how the ideas are related and how to derive thethat was great.
formulas from fundamental concepts. Anyone learning the formulas this way canPeter Lax
recover them whenever needed.

Both arithmetic and geometric sequences begin with an arbitrary first term,
and the sequences are generated by regularly adding the same number (the com-
mon difference in an arithmetic sequence) or multiplying by the same number (the
common ratio in a geometric sequence). Definitions emphasize the parallel fea-
tures, which examples will clarify.

Definition: arithmetic and geometric sequences

Arithmetic Sequence

a1 5 a and an 5 an21 1 d for n . 1

The sequence $an% is an arithmetic sequence with first term a and common
difference d.
Geometric Sequence

a1 5 a and an 5 r · an21 for n . 1

The sequence $an% is a geometric sequence with first term a and common
ratio r.

The definitions imply convenient formulas for the nth term of both kinds of
sequences. For an arithmetic sequence we get the nth term by adding d to the first
term n 2 1 times; for a geometric sequence, we multiply the first term by r, n 2 1
times.

Formulas for the nth terms of arithmetic and geometric sequences

For an arithmetic sequence, a formula for the nth term of the sequence is

an 5 a 1 ~n 2 1!d. (1)

For a geometric sequence, a formula for the nth term of the sequence is

an 5 a · r n21. (2)

The definitions allow us to recognize both arithmetic and geometric sequences.
In an arithmetic sequence the difference between successive terms, an11 2 an, is
always the same, the constant d; in a geometric sequence the ratio of successive

terms,
an11

an

, is always the same.
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cEXAMPLE 1 Arithmetic or geometric? The first three terms of a se-
quence are given. Determine if the sequence could be arithmetic or geometric. If
it is an arithmetic sequence, find d; for a geometric sequence, find r.

(a) 2, 4, 8, . . . (b) ln 2, ln 4, ln 8, . . . (c)
1
2

,
1
3

,
1
4

, . . .
Strategy: Calculate the dif-
ferences and /or ratios of Solution
successive terms.

(a) a2 2 a1 5 4 2 2 5 2, and a3 2 a2 5 8 2 4 5 4. Since the differences are

not the same, the sequence cannot be arithmetic. Checking ratios,
a2

a1

5
4
2

5 2,

and
a3

a2

5
8
4

5 2, so the sequence could be geometric, with a common ratio

r 5 2. Without a formula for the general term, we cannot say anything more
about the sequence.

(b) a2 2 a1 5 ln 4 2 ln 2 5 ln~4
2! 5 ln 2, and a3 2 a2 5 ln 8 2 ln 4 5

ln~8
4! 5 ln 2, so the sequence could be arithmetic, with ln 2 as the common

difference. As in part (a), we cannot say more because no general term is given.
(c) a2 2 a1 5 1

3 2 1
2 5 2 1

6 , and a3 2 a2 5 1
4 2 1

3 5 2 1
12 . The differences are

not the same, so the sequence is not arithmetic.
a2

a1

5
~1

3!

~1
2!

5
2
3

, and

a3

a2

5
~1

4!

~1
3!

5
3
4

, so the sequence is not geometric. Note that the sequence in part

(a) could be geometric and the sequence in part (b) could be arithmetic, but
in part (c) you can conclude unequivocally that the sequence cannot be either
arithmetic or geometric. b

cEXAMPLE 2 Arithmetic or geometric? Determine whether the sequence
is arithmetic, geometric, or neither.

(a) $3 2 1.6n% (b) $2n% (c) an 5 ln n

Solution

(a) a2 2 a1 5 ~3 2 1.6 · 2! 2 ~3 2 1.6 · 1! 5 ~20.2! 2 1.4 5 21.6, and
a3 2 a2 5 ~3 2 1.6 · 3! 2 ~3 2 1.6 · 2! 5 21.6. From the first three terms,
this could be an arithmetic sequence with d 5 21.6. Check the difference
an11 2 an.

an11 2 an 5 @3 2 1.6~n 1 1!# 2 @3 2 1.6n# 5 21.6.

The sequence is arithmetic, with d 5 21.6.
(b) a2 2 a1 5 4 2 2 5 2, and a3 2 a2 5 8 2 4 5 4, so the sequence is not

arithmetic. Using the formula for the general term,

an11

an

5
2n11

2n 5 2.

The sequence $2n% is geometric, with 2 as the common ratio.
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(c) an11 2 an 5 ln~n 1 1! 2 ln n 5 ln
n 1 1

n
. The difference depends on n, so

the sequence is not arithmetic. Checking ratios,
an11

an

5
ln~n 1 1!

ln n
, so the ratio

also changes with n. The sequence is neither arithmetic nor geometric. b

cEXAMPLE 3 Arithmetic sequences Show that the sequence is arithmetic;
find the common difference and the twentieth term.

(a) an 5 2n 2 1 (b) 50, 45, 40, . . . , 55 2 5n, . . .

Solution

(a) The first few terms of $an% are 1, 3, 5, 7, . . . , from which it is apparent that
each term is 2 more than the preceding term; this is an arithmetic sequence
with first term and common difference a 5 1 and d 5 2. Check to see that
an11 2 an 5 2. To find a20, use either the defining formula for the sequence or
Equation (1) for the nth term:

a20 5 2 · 20 2 1 5 39 or a20 5 a 1 19d 5 1 1 19 · 2 5 39.

(b) If bn 5 55 2 5n, then bn11 2 bn 5 @55 2 5~n 1 1!# 2 @55 2 5n# 5 25.
This is an arithmetic sequence with a 5 50, d 5 25, and so b20 5 55 2
5 · 20 5 245. b

Given the structure of arithmetic and geometric sequences, any two terms
completely determine the sequence. Using Equation (1) or (2), two terms of the
sequence give us a pair of equations from which we can find the first term and either
the common difference or common ratio, as illustrated in the next example.

cEXAMPLE 4 Arithmetic sequences Suppose $an% is an arithmetic se-
quence with a8 5 6 and a12 5 24. Find a, d, and the three terms between a8

and a12.

Solution
From Equation (1), a8 5 a 1 7d, and a12 5 a 1 11d, from which the difference
is given by a12 2 a8 5 4d. Use the given values for a8 and a12 to get 24 2 6 5 4d,
or d 5 2 5

2 . Substitute 2 5
2 for d in 6 5 a 1 7d and solve for a, a 5 47

2 . Find the
three terms between a8 and a12 by successively adding 2 5

2 :

a9 5 a8 2
5
2

5
7
2

, a10 5 a9 2
5
2

5 1, a11 5 a10 2
5
2

5 2
3
2

.

Therefore, a9 is 7
2 , a10 is 1, and a11 is 2 3

2 . b

cEXAMPLE 5 Geometric sequences Determine whether the sequence is
geometric. If it is geometric, then find the common ratio and the terms a1, a3,
and a10.

(a) $2n% (b) 2, 2
2
3

,
2
9

, . . . , 2S2
1
3D

n21

, . . .
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Solution

(a) The first few terms are 2, 4, 8, 16, . . . , each of which is twice the precedingStrategy: The property that
identifies a geometric se- term. This is a geometric sequence with first term a 5 2, and common ratio
quence is the common ratio: given by r 5

an11

an
5 2n11

2n
5 2. Using an 5 2n,

the values
a2

a1
,

a3

a2
,

a4

a3
, . . .

a1 5 2 a3 5 23 5 8 and a10 5 210 5 1024.must all be the same. For a
geometric sequence, use
Equation (2). (b) Consider the ratio

an11

an

5

2S2
1
3D

n

2S2
1
3D

n21
5 2

1
3

,

so the sequence is geometric with a 5 2 and r 5 2 1
3 . Using an 5 2~2 1

3!
n21,

we get a1 5 2, a3 5 ar 2 5 2
9 , and a10 5 ar 9 5 2~2 1

3!
9 5 2 2

19683 . b

Partial Sums of Arithmetic Sequences

There is a charming story told about Carl Freidrich Gauss, one of the greatest
mathematicians of all time. Early in Gauss’ school career, the schoolmaster as-
signed the class the task of summing the first hundred positive integers, 1 1 2 1
3 1 · · · 1 99 1 100. That should have occupied a good portion of the morning,
but while other class members busied themselves at their slates calculating 1 1
2 5 3, 3 1 3 5 6, 6 1 4 5 10, and so on, Gauss sat quietly for a few moments,
wrote a single number on his slate, and presented it to the teacher. Young Gauss
observed that 1 and 100 add up to 101, as do the pair 2 and 99, 3 and 98, and so
on up to 50 and 51. There are fifty such pairs, each with a sum of 101, for a total
of 50 · 101 5 5050, the number he wrote on his slate.

This approach works for the partial sum of any arithmetic sequence, and we
will use the method to derive some useful formulas. However, the ideas are more
valuable than memorizing formulas. If you understand the idea, you can recreate
the formula when needed.

To find a formula for the nth partial sum of an arithmetic sequence, that is, the
sum of n consecutive terms, pair the first and last terms, the second and next-to-last,
and so on; each pair has the same sum. In fact, it is easier to pair all terms twice,
as illustrated with Gauss’ sum:

S100 5 1 1 2 1 · · · 1 99 1 100
S100 5 100 1 99 1 · · · 1 2 1 1

2S100 5 101 1 101 1 · · · 1 101 1 101

The sum on the right has 100 terms, so 2S100 5 100~101!. Dividing by 2, S100 5
50~101! 5 5050.

For the general case, pairing the terms in Sn and adding gives 2Sn 5 n~a1 1 an!
because there are n pairs, each with the same sum. Dividing by 2 yields the desired
formula.
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Partial sums of an arithmetic sequence

Suppose $an% is an arithmetic sequence. The sum Sn of the first n terms is
given by

Sn 5
n~a1 1 an!

2
(3)

The formula is probably most easily remembered as n times the average of the first
and last terms.

cEXAMPLE 6 Partial sums For the sequence $an% 5 $2n 2 1%,

(a) evaluate the sum S25 5 (25
k51 ~2k 2 1! and

(b) find a formula for Sn.

Solution
Follow the strategy.Strategy: Let an 5 2n 2 1.

To find S25 from Equation
(3) requires a1 and a25, (a) By Equation (3), S25 5

25~a1 1 a25!

2
. Now, find a1 and a25.

which the formula for an can
provide. For (b), substitute 1

a1 5 2 · 1 2 1 5 1 and a25 5 2 · 25 2 1 5 49for a1 and 2n 2 1 for an in
Equation (3) and simplify.

Thus, S25 5
25~1 1 49!

2
5 625.

(b) In general,

Sn 5
n~a1 1 an!

2
5

n@1 1 ~2n 2 1!#

2
5

n~2n!

2
5 n2.

Hence, Sn 5 n2. b

cEXAMPLE 7 Arithmetic sequence The sum of the first eight terms of an
arithmetic sequence $an% is 24; the sixth term is 0. Find a formula for an.

Solution
For an, first find a and d. Since a6 5 a 1 5d, a 1 5d 5 0. Express S8 in terms of
a and d,

S8 5
8@a 1 ~a 1 7d!#

2
5 4~2a 1 7d!.

Since we are given S8 5 24, Equation (3) states that 4~2a 1 7d! 5 24. This gives
a pair of equations to solve for a and d.

H a 1 5d 5 0
2a 1 7d 5 6

We find d 5 22 and a 5 10. Therefore, the nth term is

an 5 a 1 ~n 2 1!d 5 10 1 ~n 2 1!~22! 5 12 2 2n. b

Partial Sums of Geometric Sequences

The idea of pairing terms, which works so well for arithmetic sequences, does not
help with a geometric sequence. Another idea does make the sum easy to calculate
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though. Multiply both sides by r and subtract:

Sn 5 a 1 ar 1 ar 2 1 · · · 1 ar n21

rSn 5 ar 1 ar 2 1 · · · 1 ar n21 1 ar n

Sn 2 rSn 5 a 2 ar n

Thus,

Sn~1 2 r! 5 a~1 2 r n!.

If r 5/ 1, dividing both sides by ~1 2 r! yields a formula for Sn.

Partial sums of a geometric sequence

Suppose $an% is a geometric sequence with r 5/ 1. The sum of the first n
terms is

Sn 5
a~1 2 r n!

1 2 r
(4)

In the special case where r 5 1, the geometric sequence is also an arithmetic
sequence, and Sn 5 a 1 a 1 a 1 · · · 1 a 5 na.

cEXAMPLE 8 Partial sum Find an and Sn for the geometric sequence 1
3 , 1

6 ,
1

12 , . . . .

Solution

Strategy: Since it is given Follow the strategy. We know that a1 5 1
3 and a2 is 1

6 . The common ratio is r 5
that the sequence is a2

a1

5
~1

6!

~1
3!

5
1
2

. From Equation (2),geometric, find the common

ratio r 5
a2

a1
and then use

an 5 ar n21 5 S1
3DS1

2D
n21

5
1

3 · 2n21 .Equations (2) and (4).

Since r 5 1
2 , 1 2 r 5 1

2 and 1 2 r n 5 1 2 ~1
2!

n. Applying Equation (4) gives

Sn 5
a~1 2 r n!

1 2 r
5

S1
3DF1 2 S1

2D
nG

1 2 S1
2D

5
2
3S1 2

1
2nD.

Therefore,

an 5
1

3 · 2n21 and Sn 5
2
3S1 2

1
2nD b

cEXAMPLE 9 Limit of a sum (a) Find the sum of the first 5, 10, and 100
terms of the geometric sequence from Example 8. (b) Draw a graph of Sn 5
2
3 ~1 2 1

2n ! in @0, c# 3 @0, 2#, where c is the number of pixel columns of your
calculator (see inside front cover). Trace to find the smallest integer n for which the
y-value is displayed as 2

3 .
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Solution

(a) In Example 8 we found a formula for the nth partial sum, Sn 5 2
3 ~1 2 1

2n!.
Substituting 5, 10, and 100 for n,

S5 5
2
3S1 2

1
25D 5

31
48

< 0.646 , S10 5
2
3S1023

1024D 5
1023
1536

< 0.6660

S100 5
2
3S1 2

1
2100D.

The term
1

2100 has 30 zeros immediately following the decimal point. That

means that S100 is so near 1 that a calculator cannot display the difference
except as 1.

(b) In the window @0, c# 3 @0, 2# we see a graph something like Figure 2. Because
calculators display trace coordinates differently, you may see something other
than ours, but somewhere between 25 and 35, you should see the y-value
displayed something like 0.6666666 . . . , the nearest your calculator can come
to displaying 2

3 . b

Looking Ahead to Calculus: Infinite Series

As indicated above, each sequence $an% is associated with a sequence of partial
sums $Sn%, where Sn 5 a1 1 a2 1 · · · 1 an. What happens to Sn as n gets larger
and larger, that is, as we add more and more terms? We are considering an “infinite
sum” written as a1 1 a2 1 a3 1 · · · , or in summation notation,

o
`

n51
an.

This is called an infinite series.
Since we cannot add an infinite set of numbers, we need instead the notion of

a limit. In one sense, calculus is the study of limits. It is beyond the scope of this
book to deal with infinite series in general, but for a geometric sequence $an%, we
can at least get an intuitive feeling for what happens to Sn as n becomes large.

In Examples 8 and 9, where an 5 1
3 · 2n21 and Sn 5 2

3 (1 2 1
2n), it is reasonable to

assume that 1
2n gets close to 0 as n becomes large. In calculus notation

lim
nA`

1
2n 5 0, from which lim

nA`
Sn 5

2
3

.

We say that the infinite series, o
`

n51

1
3 · 2n21 converges to

2
3

, and we write

o
`

n51

1
3 · 2n21 5

1
3

1
1
6

1
1

12
1 · · · 5

2
3

.

In general, we associate each geometric sequence $ar n21% with an infinite
geometric series

o
`

n51
ar n21 5 a 1 ar 1 ar 2 1 · · · 1 ar n21 1 · · · .

FIGURE 2
y 5 (2/ 3)(1 2 1/ 2`x)
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The only meaning we give to this infinite sum is the limit of the sequence of partial
sums,

lim
nA`

Sn 5 lim
nA`

a~1 2 r n!

1 2 r
,

which depends on limnA` r n. Looking at different values of r, we conclude that if
r is any number between 21 and 1, then limnA` r n 5 0, from which

lim
nA`

Sn 5 lim
nA`

a~1 2 r n!

1 2 r
5

a
1 2 r

.

Infinite geometric series

Associated with every geometric sequence $ar n21% is an infinite geometric
series

o
`

n51
ar n21 5 a 1 ar 1 ar 2 1 · · · 1 ar n21 1 · · · .

If 21 , r , 1, then the series converges to
a

1 2 r
, and we write

o
`

n51
ar n21 5 a 1 ar 1 ar 2 1 · · · 1 ar n21 1 · · · 5

a
1 2 r

. (5)

If _ r _ $ 1, then the infinite series does not have a sum, and it diverges.

Repeating decimals. In Section 1.2 we said that the decimal representation of
any rational number is a repeating decimal. The following example illustrates how
we can use an infinite geometric series to express a repeating decimal as a fraction
of integers.

cEXAMPLE 10 Repeating decimal Write 1.2454545 · · · ~5 1.245! in
terms of an infinite geometric series, then use Equation (5) to express 1.245 in the

form
p
q

, where p and q are integers.

Solution

1.2454545 · · · 5 1.2 1 0.045 1 0.00045 1 · · ·

5
6
5

1
45
103 1

45
105 1 · · ·

The terms following 12
10 form an infinite geometric series with a 5 0.045 5 45

1000 and
r 5 0.01 5 1

100 . Since r is between 21 and 1, we may use Equation (5) to express
the sum as

6
5

1
0.045

1 2 0.01
5

6
5

1
45

990
5

137
110

.

Therefore, 137
110 and 1.245 represent the same number. b

Functions represented by infinite series. The infinite series 1 1 x 1 x 2 1 · · ·
is geometric (with a 5 1 and r 5 x), so if x is any number between 21 and 1, the
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series converges:

1 1 x 1 x 2 1 x 3 1 · · · 5
1

1 2 x
.

Hence the function f ~x! 5
1

1 2 x
, where 21 , x , 1, can be represented by the

infinite series 1 1 x 1 x 2 1 · · · .
An important topic arises in calculus when we represent functions by infinite

series. For instance, it can be shown that the function F~x! 5 sin x is also given by

sin x 5 x 2
x 3

3!
1

x 5

5!
2

x 7

7!
1 · · · .

The representation for sin x is not a geometric series, but it does converge for every
real number x. It follows that sin x can be approximated by polynomial functions
consisting of the first few terms of the infinite series. For example, if we let p~x! be
the sum of the first four terms,

p~x! 5 x 2
x 3

3!
1

x 5

5!
2

x 7

7!
, then p~x! < sin x.

Evaluating at x 5 0.5,

sin 0.5 < p~0.5! 5 0.5 2
~0.5!3

6
1

~0.5!5

120
2

~0.5!7

5040
< 0.4794255332.

To see how good this approximation is, use your calculator to evaluate sin 0.5
(in radian mode). In fact, your calculator is probably designed to use polynomial
approximations to evaluate most of its built-in functions.

Following are series representations for some important functions we have
studied in Chapters 4 and 5.

sin x 5 x 2
x 3

3!
1

x 5

5!
2

x 7

7!
1 · · · cos x 5 1 2

x 2

2!
1

x 4

4!
2

x 6

6!
1 · · ·

ex 5 1 1 x 1
x 2

2!
1

x 3

3!
1 · · · e2x 5 1 2 x 1

x 2

2!
2

x 3

3!
1 · · ·

EXERCISES 8.3

Check Your Understanding

Exercises 1–6 True or False. Give reasons.

1. If $an% is an arithmetic sequence, then a6 2 a3 5
a8 2 a5.

2. The sequence beginning 1
2 , 1

4 , 1
6 , 1

8 , . . . could be an
arithmetic sequence.

3. If $cn% is a geometric sequence, then
c5

c2
5 r 3.

4. The sequences $an% and $bn% given by an 5 2n and
bn 5 log~100n! are identical.

5. In a geometric sequence if the common ratio is nega-
tive, then after a certain point in the sequence, all the
terms will be negative.

6. In an arithmetic sequence if the common difference is
negative, then after a certain point in the sequence, all
the terms will be negative.

Exercises 7–10 Fill in the blank so that the resulting
statement is true.

7. 14 1 o
5

k51
~22!k 5 .

8. o
15

k51
~8 2 k! 5 .

9. 0.999 . . . 5 0.9 5 .

10. 11~0.727272 . . . ! 5 11~0.72! 5 .
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Develop Mastery

Exercises 1–10 Arithmetic Sequences The first three
terms of an arithmetic sequence are given. Find (a) the
common difference, (b) the sixth and tenth terms, and
(c) the sum of the first ten terms.

1. 3, 6, 9, . . . 2. 218, 211, 24, . . .

3. 4, 21, 26, . . . 4. 1
2 , 2

3 , 5
6 , . . .

5. 20, 52
3 , 44

3 , . . . 6. 0.24, 0.32, 0.40, . . .

7. 1 1 Ï2, 1 2 Ï2, 1 2 3Ï2, . . .

8. 1 1 Ï5, 1, 1 2 Ï5, . . .

9. ln 2, ln 4, ln 8, . . . 10. ln e, 4, 7, . . .

Exercises 11–20 Geometric Sequences The first three
terms of a geometric sequence are given. Find (a) the com-
mon ratio, (b) the sixth and eighth terms, and (c) the sum
of the first five terms.

11. 1, 2 1
3 , 1

9 , . . . 12. 2, 1, 1
2 , . . .

13. 18, 6, 2, . . . 14. 1, 20.5, 0.25, . . .

15. 1, Ï2, 2, . . . 16. 1, 1

Ï2
, 1

2 , . . .

17. 3, 1.5, 0.75, . . . 18. 4
9 , 2 2

3 , 1, . . .

19. Ï2 2 1, 1, Ï2 1 1, . . . 20. 3
2 , 1, 2

3 , . . .

Exercises 21–28 Arithmetic or Geometric? The first
three terms of a sequence are given. Determine whether the
sequence could be arithmetic, geometric, or neither. If
arithmetic, find the common difference; if geometric, give
the common ratio.

21. 3, 21, 24, . . . 22. 22, 24, 28, . . .

23. 1
2 , 1

3 , 1
4 , . . . 24. 4

9 , 2 2
3 , 1, . . .

25. ln Ï3, ln 3, ln 3Ï3, . . . 26. 1, 4, 9, . . .

27. 0.21, 0.0021, 0.000021, . . .

28. e21, e22, e23, . . .

Exercises 29–36 Arithmetic Sequences Assume that the
given information refers to an arithmetic sequence. Find the
indicated quantities.

29. a3 5 5, a6 5 0; d, a1 30. a2 5 5, d 5 3
2 ; a1, a10

31. a1 5 1, a8 5 15; d, S8 32. a8 5 1, a9 5 1; S4, S16

33. a8 5 15, S8 5 64; a1, S4

34. a6 5 21, S16 5 8; a1, S6

35. a5 5
p

3
, d 5

p

3
, a4, a16, S16

36. a5 5 Ï2, a8 5 4Ï2; a1, a12, S12

Exercises 37–44 Geometric Sequences Assume that the
given information refers to a geometric sequence. Deter-
mine the indicated quantities.

37. a1 5 4, a2 5 6; r, a6

38. a2 5 3, a3 5 2Ï3; a4, a7

39. a5 5 1
4 , r 5 3

2 ; a1, S5

40. a4 5 6, a7 5 48; r, a10

41. a1 5 18, S2 5 24; a5, S5

42. a4 5 1
3 , a7 5 2 1

81 ; r, S7

43. a3 5 2 8
5 , a10 5 1

80 ; a1, S8

44. a1 5 1
2 , S2 5 2

3 ; a6, S6

Exercises 45–50 Find x Determine the value(s) of x for
which the given expressions will form the first three terms of
the indicated type of sequence.

45. 2, x, x 2 2 1; arithmetic

46. x 2 2, x 1 2, x 1 6; arithmetic

47. 2, x, x 2 2 1; geometric

48. x 2 2, x 1 2, x 1 6; geometric

49. x 1 1, 3x 2 1, 3x 1 3; arithmetic

50. 2, 2x, 2x24; geometric

Exercises 51–56 Arithmetic or Geometric? Three ex-
pressions are given. Determine whether, for every real num-
ber x, they are the first three terms of an arithmetic se-
quence or a geometric sequence.

51. x 1 1, x 1 3, x 1 5

52. 2 2 x, 3 2 2x, 4 2 3x

53. 2x, 2x21, 2x22

54. 2x21, 22x22, 23x23

55. ~1 1 x!, ~1 1 x!2, ~1 1 x!3

56.
1

x 2 1 1
,

2
x 2 1 1

,
4

x 2 1 1

Exercises 57–60 Infinite Series For the infinite series,
(a) write out the first four terms, find the common ratio and
a formula for Sn. (b) Find the sum of the series; that is, find
the limit of Sn as n gets large.

57. o
`

n51
S2

1
3Dn21

58. o
`

n51

3
2n

59. o
`

n51

3n

4n11 60. o
`

n51
4S1

5Dn21

Exercises 61–62 Sum of an Infinite Series Find the sum
of the infinite geometric series

61. 3 2 2 1 4
3 2 8

9 1 . . . .

62. 28 1 6 2 9
2 1 27

8 2 . . . .

Exercises63–64 GeometricSequence,PartialSums,Con-
vergence The first three terms of a geometric sequence are
given. (a) Use Equation (4) to find a formula for Sn as a
function of n, and draw a graph of Sn. (b) Using Equation
(5) find the limit L of $Sn%. (c) Trace to find the smallest
value of n for which _ Sn 2 L _ is less than 0.001, 0.00001.
See Example 9.

63. 4, 22.4, 1.44, . . . 64. 2, 1.2, 0.96, . . .
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Exercises 65–68 Express as a quotient of two integers in
reduced form.

65. (a) 1.24, (b) 1.24 66. (a) 1.45, (b) 1.45

67. (a) 1.125, (b) 1.125 68. (a) 0.72, (b) 0.72

69. Evaluate the sum
p

2
1 p 1

3p

2
1 2p 1

5p

2
1 · · · 1

31p

2
1 16p .

70. (a) How many integers between 200 and 1000 are
divisible by 11?

(b) What is their sum?

71. Find the sum of all odd positive integers less than 200.

72. Find the sum of all positive integers between 400 and
500 that are divisible by 3.

73. If 1 , a , b , c and a, b, and c are the first three
terms of a geometric sequence, show that the numbers

1
loga 4

,
1

logb 4
, and

1
logc 4

are three consecutive terms

of an arithmetic sequence. (Hint: Use the change of the
base formula from page 228.)

74. In a geometric sequence $an% of positive terms, a2 2
a1 5 12 and a5 2 a4 5 324. Find the first five terms of
the sequence.

75. If the sum of the first 60 odd positive integers is sub-
tracted from the sum of the first 60 even positive in-
tegers, what is the result?

76. The measures of the four interior angles of a quadrilat-
eral form four terms of an arithmetic sequence. If the
smallest angle is 728, what is the largest angle?

77. In a right triangle with legs a, b, and hypotenuse c,
suppose that a, b, and c are three consecutive terms of
a geometric sequence. Find the common ratio r.

78. The seats in a theater are arranged in 31 rows with 40
seats in the first row, 42 in the second, 44 in the third
and so on.

8.4 P A T T E R N S , G U E S S E S , A N D F O R M U L A S

What humans do with the language of mathematics is to describe patterns.
Mathematics is an exploratory science that seeks to understand every kind of
pattern—patterns that occur in nature, patterns invented by the human mind,
and even patterns created by other patterns.

Lynn Arthur Steen

Arithmetic and geometric sequences are highly structured, and it is precisely
because we can analyze the regularity of their patterns that we can do so much with
them. The formulas developed in the preceding section are examples of what can
be done when patterns are recognized and used appropriately.

(a) How many seats are in the thirty-first row? In the
middle row?

(b) How many seats are in the theater?

79. A rubber ball is dropped from the top of the Washington
Monument, which is 170 meters high. Suppose each
time it hits the ground it rebounds 2

3 of the distance of
the preceding fall.
(a) What total distance does the ball travel up to the

instant when it hits the ground for the third time?
(b) What total distance does it travel before it essen-

tially comes to rest?

80. Suppose we wish to create a vacuum in a tank that
contains 1000 cubic feet of air. Each stroke of the vac-
uum pump removes half of the air that remains in the
tank.
(a) How much air remains in the tank after the fourth

stroke?
(b) How much air was removed during the fourth

stroke?
(c) How many strokes of the pump are required to

remove at least 99 percent of the air?

81. From a helicopter hovering at 6400 feet above ground
level an object is dropped. The distance s it falls in t
seconds after being dropped is given by the formula
s 5 f ~t! 5 16t 2.
(a) How far does the object fall during the first second?
(b) Let an denote the distance that the object falls dur-

ing the nth second, that is, an 5 f ~n! 2 f ~n 2 1!.
Find a formula for an. What kind of sequence is an?

(c) Evaluate the sum a1 1 a2 1 · · · 1 a12, and then
find s when t 5 12. Compare these two numbers.

(d) Clearly this is a finite sequence since the object
cannot fall more than 6400 feet. How many terms
are there in the sequence? What is the sum of these
terms?
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One of the strongest urges of the human mind is to discover, seek out, or
impose some kind of order in the world around us. If we can organize new informa-
tion into some kind of recognizable pattern, we can learn more efficiently and
remember more accurately.

Patterns and mathematical formulas to describe patterns permeate mathemat-
ics. Where did all these formulas come from? All too often people have the
impression that mathematics just is, that it has always been around in precisely its
current form. Students frequently get the feeling that their main responsibility is
just to learn the wisdom that has passed down through the ages.

In the 1970s Penrose’s Mathematics should be seen as an experimental, growing, changing science. It
lifelong passion for has never been limited to professional mathematicians. Some very important dis-
geometric puzzles yielded a coveries have been made by amateurs, ordinary people who became involved in the
bonus. He found that as

fascinating questions that are always at the heart of mathematics. Mathematics hasfew as two geometric
grown from discoveries that excited those who found answers in patterns they wereshapes, put together in

jigsaw-puzzle fashion, can investigating. It has been strengthened by vigorous disagreements and arguments
cover a surface in patterns between different investigators. It has grown in much the same way as other
that never repeat scientific disciplines and it continues to develop today as much as ever before.
themselves. “To a small

Our goal in this section is not to make a mathematician of every reader, but weextent I was thinking about
do want to involve you in the discovery process, to provide some opportunity tohow simple structures can

force complicated experience the feeling of creation that drives mathematics. Someone who sees what
arrangements, but mainly I appears to be a relationship and then can work through to an understanding of why
was doing it for fun.” it is valid is truly doing mathematics, whether or not someone else may have made

Roger Penrose
a similar discovery before.

As a first step, we will always need raw data, numbers we can look at to search
for patterns or regularity. On the basis of our search, we will try to formulate a
guess as to what is happening. A good guess will allow us to predict what should
happen in the next case. Such a prediction allows us to test our guess. On the basis
of checking a guess, we either strengthen our confidence that we have a good
explanation, or we find out that some modification is necessary. We want to
emphasize that there is no such thing as a bad guess if it explains something we have
observed. Guesses may later turn out to be inadequate or incorrect, but any hope
of finding new knowledge depends on a willingness to risk wrong guesses that can
be corrected.

In many situations there may be several ways to write formulas, and there are
almost always different ways to verify their correctness. In general, there is no
single correct response. As you look for patterns, guess freely. Examine possible
solutions. Try to understand what is happening. A guess remains just a guess until
it is proven to be correct or shown to be incorrect. Proofs generally are much more
difficult, and there is never any guarantee that a proof even exists. Some guesses
that appear to be sound have not yet been established, even years after they were
made. We illustrate some typical procedures in the following examples.

cEXAMPLE 1 Divisibility For what positive integers n is 2n 2 1 divisible
by 3?

Solution
Strategy: Evaluate 2n 2 1 Follow the strategy. Substituting n 5 1, 2, 3, . . . , calculate some numbers.
for the first few values of n
and see which are divisible 21 2 1 5 1 22 2 1 5 3 23 2 1 5 7 24 2 1 5 15
by 3. Use enough values of n

This indicates that 2n 2 1 is divisible by 3 when n is 2 or 4. On the basis of this veryto see a pattern.
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small sample, we should probably hesitate to make a guess with much confidence,
but it appears that every even value of n may give a number that is divisible by 3.

GUESS: 2n 2 1 is divisible by 3 for every even positive integer n.

Now test the guess. The next even number for n is 6, and 26 2 1 5 63, which
does have a factor of 3, reinforcing confidence in the guess. Also check what
happens when n 5 5, to see if 25 2 1~5 31! is not divisible by 3. The next even
values for n yield 28 2 1 5 255 and 210 2 1 5 1023, both of which are divisible
by 3.

To prove that the guess is correct, we can use mathematical induction, which
is discussed in the next section. b

Often one guess about a pattern leads to recognition of a related pattern. After
evaluating 2n 2 1 for several values of n, other patterns may emerge. For conve-
nience, let us use function notation f ~n! 5 2n 2 1:

f ~1! 5 1 f ~2! 5 3 f ~3! 5 7 f ~4! 5 15

f ~5! 5 31 f ~6! 5 63 f ~7! 5 127

A natural question is: For what n is f ~n! a prime number? If function g is given by
g~n! 5 2n 1 1, then ask when is g~n! divisible by 3, or when is g~n! a prime? For
what values of n are f ~n! or g~n! divisible by other numbers?

Pascal’s Triangle

One marvelous source for pattern observation, called Pascal’s triangle, is a trian-
gular array of numbers named after Blaise Pascal (1623–1687). Pascal may be
considered the father of modern probability theory, in which these numbers play an
important role. The numbers in Pascal’s triangle are also called binomial
coefficients, a name we will justify in Section 8.6. Pascal was not the first, or only,
discoverer of some of the properties of binomial coefficients. A beautiful represen-
tation of the triangle appeared in China as early as 1303, but Pascal did a great deal
of work with the numbers we now associate with his name.

We shall examine binomial coefficients in greater detail in Section 8.6. At the
moment, we are concerned primarily with the way the triangle is generated, one
row at a time. Figure 3 shows only the first six rows, but the triangle can be
continued as needed. The first and last entries on each row are always ones, and
every other entry is obtained by adding the two adjacent entries immediately
above.

Figure 3 shows the numbers themselves. In order to refer to specific entries in
the triangle, we need to identify entries by location. The rows are numbered in
obvious fashion; the columns are numbered diagonally, starting with column 0,
not column 1. The entry in the nth row and the cth column is denoted by ~c

n!.
Figure 3b shows addresses of the corresponding entries in Figure 3a. For example,
in the sixth row, the figure shows the following.

S6
0D 5 1 S6

1D 5 6 S6
2D 5 15 S6

3D 5 20 S6
4D 5 15, etc.



Column 0
Column 1

Column 2

Column 3

Row 1

Row 2

Row 3


1


1

(a)


1


2


1


1


3


3


1


1


4


6


4


1


1


5


10


10


5


1


1


6


15


20


15


6


1

+ + + + +

(b)

1
0

1
1( ) ( )

2
0

2
1( ) ( ) 2

2( )
3
0

3
1( ) ( ) 3

2( ) 3
3( )

4
0

4
1( ) ( ) 4

2( ) 4
3( ) 4

4( )
5
0

5
1( ) ( ) 5

2( ) 5
3( ) 5

4( ) 5
5( )

6
0

6
1( ) ( ) 6

2( ) 6
3( ) 6

4( ) 6
5( ) 6

6( )
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The rule for generating each row of Pascal’s triangle from the one just above
it is indicated by the arrows in Figure 3a, showing how the fifth row generates the
sixth row. In address notation,

S5
0D 1 S5

1D 5 S6
1D, S5

1D 1 S5
2D 5 S6

2D, S5
2D 1 S5

3D 5 S6
3D, etc.

This rule may be stated recursively.

Binomial coefficients (recursive form)

The symbol (c
n) denotes the entry in the nth row and the cth column of

Pascal’s triangle. The end entries (where c is 0 or n) are 1 on each row. If
0 , c , n, then adding adjacent entries in the nth row gives the entry
between them in the next row.

Sn
0D 5 Sn

nD 5 1 and Sn
cD 1 S n

c 1 1D 5 Sn 1 1
c 1 1D

cEXAMPLE 2 Sums in Pascal’s triangle Guess a formula for the sum of the
entries on the nth row of Pascal’s triangle.

Solution
We first begin by looking at some specific cases that will help us understand the
problem, and from which we may be able to recognize patterns. From Figure 3a,
we add the numbers across each row and get the following sums.

Row Sum

1 1 1 1 5 2 ~5 21!

2 1 1 2 1 1 5 4 ~5 22!

3 1 1 3 1 3 1 1 5 8 ~5 23!

4 1 1 4 1 6 1 4 1 1 5 16 ~5 24!

The sums appear to be doubling at each stage, suggesting an obvious guess.

FIGURE 3
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HISTORICAL NOTE COMPUTERS AND PATTERN RECOGNITION

GUESS: The sum of the entries on the nth row of Pascal’s triangle is 2n.

The sum of the entries on the fifth row is 32, which is 25, and for the sixth row,
the sum is 64, which is 26. The guess still looks good.

The key to understanding why the guess is correct is the way each row is
derived from the row above it. Look at the arrows from the fifth to the sixth row
in Figure 3a. The first 6 comes from adding the 1 and 5 above, and the same 5 with
the 10 gives 15. Similarly, the same 10 is used again for the next entry. Thus each
entry on the fifth row is added twice to get the sixth row, including the outside 1s
to get the outside 1s on the sixth row. It follows that the sum of the entries on Row
6 is twice the sum of the entries on Row 5. Since 25 is the sum for Row 5, the sum
of Row 6 must equal 2~25! 5 26. b

This argument is essentially a proof by mathematical induction, which we will
discuss formally in the next section.

Researchers in the area of artificial
intelligence marvel at the capacity
of the human mind to see patterns
and discover relationships. As
Douglas Hofstadter has said, “An
inherent property of intelligence @is#
that it is always looking for, and
often finding, patterns.”

How can a machine be
instructed to recognize that a set of
data points lie along some line, that
they are essentially linear? Such
judgments require the ability to
ignore exceptional cases and to
consider others in clusters. Recent
applications of pattern recognition

routines are as diverse as space probes that can
make midcourse corrections using star patterns for
guidance, computer programs in medicine that
can make probable diagnoses from patient
responses to programmed questions, and programs
to identify insect pests by analyzing the patterns
in which leaves are chewed.

Now investigators are exploring
ways to connect large numbers of
computer chips into neural
networks to more closely simulate
the way they think the brain may
work. Some results are very
promising. Neural nets are proving
to be remarkably adept at
predicting the biological activity of
comparatively short fragments of
DNA. They can find patterns in
sequences that appear to be
random. While we do not clearly
understand just how these networks
operate, they seem to take
functions that describe the given

numbers and combine the functions to predict the
next terms. Scientists still cannot approach the
capabilities of the human mind with machines,
but, in some instances, the neural nets can now
recognize patterns more complicated than human
brains can handle.

Pulitzer Prize-winning
computer scientist Douglas

Hofstadter
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cEXAMPLE 3 Using Pascal’s triangle Find a formula for the sum of the
first n positive integers in terms of the entries in Pascal’s triangle.

Solution
Let f ~n! denote the sum of the first n positive integers,

f ~n! 5 1 1 2 1 3 1 · · · 1 n.

Express f ~n! in terms of entries in Pascal’s triangle. First get some data:

f ~1! 5 1, f ~2! 5 1 1 2 5 3, f ~3! 5 1 1 2 1 3 5 6,

f ~4! 5 1 1 2 1 3 1 4 5 10.

The numbers 1, 3, 6, and 10 are successive entries in Column 2 of Pascal’s triangle
in Figure 8.1a. In address notation,

f ~1! 5 S2
2D, f ~2! 5 S3

2D, f ~3! 5 S4
2D, f ~4! 5 S5

2D .

Based on the data we gathered, we arrive at the following guess.

GUESS: f ~n! 5 Sn 1 1
2 D for every positive integer n.

If we look at the way each entry is obtained from the two immediately above it, we
may see that we are adding precisely what is needed for the pattern to continue.
Therefore, our guess must be correct. b

cEXAMPLE 4 Dividing a circle Given n points on a circle, consider two
functions:

C~n! is the number of chords determined by connecting each pair of these
points.

R~n! is the number of regions into which the chords divide the interior of
the circle, where no three chords have a common point of intersection
inside the circle.

Guess a formula for (a) C~n! and (b) R~n!.

Solution
For each value of n, make a sketch from which we can get the information needed
for the table (see Figure 4).

n C~n! R~n!

1 0 1

2 1 2

3 3 4

4 6 8

5 10 16

Strategy: From a table
showing the first few values
of C~n! and R~n!, look for
numbers that may be related
to obvious powers of num-
bers or to entries in Pascal’s
triangle.



p1 p2

(a) n = 2

p1 p2

p3

(b) n = 3

p1 p2

p3p4

(c) n = 4

p1

p4

p2

p3

p5

(d) n = 5
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(a) For n $ 2, the values of C~n! are numbers in Column 2 of Pascal’s triangle. In
address notation

C~2! 5 S2
2D, C~3! 5 S3

2D, C~4! 5 S4
2D, C~5! 5 S5

2D
A pattern emerges on which to base a reasonable guess.

GUESS: C~n! 5 Sn
2D for n $ 2.

To see why the guess for C~n! continues to give the correct values, see what
happens when you add one more point (going from n to n 1 1). Check to see
that you get n new chords. Compare the resulting values with the values
predicted by the formulas.

(b) From the table of values of R~n!, the number of pieces appears to be a power
of 2, doubling with each new point:

R~1! 5 1 5 20, R~2! 5 2 5 21, R~3! 5 4 5 22,

R~4! 5 8 5 23, and R~5! 5 16 5 24.

Make the obvious guess: R~n! 5 2n21 for every positive integer n.
Draw circles with 6 and 7 points and carefully count the number of regions.

According to the guess R~n! 5 2n21, we should get R~6! 5 32 and R~7! 5 64.
What numbers do you get?

This is an excellent guess based on a beautiful pattern that simply happens
to be wrong. Sometimes people speak of a pattern “breaking down.” The
pattern does not break down; we have failed to find the right pattern. The
correct formula is more complicated and may be expressed in terms of the
entries in Pascal’s triangle.

R~n! 5 Sn
0D 1 Sn

2D 1 Sn
4D .

For instance, when n is 5, from Figure 8.1

S5
0D 1 S5

2D 1 S5
4D 5 1 1 10 1 5 5 16

which is the value of R~5!. Evaluate

Sn
0D 1 Sn

2D 1 Sn
4D

when n is 6 and when n is 7. (Extend Pascal’s triangle to include row seven.)
Compare your results with the actual count of the number of regions, R~6! and
R~7!.
In Section 8.6 we will see how to evaluate binomial coefficients to get

R~n! 5
n4 2 6n3 1 23n2 2 18n 1 24

24
. b

FIGURE 4
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EXERCISES 8.4

Check Your Understanding

Exercises 1–10. True or False. Give reasons.

1. When n is 1, 2, 3, 4, or 5, the sum of the first n odd
positive integers is equal to n 2.

2. When n is 1, 2, 3, 4, or 5, the sum of the first n even
positive integers is equal to n~n 1 1!.

3. If f ~n! 5 n2 2 n 1 17, then f ~n! is a prime number for
n 5 1, 2, 4, 8, and 17.

4. If f ~n! 5 n2 1 n, then f ~n! is an even number for every
positive integer n.

5. Evaluating the expressions ~n 1 1!2 and 2n for n 5 1, 2,
3, 4, 5, and 6, it is reasonable to conclude that
~n 1 1!2 . 2n for every positive integer.

6. For every positive integer n, 3n 1 1 is an even number.

7. For every positive integer n, the units digit of 5n 2 1
is 4.

8. When n is 1, 2, 3, or 4, 5n 1 1 is not divisible by 4.

9. For every positive integer n, the units digit of 2n is 2, 4,
or 8.

10. For every positive integer n, the units digit of 4n 2 1 is
3 or 5.

Develop Mastery

In these exercises, n always denotes a natural number.

Exercises 1–5 Recognize Patterns As a first step for
each exercise, complete the following table by entering the
values of f ~n! for the given function. In order to see patterns,
it is very important that computations be correct. As a
check, one of the values of f ~n! is given.

n 1 2 3 4 5 6

f (n)

1. f ~n! 5 5n 2 1. Check: f ~4! 5 54 2 1 5 624.
(a) For what values of n in your table is f ~n! a multiple

of 3? Of 4? Of 12?
(b) Based on these observations, make a guess that

describes all natural numbers n for which f ~n! is a
multiple of 3, of 4, and of 12. State your guess in
complete sentences.

2. f ~n! 5 5n 1 1. Check: f ~5! 5 55 1 1 5 3126.
(a) For what values of n in your table is f ~n! a multiple

of 6? Of 7?
(b) Make a guess that describes all natural numbers n

for which f ~n! is a multiple of 6. Express your guess
in complete sentences.

(c) For additional information: Is f ~9! a multiple of 7?
Is f ~15! a multiple of 7? Is f ~18! a multiple of 7? For
which n is f ~n! a multiple of 7?

3. f ~n! 5 9 1 92 1 93 1 · · · 1 9n.
Check: f ~3! 5 9 1 92 1 93 5 819.
Based on the data in your table, make a guess that de-
scribes all natural numbers n for which the units digit of
f ~n! is a zero, a one, a nine. Convince your teacher that
your guess is correct.

4. f ~n! 5 n2 2 n 1 11.
Check: f ~5! 5 52 2 5 1 11 5 31.
(a) For what values of n in your table is f ~n! a prime

number? Is f ~n! a prime number for every natural
number n?

(b) Make a guess concerning the units digit of f ~n!.
(c) To lead to a recursive formula, enter appropriate

numbers in each of the blank spaces:

f ~2! 5 f ~1! 1

f ~3! 5 f ~2! 1

f ~4! 5 f ~3! 1 . . .

Now guess the quantity that should be entered in
the general case:

f ~n 1 1! 5 f ~n! 1 .

Prove that your guess is valid (or not valid) by actu-
ally evaluating f ~n 1 1! and f ~n! 1 to see
if they are equal.

(d) Evaluate f ~11!, f ~22!, and f ~33!. Now check your
conclusion in (a).

5. f ~n! 5 n2 2 n 1 41.
Check: f ~5! 5 52 2 5 1 41 5 61.
(a)–(c) Same as in Exercise 4.
(d) Evaluate f ~41! and f ~82!. Are these primes?

Exercises 6–14 Guess a Formula Function f is defined
as a sum. (a) Make a table that shows the values of f (n)
for n 5 1, 2, 3, 4, 5, and 6. (b) Based on the data in the
table, guess a simpler formula for f. The value of f (4) is also
given, which should serve as a check on your computations
and also possibly as a hint to help you recognize
patterns.

6. f ~n! 5 1 1 3 1 5 1 · · · 1 ~2n 2 1!

5 o
n

k51
~2k 2 1!; f ~4! 5 16.

7. f ~n! 5 2 1 4 1 6 1 · · · 1 2n 5 o
n

j51
2 j;

f ~4! 5 4 · 5.

8. f ~n! 5
1

1 · 2
1

1
2 · 3

1
1

3 · 4
1 · · · 1

1
n~n 1 1!

5 o
n

i51

1
i~i 1 1!

; f ~4! 5
4
5

.
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9. f ~n! 5
1
2

1
1
4

1
1
8

1 · · · 1
1
2n

5 o
n

k51

1
2k ; f ~4! 5

16 2 1
16

.

10. f ~n! 5 2S1
3

1
1
9

1
1
27

1 · · · 1
1
3nD

5 2 · Son

k51

1
3kD ; f ~4! 5

80
81

.

11. f ~n! 5 1 1 2~30 1 31 1 32 1 · · · 1 3n21!

5 1 1 2 o
n

k51
3k21; f ~4! 5 34

(c) Use the result in (b) to get a formula for (k51
n 3k21.

12. f ~n! 5
1
2!

1
2
3!

1
3
4!

1 · · · 1
n

~n 1 1!!

5 o
n

k51

k
~k 1 1!!

; f ~4! 5
119
120

.

(Hint: Keep in mind the values of factorials, such as
6 5 3!, 24 5 4!, 120 5 5!, · · · .)

13. f ~n! 5 1 1 ~1 1 2 1 4 1 · · · 1 2n21!

5 1 1 o
n

j51
2j21; f ~4! 5 24.

(c) Use your results in (b) to get a simpler formula for
g~n! 5 1 1 2 1 4 1 · · · 1 2n21.

14. f ~n! 5 1 1 2 1 3 1 · · · 1 ~n 2 1! 1 n 1 ~n 2 1!

1 · · · 1 3 1 2 1 1

f ~4! 5 1 1 2 1 3 1 4 1 3 1 2 1 1 5 16.

15. For f ~n! 5 2S1 2
1
22DS1 2

1
32DS1 2

1
42 D · · ·

S1 2
1

~n 1 1!2D, evaluate f ~n! for n 5 1, 2, 3, 4, 5, and

6. For instance, f ~4! 5
6
5

5
4 1 2
4 1 1

. Based on your

data, guess a simpler formula for f ~n!.

Exercises 16–18 Recursive Functions For the functions
defined recursively, (a) Make a table that shows the values
of f (n) for n 5 1, 2, 3, 4, 5, and 6. (b) Using the data from
this table, guess a closed form formula for f.

16. f ~1! 5 2 and f ~n! 5 2 f ~n 2 1! for n $ 2; f ~5! 5 25.

17. f ~1! 5 2 and f ~n! 5 f ~n 2 1! 1 2n for n $ 2;
f ~5! 5 5 · 6.

18. f ~1! 5 3 and f ~n! 5 f ~n 2 1! 1 ~2n 1 1! for n $ 2;
f ~4! 5 4 · 6.

19. Number of Handshakes Suppose that each of the n
people at a party shakes hands with every other person
exactly once. Let f ~n! denote the total number of hand-

shakes, so that f ~1! 5 0 (one person, no handshakes),
f ~2! 5 1 (two people, one handshake), f ~3! 5
f ~2! 1 2 (adding a person adds two more handshakes).
A newcomer shakes hands with each of the k people
present and so f ~k 1 1! 5 f ~k! 1 k. Find a formula
for f.

20. In Example 4 let D~n! be the number of diagonals of the
polygon obtained by connecting the points on the circle.
For example, D~1! 5 D~2! 5 D~3! 5 0, D~4! 5 2,
and D~5! 5 5. Guess a formula for D~n!. (Hint: Count
the number of new diagonals when adding a point.)

Exercises 21–24 Pascal’s Triangle Extend Pascal’s tri-
angle, shown in Figure 3, for a few more rows. When you are
asked to find a number in the triangle, express it in address
notation, ~c

n!.

21. How many entries appear on row n?

22. On what rows of the triangle are the two middle entries
the same?

23. Each row in Figure 3 is symmetrical. (Each reads the
same forward and backward.) Explain how you can
know that Row 7 is symmetrical without computing any
entries in Row 7? How about Row 8? Row n?

24. In Example 2, we showed that the sum of all the entries

on Row n is 2n Ssymbolically, o
n

c50
Sn

cD 5 2nD. Let f ~n!

be the sum of the entries in the even-numbered columns
of Row n. That is,

f ~n! 5 Sn
0D 1 Sn

2D 1 Sn
4D 1 · · · 1 Sn

mD
where m is the last even-numbered column on Row n.
For instance,

f ~4! 5 S4
0D 1 S4

2D 1 S4
4D 5 1 1 6 1 1 5 8

f ~5! 5 S5
0D 1 S5

2D 1 S5
4D 5 1 1 10 1 5

5 16.

Evaluate f ~n! for several other values of n and then use
the information to help you guess a simpler formula
for f.

25. Follow the instructions for Exercise 24, but let f ~n!
denote the sum of all the entries in odd-numbered
columns on Row n, that is

f ~n! 5 Sn
1D 1 Sn

3D 1 Sn
5D 1 · · · 1 Sn

mD
where m is the last odd-numbered column in Row n.
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Exercises 26–29 Sums in Pascal’s Triangle Let f ~n! be
the sum of the first n entries in the given column.
(a) Evaluate f (n) for several values of n ( f (4) is given as
a check). (b) Locate these sums in the triangle, and then
guess a simpler formula for f in terms of address notation.

26. Column 0

f ~n! 5 S1
0D 1 S2

0D 1 S3
0D 1 · · · 1 Sn

0D
f ~4! 5 S4

1D .

27. Column 1

f ~n! 5 S1
1D 1 S2

1D 1 S3
1D 1 · · · 1 Sn

1D
f ~4! 5 S5

2D .

28. Column 2

f ~n! 5 S2
2D 1 S3

2D 1 S4
2D 1 · · · 1 Sn 1 1

2 D
f ~4! 5 S6

3D .

29. Column 3

f ~n! 5 S3
3D 1 S4

3D 1 S5
3D 1 · · · 1 Sn 1 2

3 D
f ~4! 5 S7

4D .

30. Let f ~n! denote the sum of the squares of the first n
natural numbers:

f ~n! 5 12 1 22 1 32 1 · · · 1 n2.

(a) Evaluate f ~n! for n 5 1, 2, 3, 4, 5, and 6. For in-
stance, f ~4! 5 30.

(b) Now look in Column 3 of Pascal’s triangle and find
two consecutive entries whose sum is f ~n!. For in-
stance,

f ~4! 5 30 5 10 1 20 5 S5
3D 1 S6

3D .

Use this information to help you guess a formula that
gives f ~n! as the sum of two consecutive entries in
Column 3. Use address notation in your answer.

31. Let P~n! denote the number of pieces (regions) into
which n lines divide the plane. Assume that no two lines
are parallel, and that no three lines contain a common

point. Draw figures to illustrate the cases for n 5 1, 2,
3, 4, and 5. By actually counting the pieces in each case,
evaluate P~n! for n 5 1, 2, 3, 4, and 5. Guess a formula
for P~n!. (Hint: Look for P~n! 2 1 in Pascal’s triangle.)

32. Related Functions Function f is defined recursively
by

f ~1! 5 1 f ~2! 5 5 and

f ~n! 5 f ~n 2 1! 1 2 f ~n 2 2! for n $ 3.

Functions g and h are given in closed form by

g~n! 5 2n 1 1 h~n! 5 2n 2 1.

(a) Complete the following table:

n 1 2 3 4 5 6

f (n)

g(n)

h (n)

As a check, you should have f ~4! 5 17, g ~4! 5 17,
h~4! 5 15.
(b) Based on the data in the table, make a guess about

the values of n for which f ~n! 5 g~n! and for which
f ~n! 5 h~n!.

(c) Using your guess in (b), is f ~n! 5 2n 1 ~21!n for
every natural number n?

33. At the end of Example 4, we indicated that R~n! is given
by the formula:

R~n! 5
n4 2 6n3 1 23n2 2 18n 1 24

24
.

Evaluate R~n! for n 5 4, 5, 6, and 7. For each value of
n draw an appropriate diagram and actually count the
number of regions to see if there is agreement with the
formula prediction.

34. Sequence $bn% is defined recursively by b1 5 3, b2 5 5,
bn 5 bn21 2 bn22, n . 2. That is, after the second
term, each term is the difference of the two preceding
terms.
(a) List the first ten terms.
(b) Based on the results in part (a), describe a general

pattern for the sequence.
(c) What is the sum of the first 1996 terms? The first

2000 terms?

35. Repeat Exercise 34 for b1 5 x, b2 5 y.
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8.5 M A T H E M A T I C A L I N D U C T I O N

The idea of mathematical induction is simply that if something is true at the
beginning of the series, and if this is “inherited” as we proceed from one
number to the next, then it is also true for all natural numbers. This has given
us a method to prove something for all natural numbers, whereas to try out
all such numbers is impossible with our finite brains. We need only prove two
things, both conceivable by means of our finite brains: that the statement in
question is true for 1, and that it is the kind that is “inherited.”

Rózsa Péter

In Section 1.4 we discussed statements (sentences that are either true or false) and
open sentences, whose truth value depends on replacing a variable or placeholder
with a number. In this section we consider sentences of the type

n! , 8n for every positive integer n. (1)

Such a sentence involves a quantifier : for every positive integer. Looking at the first
few statements, we get

1! , 8 · 1 4! , 8 · 4 6! , 8 · 6

1 , 8 (True) 24 , 32 (True) 720 , 48 (False)

Since n! , 8n does not yield a true statement for every positive integer n, Sentence
(1) is false. To show that a sentence of the type (1) is false, all we need is one value
of n ~n 5 6 in this case! that yields a false statement; any such value of n is a
counterexample.

A statement of the form

P~n! for every positive integer n, (2)

means that the infinite set of statements P~1!, P~2!, P~3!, . . . are all true. Estab-
lishing the truth of such a statement requires a special method of proof called
mathematical induction. Consider an example of the type given in Statement (2).
An appeal to intuition leads us to the formal statement of the Principle of Mathe-
matical Induction.

Suppose P~n! is given by

P~n!: The sum of the first n odd positive integers is n2.

It is difficult to work mathematically with a statement given verbally. We can
restate P~n! in mathematical terms.

P~n!: 1 1 3 1 5 1 · · · 1 ~2n 2 1! 5 n2

In sigma notation

P~n!: o
n

m51
~2m 2 1! 5 n2.

The real inspiration . . . I
got from my father. He
showed me a few
mathematical things when
I came back from Berlin. He
showed me mathematical
induction, for instance.
Maybe I was twelve.

Lipman Bers
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If we claim that P~n! is true for every positive integer n, then we must somehow
show that each of the statements P~1!, P~2!, P~3!, . . . is true. We list a few of these:

P~1!: o
1

m51
~2m 2 1! 5 12 or 1 5 12 True

P~2!: o
2

m51
~2m 2 1! 5 22 or 1 1 3 5 22 True

P~3!: o
3

m51
~2m 2 1! 5 32 or 1 1 3 1 5 5 32 True

So far we have verified that P~1!, P~2!, and P~3! are all true. Clearly we cannot
continue with the direct verification for the remaining positive integers n, but
suppose we can accomplish two things:

(a) Verify that P~1! is true.
(b) For any arbitrary positive integer k, show that the truth of P~k 1 1! follows

from the truth of P~k!.

If (a) and (b) can be done, then we reason as follows: P~1! is true by (a); since P~1!
is true, then by (b) it follows that P~1 1 1!, or P~2!, must be true; now since P~2!
is true then by (b) it follows that P~3! is true; and so on. Therefore, it is intuitively
reasonable to conclude that P~n! is true for every positive integer n. This type of
reasoning is the basis for the idea of mathematical induction.

Having done (a) for the example, let us see if we can accomplish (b). We can
state (b) in terms of a hypothesis and a conclusion and argue that the conclusion
follows from the induction hypothesis:

Hypothesis P~k!: 1 1 3 1 5 1 · · · 1 ~2k 2 1! 5 k 2 (3)

Conclusion P~k 1 1!: 1 1 3 1 5 1 · · · 1 ~2k 2 1! 1 ~2k 1 1!

5 ~k 1 1!2 (4)

Now use Equation (3) and argue that Equation (4) follows from it. To get to
Equation (4) from Equation (3), add 2k 1 1 to both sides.

@1 1 3 1 5 1 · · · 1 ~2k 2 1!# 1 ~2k 1 1! 5 k 2 1 ~2k 1 1! (5)

The right side of Equation (5) can be written as

k 2 1 ~2k 1 1! 5 k 2 1 2k 1 1 5 ~k 1 1!2.

Therefore, Equation (5) is equivalent to

1 1 3 1 5 1 · · · 1 ~2k 2 1! 1 ~2k 1 1! 5 ~k 1 1!2.
This is precisely Equation (4), so we have accomplished (b). Hence we can con-
clude that the statement

1 1 3 1 5 1 · · · 1 ~2n 2 1! 5 n2 for every positive integer n

is true.
The mathematical basis for our conclusion follows from the Principle of Math-

ematical Induction.
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Principle of mathematical induction

Suppose P~n! is an open sentence that gives statements P~1!, P~2!,
P~3!, . . . . If we can accomplish the following two things:

(a) verify that P~1! is true,
(b) for any arbitrary positive integer k, show that the truth of P~k 1 1!

follows from the truth of P~k!,

then P~n! is true for every positive integer n.

cEXAMPLE 1 Truth values For the open sentence, write out P~1!, P~2!, and
P~5!. Determine the truth value of each.

(a) P~n!: n3 1 11n 5 6~n2 1 1!.
(b) P~n!: 5n 2 1 is divisible by 4.

Solution

(a) P~1!: 13 1 11 · 1 5 6~12 1 1! or 1 1 11 5 6~1 1 1! True

P~2!: 23 1 11 · 2 5 6~22 1 1! or 8 1 22 5 6~5! True

P~5!: 53 1 11 · 5 5 6~52 1 1! or 125 1 55 5 6~26! False

(b) P~1!: 51 2 1 is divisible by 4, 51 2 1 5 4 True

P~2!: 52 2 1 is divisible by 4, 52 2 1 5 24 True

P~5!: 55 2 1 is divisible by 4, 55 2 1 5 3124 True b

cEXAMPLE 2 Proof by mathematical induction Let P~n! be the open
sentence

P~n!: 5n 2 1 is divisible by 4.

Prove that P~n! is true for every positive integer n.

Solution
Proof will follow if we can accomplish (a) and (b) of the Principle of Mathematical
Induction. For (a) we must show that P~1! is true. This has already been done in
Example 1b.

For (b), state the induction hypothesis and conclusion.

Hypothesis P~k!: 5k 2 1 is divisible by 4. (6)

Conclusion: P~k 1 1!: 5k11 2 1 is divisible by 4. (7)

Since by hypothesis, 5k 2 1 is divisible by 4, there is an integer m such that

5k 2 1 5 4m or 5k 5 4m 1 1.

Therefore,

5k11 2 1 5 5 · 5k 2 1 5 5~4m 1 1! 2 1

5 20m 1 4 5 4~5m 1 1!.

Hence if 5k 2 1 is divisible by 4, then 5k11 2 1 is also divisible by 4. This estab-
lishes (b), and proves that 5n 2 1 is divisible by 4 for every positive integer n. b

Strategy: After verifying
that P~1! is true, for mathe-
matical induction, show that
P~k! implies P~k 1 1!; re-
late 5k11 2 1 to 5k 2 1.
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cEXAMPLE 3 Proof by mathematical induction Show that 2n11 . n 1 2
for every positive integer n.

Solution

(a) When n is 1, 2111 . 1 1 2, or 4 . 3, which is true.
(b) Hypothesis P~k!: 2k11 . k 1 2

Conclusion P~k 1 1!: 2k12 . k 1 3

Begin with the hypothesis and multiply both sides of the inequality by 2.

2 · 2k11 . 2k 1 4 or 2k12 . 2k 1 4

We would like k 1 3 on the right-hand side, but 2k 1 4 5 ~k 1 3! 1 ~k 1 1!,
and since k is a positive integer, k 1 1 . 0, so 2k 1 4 . k 1 3. Therefore,

2k12 . 2k 1 4 . k 1 3.

By the Principle of Mathematical Induction, we conclude that 2n11 . n 1 2 for
every positive integer n. b

EXERCISES 8.5

Check Your Understanding

Exercises 1–10 True or False. Give reasons.

1. There is no positive integer n such that ~n 1 1!! 5
n! 1 1!.

2. There is no positive integer n such that n2 1 n 5 6.

3. For every positive integer n, ~n 1 1!2 $ 2n.

4. For every positive integer n, sin np 5 0.

5. For every positive integer n, ~2n 2 1!~2n 1 1! is an
odd number.

6. For every positive integer n, n2 1 n is an even number.

7. For every positive integer n, n2 1 1 $ 2n.

8. For every positive integer n, ~n 1 1!3 2 n3 2 1 is di-
visible by 6.

9. For every positive integer n, n2 2 n 1 17 is a prime
number.

10. For every integer n greater than 1, log2 n $ logn 2.

Develop Mastery

Exercises 1–8 Truth Values Denote the given open sen-
tence as P~n!. Write out P~1!, P~2!, and P~5!, and determine
the truth value of each.

1. n2 2 n 1 11 is a prime number.

2. 4n2 2 4n 1 1 is a perfect square.

3. n2 , 2n 1 1

4. 3n . n2

5. n! # n2

6. 4n 2 1 is a multiple of 3.

7. 13 1 23 1 33 1 · · · 1 n3 is a perfect square.

8. The sum of the first n even positive integers is equal to
n~n 1 1!.

Exercises 9–12 When is P (n) False? Find the smallest
positive integer n for which P (n) is false.

9. P~n!: n! # n3

10. P~n!: n2 2 n 1 5 is a prime number.

11. P~n!: n3 , 3n 12. P~n!: n! , 3n

Exercises 13–18 Hypothesis and Conclusion Step (b) of
the Principle of Mathematical Induction involves an induc-
tion hypothesis and a conclusion. Write out the hypothesis
and the conclusion.

13. 13 1 23 1 33 1 · · · 1 n3 5
n2~n 1 1!2

4

14. 2 1 5 1 8 1 · · · 1 ~3n 2 1! 5
n~3n 1 1!

2

15. 1 · 2 1 2 · 3 1 3 · 4 1 · · · 1 n~n 1 1!

5
n~n 1 1!~n 1 2!

3

16. 3n . n2

17. 4n 2 1 is a multiple of 3.

18. The sum of the first n even positive integers equals
n~n 1 1!.
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Exercises 19–32 Give a Proof Use mathematical induc-
tion to prove that the given formula is valid for every posi-
tive integer n.

19. 2 1 5 1 8 1 · · · 1 ~3n 2 1! 5
n~3n 1 1!

2

20. 1 · 2 1 2 · 3 1 3 · 4 1 · · · 1 n~n 1 1! 5
n~n 1 1!~n 1 2!

3

21. The sum of the first n positive integers is equal to
n~n 1 1!

2
.

22. The sum of the first n even positive integers is equal
to n~n 1 1!.

23. 2 · 1 1 2 · 4 1 2 · 7 1 · · · 1 2~3n 2 2! 5
3n2 2 n.

24. 12 1 22 1 32 1 · · · 1 n2 5
n~n 1 1!~2n 1 1!

6
.

25. 13 1 23 1 33 1 · · · 1 n3 5
n2~n 1 1!2

4
.

26.
1

1 · 2
1

1
2 · 3

1
1

3 · 4
1 · · · 1

1
n~n 1 1!

5
n

n 1 1
.

27. 2 1 22 1 23 1 · · · 1 2n 5 2~2n 2 1!.

28. 1 · 1! 1 2 · 2! 1 3 · 3! 1 · · · 1 n · n! 5
~n 1 1!! 2 1

29. o
n

m51
~3m2 1 m! 5 n~n 1 1!2

30. o
n

m51
~2m 2 3! 5 n~n 2 2!

31. o
n

m51
~2m21 2 1! 5 2n 2 n 2 1

32. o
n

m51
ln m 5 ln~n!!

Exercises 33–40 Give a Proof Prove that P (n) yields a
true statement when n is replaced by any positive integer.

33. P~n!: 4n 2 1 is divisible by 3.

34. P~n!: ~cos u 1 i sin u!n 5 cos nu 1 i sin nu

35. P~n!: n3 1 2n is divisible by 3.

36. P~n!: 22n21 1 1 is divisible by 3.

37. P~n!: 2n # ~n 1 1!!

38. P~n!: 3n # ~n 1 2!!

39. P~n!: 2n $ n 1 1

40. P~n!: 2n11 . 2n 1 1

Exercises 41–49 Is it True? Let P (n) denote the open
sentence. Either find the smallest positive integer n for

which P (n) is false, or prove P (n) is true for every positive
integer n.

41. n~n2 2 1! is divisible by 6.

42. n2 1 n is an even number.

43. n2 2 n 1 41 is an odd number.

44. 5n2 1 1 is divisible by 3.

45. 5n2 1 1 is not a perfect square.

46. 2n , ~n 1 1!2.

47. n2 2 n 1 41 is a prime number.

48. n4 1 35n2 1 24 5 10n~n2 1 5!.

49. S1 1
1
1DS1 1

1
2DS1 1

1
3D · · · S1 1

1
nD 5 n 1 1.

Exercises 50–51 Explore (a) Evaluate the sum when n is
1, 2, 3, and 4. (b) Guess a formula for the sum. (c) Prove that
your formula is valid for every positive integer n.

50.
1

1 · 2
1

1
2 · 3

1
1

3 · 4
1 · · · 1

1
n~n 1 1!

51. 1 1 2 1 3 1 · · · 1 n 1 · · · 1 3 1 2 1 1

52. Let f ~n! 5 5n 2 4.
(a) Evaluate f when n is 1, 2, 3, 4, and 5.
(b) For what positive integers n is f ~n! divisible by 3?

Prove that your guess is correct.
(c) For what positive integers n is f ~n! divisible by 21?

Prove that your guess is correct.

53. Explore Sequence $an% is defined recursively by
a1 5 6, an11 5 5any~an 2 5! for n $ 1 and $bn% is
defined by bn 5 anan11. (a) Find the first four terms of
$bn%. (b) Give a simpler formula for bn. (c) Is mathemat-
ical induction necessary to prove that your formula for
bn is correct? Explain.

54. Towers of Hanoi There are three pegs on a board.
Start with n disks on one peg, as suggested in the draw-
ing. Move all disks from the starting peg onto another
peg, one at a time, placing no disk atop a smaller one.
(You can experiment yourself without pegs; use coins of
different sizes, for example, a dime on top of a penny, on
top of a nickle, on top of a quarter. It may take some
patience to find the minimum number of moves re-
quired.)

(a) What is the minimum number of moves required if
you start with 1 disk? 2 disks? 3 disks? 4?
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(b) Based on your results for (a), guess the minimum
number of moves required if you start with an arbi-
trary number of n disks. (Hint: To help see a pat-
tern, add 1 to the number of moves for n 5 1, 2, 3,
4.)

(c) A legend claims that monks in a remote monastery
are working to move a set of 64 disks, and that the
world will end when they complete their sacred
task. Moving one disk per second without error, 24
hours a day, 365 days a year, how long would it take
to move all 64 disks?

55. Number of Handshakes Suppose there are n people
at a party and that each person shakes hands with every
other person exactly once. Let f ~n! denote the total

8.6 T H E B I N O M I A L T H E O R E M

We remake nature by the act of discovery, in the poem or in the theorem.
And the great poem and the great theorem are new to every reader, and yet
are his own experiences, because he himself recreates them. @And# in the
instant when the mind seizes this for itself, in art or in science, the heart
misses a beat.

J. Bronowski

In this section we derive a general formula to calculate an expansion for ~a 1 b!n

for any positive integer power n, or to find any particular term in such an expansion.
We begin by calculating the first few powers directly and then look for significant
patterns. To go from one power of ~a 1 b! to the next, we simply multiply by
~a 1 b!:

~a 1 b!1 5 a 1 b

~a 1 b!2 5 a2 1 2ab 1 b 2

~a 1 b!3 5 a3 1 3a2b 1 3ab 2 1 b 3

~3! a 1 b

a4 1 3a3b 1 3a2b 2 1 ab 3

a3b 1 3a2b 2 1 3ab 3 1 b 4 Add like terms

~a 1 b!4 5 a4 1 4a3b 1 6a2b 2 1 4ab 3 1 b 4

~3! a 1 b

a5 1 4a4b 1 6a3b 2 1 4a 2b 3 1 ab 4

a4b 1 4a3b 2 1 6a2b 3 1 4ab 4 1 b 5 Add like terms

~a 1 b!5 5 a5 1 5a4b 1 10a3b 2 1 10a2b 3 1 5ab 4 1 b 5

The thing that started it
all was this silly newspaper
puzzle that asked you to
count up the total number
of ways you could spell the
words “Pyramid of Values”
from a triangular array of
letters. This led my friend
and me to discover Pascal’s
triangle. This happened in
grade 10 or 11.

Bill Gosper

number of handshakes. See Exercise 19, page 469.
Show

f ~n! 5
n~n 2 1!

2
for every positive integer n.

56. Suppose n is an odd positive integer not divisible by 3.
Show that n2 2 1 is divisible by 24. (Hint: Consider the
three consecutive integers n 2 1, n, n 1 1. Explain
why the product ~n 2 1!~n 1 1! must be divisible by 3
and by 8.)

57. Finding Patterns If an 5 Ï24n 1 1, (a) write out
the first five terms of the sequence $an%. (b) What odd
integers occur in $an%? (c) Explain why $an% contains all
primes greater than 3. (Hint: Use Exercise 56.)
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When we look at these expansions of ~a 1 b!n for n 5 1, 2, 3, 4, and 5, several
patterns become apparent.

1. There are n 1 1 terms, from an to b n.
2. Every term has essentially the same form: some coefficient times the

product of a power of a times a power of b.
3. In each term the sum of the exponents on a and b is always n.
4. The powers (exponents) on a decrease, term by term, from n down to 0

where the last term is given by b n 5 a0b n, and the exponents on b in-
crease from 0 to n.

Knowing the form of the terms in the expansion and that the sum of the powers is
always n, we will have the entire expansion when we know how to calculate the
coefficients of the terms. If we display the coefficients from the computations
above, we find precisely the numbers in the first few rows of Pascal’s triangle:

1 1

1 2 1

1 3 3 1

1 4 6 4 1

1 5 10 10 5 1

Using the address notation for Pascal’s triangle that we introduced in Section
8.4, the last row of coefficients in the triangle is ~ 0

5!, ~ 1
5 !, ~ 2

5!, ~ 3
5!, ~ 4

5!, ~ 5
5!, and so

we may write the expansion for ~a 1 b!5:

~a 1 b!5 5 S5
0D a5b 0 1 S5

1D a4b 1 1 S5
2Da3b 2 1 S5

3Da2b 3

1 S5
4Da1b 4 1 S5

5Da0b 5

Each term exhibits the same form. For n 5 5, each coefficient has the form ~r
5!,

where r is also the exponent on b. For each term the sum of the exponents on a and
b is always 5, so that when we have b r, we must also have a52r. Finally, since the
first term has r 5 0, the second term has r 5 1, etc., the ~r 1 1!st term involves r.

This leads to a general conjecture for the expansion of ~a 1 b!n which we state
as a theorem that can be proved using mathematical induction. (See the end of this
section.)

Binomial theorem

Suppose n is any positive integer. The expansion of ~a 1 b!n is given by

~a 1 b!n 5 Sn
0Danb 0 1 Sn

1Dan21b 1 1 · · · 1 Sn
rDan2rb r 1 · · · 1 Sn

nDa0b n

(1)

where the ~r 1 1!st term is Sn
rDan2rb r, 0 # r # n. In summation notation,

~a 1 b!n 5 o
n

r50
Sn

rDan2rb r. (2)
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At this point, we have established only that the form of our conjecture is valid
for the first five values of n, and we have not completely justified our use of the name
Pascal’s triangle of binomial coefficients. Nonetheless, the multiplication of
~a 1 b!4 by ~a 1 b! to get the expansion for ~a 1 b!5 contains all the essential ideas
of the proof.

We still lack a closed-form formula for the binomial coefficients. We know, for
example, that the fourth term of the expansion of ~x 1 2y!20 is ~ 3

20!x 17~2y!3, but we
cannot complete the calculation without the binomial coefficient ~ 3

20!. This would
require writing at least the first few terms of 20 rows of Pascal’s triangle.

Pascal himself posed and solved the problem of computing the entry at any
given address within the triangle. He observed that to find ~r

n!, we can take the
product of all the numbers from 1 through r, and divide it into the product of the
same number of integers, from n downward. This leads to the following formula.

Pascal’s formula for binomial coefficients

Suppose n is a positive integer and r is an integer that satisfies 0 , r # n.

The binomial coefficient Sn
rD is given by

Sn
rD 5

n~n 2 1! · · · ~n 2 r 1 1!

1 · 2 · 3 · · · r
(3)

We leave it to the reader to verify that the last factor in the numerator,
~n 2 r 1 1!, is the r th number counting down from n. This gives the same number
of factors in the numerator as in the denominator.

cEXAMPLE 1 Using Pascal’s formula Find the first five binomial
coefficients on the tenth row of Pascal’s triangle, and then give the first five terms
of the expansion of ~a 1 b!10.

Solution
Follow the strategy.

S10
1 D 5

10
1

5 10, S10
2 D 5

10 · 9
1 · 2

5 45, S10
3 D 5

10 · 9 · 8
1 · 2 · 3

5 120, and

S10
4 D 5

10 · 9 · 8 · 7
1 · 2 · 3 · 4

5 210.

Therefore the first five terms in the expansions of ~a 1 b!10 are

a10 1 10a9b 1 45a8b 2 1 120a7b 3 1 210a6b 4. b

There is another very common formula for binomial coefficients that uses factori-
als. Equation (3) has a factorial in the denominator, and we can get a factorial in
the numerator if we multiply numerator and denominator by the product of the rest
of the integers from n 2 r down to 1:

Sn
rD 5

n~n 2 1! . . . ~n 2 r 1 1!

1 · 2 · . . . r

5
n~n 2 1! . . . ~n 2 r 1 1!

r!
·

~n 2 r! . . . 2 · 1
~n 2 r! . . . 2 · 1

5
n!

r! ~n 2 r!!
.

Strategy: We know ~10
0 ! 5

1. Use Equation (3) to get
the remaining coefficients.
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HISTORICAL NOTE BLAISE PASCAL

While Equation (3) does not give a formula for ( 0
n), the formulation in terms

of factorials does apply.

Sn
0D 5

n!
0! ~n 2 0!!

5
n!

1 · n!
5

n!
n!

5 1.

This gives an alternative to Pascal’s formula.

Alternative formula for binomial coefficients

Suppose n is a positive integer and r an integer that satisfies 0 # r # n. The
binomial coefficient ~ r

n! is given by

Sn
rD 5

n!
r! ~n 2 r!!

(4)

Pascal’s triangle is named after
Blaise Pascal, born in France in
1623. Pascal was an individual of
incredible talent and breadth who
made basic contributions in many
areas of mathematics, but who died
early after spending much of life
embroiled in bitter philosophical
and religious wrangling.

For some reason, Pascal’s
father decided that his son should
not be exposed to any mathematics.
All mathematics books in the home
were locked up and the subject was
banned from discussion. We do not
know if the appeal of the forbidden
was at work, but young Pascal

approached his father directly and asked
what geometry was. His father’s answer so
fascinated the 12-year-old boy that be began
exploring geometric relationships on his own. He
apparently rediscovered much of Euclid
completely on his own. When Pascal was
introduced to conic sections ~see Chapter 10! he
quickly absorbed everything available; he
submitted a paper on conic sections to the
French academy when he was only 16 years
of age.

At the age of 29, Pascal had a
conversion experience that led to a
vow to renounced mathematics for
a life of religious contemplation.
Before that time, however, in
addition to his foundational work in
geometry, he built a mechanical
computing machine (in honor of
which the structured computer
language Pascal is named),
explored relations among binomial
coefficients so thoroughly that we
call the array of binomial
coefficients Pascal’s triangle even
though the array had been known,
at least in part, several hundred
years earlier, proved the binomial

theorem, gave the first published proof by
mathematical induction, and invented (with
Fermat) the science of combinatorial analysis,
probability, and mathematical statistics.

Before his death ten years later, Pascal spent
only a few days on mathematics. During a night
made sleepless by a toothache, he concentrated on
some problems about the cycloid curve that had
attracted many mathematicians of the period. The
pain subsided, and, in gratitude, Pascal wrote up
his work for posterity.

Blaise Pascal made
significant contributions to
the study of mathematics
before deciding to devote

his life to religion.
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cEXAMPLE 2 Symmetry in binomial coefficients Show that

(a) S6
2D 5 S6

4D (b) Sn
rD 5 S n

n 2 rD .

Solution
Follow the strategy.

Strategy: Use Equation (4)
to evaluate both sides of the (a) S6

2D 5
6!

2! ~6 2 2!!
5

6!
2! 4!

and S6
4D 5

6!
4! ~6 2 4!!

5
6!

4! 2!
.

given equations to show that
the two sides of each equa-

(b) Sn
rD 5

n!
r! ~n 2 r!!

andtion are equal.

S n
n 2 rD 5

n!
~n 2 r!! @n 2 ~n 2 r!#!

5
n!

~n 2 r!! r!

Thus

Sn
rD 5 S n

n 2 rD. b

cEXAMPLE 3 Adding binomial coefficients Show that ~3
8! 1 ~4

8! 5 ~4
9!.

Get a common denominator and add fractions, but do not evaluate any of the
factorials or binomial coefficients.

Solution
Use Equation (3) to get ~3

8! and ~4
8!, get common denominators, then add.

S8
3D 1 S8

4D 5
8 · 7 · 6
1 · 2 · 3

1
8 · 7 · 6 · 5
1 · 2 · 3 · 4

5
~8 · 7 · 6! · 4
~1 · 2 · 3! · 4

1
8 · 7 · 6 · 5
1 · 2 · 3 · 4

5
8 · 7 · 6~4 1 5!

1 · 2 · 3 · 4
5

9 · 8 · 7 · 6
1 · 2 · 3 · 4

5 S9
4D .

Thus

S8
3D 1 S8

4D 5 S9
4D . b

Example 3 focuses more on the process than the particular result, hence the
instruction to add fractions without evaluating. When we write out the binomial
coefficients as fractions, we can identify the extra factors we need to get a common
denominator and then add. In Example 2, we proved that ( r

n) 5 ~n 2 r
n ! giving a

symmetry property for the nth row of Pascal’s triangle. Example 3 illustrates the
essential steps to prove the following additivity property (see Exercise 61):

Sn
rD 1 S n

r 1 1D 5 Sn 1 1
r 1 1D
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Symmetry and additivity properties

Binomial coefficients have the following properties:

Symmetry Sn
rD 5 S n

n 2 rD (5)

Additivity Sn
rD 1 S n

r 1 1D 5 Sn 1 1
r 1 1D (6)

Notice that we used the additivity property from Equation (6) in Section 8.4
to get the ~n 1 1!st row from the nth row in Pascal’s triangle. This justifies our
claim that the entries in Pascal’s triangle are binomial coefficients.

Evaluating binomial coefficientsTECHNOLOGY TIP r

Most graphing calculators have the capacity to evaluate binomial coefficients
directly, but we need to know where to look for the needed key. Most
calculators use the notation nCr (meaning “number of combinations taken r at
a time,” language from probability), and the key is located in a probability
(PRB, PROB) submenu under the MATH menu. To evaluate, say ~ 4

20!, the process is
as follows.

All TI-calculators: Having entered 20 on your screen, press MATH PRB nCr, which
puts nCr on the screen. Then type 4 so you have 20nCr4. When you enter, the
display should read 4845.

All Casio calculators: Having entered 20 on your screen, press MATH PRB nCr,
which puts C on the screen. Then type 4 so you have 20C4. When you
execute, the display should read 4845.

HP-38: Press MATH, go down to PROB, highlight COMB, OK. Then, on the command
line you want COMB(20,4). Enter to evaluate.

HP-48: Put 20 and 4 on the stack. As with many HP-48 operations, COMB (for
“combinations”) works with two numbers. MTH NXT PROB COMB returns 4845.

cEXAMPLE 4 Binomial Theorem Use the binomial theorem to write out
the first five terms of the binomial expansion of ~x 1 2y 2!20 and simplify.

Solution
Use Equation (1) with a 5 x, b 5 2y 2, and n 5 20. The first five terms of
~x 1 2y 2!20 are

x 20 1 S20
1 D x 19~2y 2! 1 S20

2 D x 18~2y 2!2 1 S20
3 D x 17~2y 2!3 1 S20

4 D x 16~2y 2!4.

Before simplifying, find the binomial coefficients, using either Equation (3) or the
Technology Tip.

S20
1 D 5

20
1

5 20 S20
2 D 5

20 · 19
1 · 2

5 190

S20
3 D 5

20 · 19 · 18
1 · 2 · 3

5 1140 S20
4 D 5

20 · 19 · 18 · 17
1 · 2 · 3 · 4

5 4845

Therefore, the first five terms of ~x 1 2y 2!20 are

x 20 1 20 · 2x 19y 2 1 190 · 4x 18y 4 1 1140 · 8x 17y 6 1 4845 · 16x 16y 8, or

x 20 1 40x 19y 2 1 760x 18y 4 1 9120x 17y 6 1 77520x 16y 8. b
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cEXAMPLE 5 Finding a middle term In the expansion of ~2x 2 2 1
x!

10, find
the middle term.

Solution
There are 10 1 1 or 11 terms in the expansion of a tenth power, so the middle term
is the sixth (five before and five after). The sixth term is given by r 5 5.

S10
5 D~2x 2!5S2

1
xD

5

5 252~32x 10!S2
1
xD

5

5 28064x 5

The middle term is 28064x 5. b

cEXAMPLE 6 Finding a specified term In the expansion of (2x 2 2 x
1)10, find

the term whose simplified form involves 1
x .

Solution
Follow the strategy. The general term given in Equation (2) isStrategy: First find the

general term, then simplify.
Finally, find the value of r S10

r D~2x 2!102rS2
1
xD

r

5 S10
r D2102rx 2022r~21!rx2r

that gives 21 as the expo-
nent of x.

5 S10
r D~21!r2102rx 2023r.

For the term that involves 1
x or x21, find the value of r for which the exponent

on x is 21: 20 2 3r 5 21, or r 5 7. The desired term is given by

S10
7 D~2x 2!3S2

1
xD

7

5 2
120~8!x 6

x 7 5 2
960

x
. b

Proof of the Binomial Theorem

We can use mathematical induction to prove that Equation (1) holds for every positive
integer n.

(a) For n 5 1, Equation (1) is ~a 1 b!1 5 ~0
1!a1b 0 1 ~1

1!a0b 1 5 a 1 b, so Equa-
tion (1) is valid when n is 1.

(b) Hypothesis: ~a 1 b!k 5 Sk
0Dak 1 Sk

1Dak21b 1 · · ·

1 Sk
rDak2rb r 1 · · · 1 Sk

kDb k (7)

Conclusion: ~a 1 b!k11 5 Sk 1 1

0 Dak11 1 Sk 1 1

1 Dakb 1 · · · (8)

1 Sk 1 1
r Dak112rb r 1 · · · 1 Sk 1 1

k 1 1Db k11
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Since ~a 1 b!k11 5 ~a 1 b!k~a 1 b! 5 ~a 1 b!ka 1 ~a 1 b!kb, multiply the right
side of Equation (7) by a, then by b, and add, combining like terms. It is also helpful
to replace ~ 0

k ! by ~ 0
k 1 1 ! and ( k

k) by ( k 1 1
k 1 1), since all are equal to 1.

~a 1 b!k~a 1 b! 5 Sk 1 1

0
Dak11 1 FSk

0D 1 Sk
1DGakb

1 FSk
1D 1 Sk

2DG ak21b 2 1 · · ·

1 FS k
r 2 1D 1 Sk

rDGak112rb r 1 · · ·

1 Sk 1 1
k 1 1Db k11.

Apply the additive property given in Equation (6) to the expressions in brackets to
get Equation (8), as desired. Therefore, by the Principle of Mathematical Induc-
tion, Equation (1) is valid for every position integer n.

EXERCISES 8.6

Check Your Understanding

Exercises 1–6 True or False. Give reasons.

1. For every positive integer n, ~3n!! 5 ~3!!~n!!.

2. There are ten terms in the expression of ~1 1 x!10.

3. The middle term of the expansion of (x 1 1
x )8

is 70.

4. The expansion of ~x 2 1 2x 1 1!8 is the same as the
expansion of ~x 1 1!16.

5. ~1
8! 1 ~2

8! 2 ~2
9! 5 0.

6. For every positive integer x, SÏx 1
1
xD4

5 x 2 1
1
x 4 .

Exercises 7–10 Fill in the blank so that the resulting
statement is true.

7. After simplifying the expansion of ~ x 2 2 1
x !5, the

coefficient of x 4 is .

8. In the expansion of (Ïx 2 1
Ïx

)6, the middle term is
.

9. ~3
8! 2 ~2

8! 5 .

10. The number of terms in the expansion of
~x 2 1 4x 1 4!12 is .

Develop Mastery

Exercises 1–14 Evaluate and simplify. Use Equations
(3)–(6). Then verify by calculator.

1. (a) ~9
3! (b) ~9

6!

2. (a) ~14
3 ! (b) ~14

11!

3. (a) ~8
5! (b) ~8

3!

4. (a) ~100
98 ! (b) ~100

2 !

5. (a) ~20
2 ! 1 ~20

3 ! (b) ~21
3 !

6. (a) ~7
3! 1 ~7

4! (b) ~8
4!

7. (a) 5
6 · ~10

5 ! (b) ~10
6 !

8. (a) 9
4 · ~12

3 ! (b) ~12
4 !

9. (a) ~10
6 ! · ~6

3! (b) ~10
7 ! · ~7

3!

10. (a) ~12
10! · ~10

4 ! (b) ~8
5! · ~5

3!

11. (a)
10!
7!

(b)
10!

7! 3!

12. (a) 8! 1 2! (b) 10!

13. (a)
6! 1 4!

3!
(b)

8! 2 5!
3!

14. (a) 6! 2 3! (b) ~6 2 3!!

Exercises 15–18 Calculator Evaluation Use the Tech-
nology Tip to evaluate the expression.

15. (a) ~ 8
24! (b) ~ 3

37! 1 ~ 5
37!

16. (a) ~ 5
31! (b) ~ 4

16! 2 ~ 10
12!

17. (a) ~ 8
12! · ~ 3

20! (b) ~ 7
25! 4 ~ 4

25!

18. (a) ~ 3
32! · ~ 29

31! (b) ~ 8
31! 4 ~ 3

31!
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Exercises 19–24 Evaluate and simplify.

19. S n
n 2 1D 20. S n

n 2 2D 21. Sn 1 1
n 2 1D

22.
~n 1 1!!
~n 2 1!!

23.
S n

k 1 1D
Sn

k D
24.

Sn 1 1
r D

S n
r 2 1D

Exercises 25–30 Binomial Theorem Use the binomial
theorem formula to expand the expression, then simplify
your result.

25. ~x 2 1!5 26. ~x 2 3y!4

27. S1
x

2 2y 2D4

28. Sx 2 1
2
xD6

29. S3x 1
1
x 2D5

30. ~x 2 1!7

Exercises 31–34 Expansion Use the formula in Equa-
tion (2). (a) Write the expansion in sigma form. (b) Expand
and simplify.

31. ~2 2 x!5 32. S2x 1
y
2D5

33. Sx 2 1
2
xD5

34. ~x 2 2 2!6

Exercises 35–38 Number of Terms (a) How many
terms are there in the expansion of the given expression?
(b) If the answer in (a) is odd, then find the middle term. If
it is even, find the two middle terms.

35. ~x 2 2 3!8 36. Sx 2 2
1
xD15

37. ~1 1 Ïx!5 38. ~x 1 2Ïx!10

Exercises 39–40 Find the first three terms in the expan-
sion of

39. Sx 1
1
xD20

40. Sx 2
3
xD25

Exercises 41–44 Find Specified Term If the expression
is expanded using Equation (1), find the indicated term and
simplify.

41. Sx 3 2
2
xD5

; third term

42. Sx
2

2 2yD12

; tenth term

43. S2x 2
y
2D10

; fourth term

44. ~x21 1 2x!8; fourth term

Exercises 45–52 Specified Term If the expression is ex-
panded and each term is simplified, find the coefficient of
the term that contains the given power of x. See Example 6.

45. Sx 3 2
2
xD4

; x 4 46. S2x 2
1
3D10

; x 7

47. ~x 2 1 2!11; x 8 48. Sx 2 2
2
xD10

; x 8

49. Sx 3 2
1
xD15

; x 25 50. Sx 2 2
3
xD12

; x 9

51. ~x 2 2 2x 1 1!3; x 4 52. ~x 2 1 4x 1 4!3; x 2

Exercises 53–60 Solve Equation Find all positive in-
tegers n that satisfy the equation.

53. ~2n!! 5 2~n!! 54. ~3n!! 5 ~3!!~n!!

55. 2~n 2 2!! 5 n! 56. ~3n!! 5 3~n 1 1!!

57. Sn
3D 5 Sn

5D 58. Sn
3D 1 Sn

4D 5 S8
4D

59. Sn
2D 5 15 60. Sn

2D 5 28

61. (a) Show that ( 6
10) 1 ( 7

10) 5 ( 7
11) by carrying out the

following steps. Using Equation (3), express each term
of ( 6

10) 1 ( 7
10) as a fraction with factorials; then, without

expanding, get a common denominator and express the
result as a fraction involving factorials. By Equa-
tion (3), show that the result is equal to ( 7

11). See Exam-
ple 3.
(b) Following a pattern similar to that described in part
(a), prove the additivity property for the binomial
coefficients

Sn
rD 1 S n

r 1 1D 5 Sn 1 1
r 1 1D .

62. By expanding the left- and right-hand sides, verify that

S n
k 1 1D 5

n 2 k
k 1 1

· Sn
kD .

63. Explore
Let Sn 5 1 · 1! 1 2 · 2! 1 · · · 1 n · n! 1 1.

S1 5 1 · 1! 1 1 5 2 5 2! and
S2 5 1 · 1! 1 2 · 2! 1 1 5 6 5 3!

(a) Evaluate S3, S4, and S5 and look for a pattern. On
the basis of your data, guess the value of S8. Verify
your guess by evaluating S8 directly.

(b) Guess a formula for Sn and use mathematical induc-
tion to prove that your formula is correct.

64. Explore Suppose fn~x! 5 ~ x 1 1
x!

2n and let an be the
middle term of the expansion of fn~x!.
(a) Find a1, a2, a3, and a4.
(b) Guess a formula for the general term an. Is an 5

~2n!!
n! n!

?
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65. Observe that 5! ~5 120! ends with one zero (meaning
that 5! is a multiple of 10). Find the smallest positive
integer n such that n! is a multiple of (a) 100, (b) 1000,
and (c) 106.

66. Find the smallest positive integer n such that n! exceeds
(a) 1 billion, (b) 1 trillion, and (c) 1015.

CHAPTER 8 REVIEW

Test Your Understanding

Determine the truth value. Give reasons.

1. If an 5 n2 2 n 1 17, then all terms of the sequence
$an% are prime numbers.

2. In an arithmetic sequence the common difference d
equals a8 2 a7.

3. In an arithmetic sequence, if d is negative, then all
terms of the sequence must be negative from some point
on.

4. The numbers 5, 2 5
2, 5

4, 2 5
6, are four consecutive terms

of a geometric sequence.

Exercises 5–8 Assume that $an% is an arithmetic sequence
and that each term is a positive integer.

5. The common difference d cannot be a negative number.

6. If a1 is even and d is even, then every an is even.

7. If a1 is odd and d is odd, then every an is odd.

8. If a1 is odd and d is even, then every an is odd.

9. The terms x 1 1, x 2 2, and x 2 3 constitute three
consecutive terms of an arithmetic sequence for every
real number x.

10. There is no real number x for which x, x 1 1, x 1 2
will be three consecutive terms of a geometric se-
quence.

11. There is no sequence that is both arithmetic and geo-
metric.

12. The sequence whose nth term is ln~2n! is neither arith-
metic nor geometric.

13. The sequence whose nth term is n ln 2 is arithmetic.

14. The sequence whose nth term is ln 2n is geometric.

15. If an11 5 an 2 3 for n 5 1, 2, 3, . . . , then $an% is an
arithmetic sequence.

16. If a1 , 0 and an11 5 2an, then $an% is a geometric
sequence.

17. In a geometric sequence if a1 is an irrational number,
then every term of the sequence must be an irrational
number.

18. If an 5 2n 2 1 and bm 5 3m 1 1, then no number is in
both sequences $an% and $bm%.

67. Show that ~0
5! 2 ~1

5! 1 ~2
5! 2 ~3

5! 1 ~4
5! 2 ~ 5

5! is equal
to 0. (Hint: Expand @1 1 ~21!#5 using Equation (1).

68. Show that ~0
5! 1 ~1

5! 1 ~2
5! 1 ~3

5! 1 ~4
5! 1 ~ 5

5! is equal
to 25. (Hint: Expand ~1 1 1!5 using Equation (1).)

19. The eleventh term of the sequence $2n 1 3% is the same
as the ninth term of $3n 2 2%.

20. The numbers 1
2, 1

4, 1
6, are the first three terms of an

arithmetic sequence.

21. o
15

k51
~2k 2 1! 5 152. 22. o

4

k51
S2

1
2Dk

5 2
5

16

23. The numbers e, e2, e3 are the first three terms of a
geometric sequence.

24. If an 5
1
n2 , then $an% is a geometric sequence.

25. If an 5 sin@~2n 2 1! p
2#, then $an% is a geometric

sequence.

26. If an 5 cos np , then $an% is a geometric sequence.

27. If ak 5 cos kp , then (n
k51 ak equals 0 whenever n is

even.

28. 1.21 5 40
33 .

29. n2 2 n 1 3 is an odd number for every positive in-
teger n.

30. n2 2 2n 1 4 is an even number for every positive in-
teger n.

31.
~n 1 1!!
~n 2 1!!

5 n2 1 n for every positive integer n.

32. ~5
8! 5 ~3

8! 33. ~4
7! 1 ~5

7! 5 ~5
8!

34.
16!

2! 14!
5 240 35.

3! 1 6!
3!

5 1 1 2!

36. There are eight terms in the expansion of Sx 2
1
xD8

.

37. In the expansion of Sx 1
1
xD6

the fourth term is a

constant.

38. S n
n 2 1D 5 n for every positive integer n.

39. S2n
n D 5

2n!
n! n!

for every positive integer n.

40. 2Sn
2D 1 Sn

1D 5 n2 for every positive integer n.
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41. The smallest prime number greater than the limit of the
sequence defined by an 5 8ny~0.5n 1 1! is 17.

42. The sequence defined by an 5 ~21!nny~2n 1 1! con-
verges.

43. The sequence defined by a1 5 4, an11 5 3any~an 2 3!
converges.

44. The sequence defined by a1 5 1, an11 5 ~cos an!y4
converges to a number between 0.24 and 0.25.

45. The subsequence of even-numbered terms of the se-
quence defined by a1 5 6, an11 5 5any~an 2 5! con-
verges to 30.

Review for Mastery

Exercises 1–4 For the sequence whose nth term is given,
(a) find the first four terms, and (b) evaluate (

4

k51 ak.

1. an 5 1 2
1
2n 2. an 5 1 2

1
2n21

3. an 5 3n 2 1 4. an 5
1

n~n 1 2!

5. If a1 5 3 and an 5 2an21 for n $ 2, find the first five
terms of the sequence $an%.

6. If a1 5 1, a2 5 2, and an 5 2an21 1 3an22 for n $ 3,
find the first five terms of the sequence $an%.

Exercises 7–12 Guess a Formula The first four terms of
a sequence $an% are given. Guess a formula for an that could
generate the sequence. There is no unique correct answer.
(Why?)

7. 3, 8, 13, 18, . . . 8. Ï2, 2, 2Ï2, 4, . . .

9. 1, 3, 7, 15, . . . 10. 3, 5, 9, 17, . . .

11. 21, 1, 21, 1, . . .

12. 1
2 , 2 1

6 , 1
12 , 2 1

20 , . . .

13. The first three terms of an arithmetic sequence are 3, 8,
13. Find (a) the twenty-fourth term, and (b) the sum of
the first 24 terms.

14. In an arithmetic sequence a4 5 16 and a13 5 22. Find
(a) a20, (b) (20

k51 ak, and (c) the number n of terms such
that (n

k51 ak 5 2140.

15. Find all values of x such that x 2, x, 23 are three consec-
utive terms of arithmetic sequence.

16. The first three terms of a geometric sequence are 3, 3
2,

3
4. Find (a) the fifth term, and (b) the sum of the first
five terms.

17. Suppose a sequence $an% is given by an 5 1 1
1
2n .

(a) Write out the first four terms.
(b) Is this a geometric sequence?
(c) Find the sum of the first four terms.

18. In a geometric sequence a1 5 2
3 and r 5 1

3 . Find the
number of terms n such that the sum Sn equals 6560

6561 .

19. Find the repeating decimal expansion for (a) 14
15 , (b) 18

11 ,
and (c) 3

14 .

20. Express the repeating decimal 0.727272 . . . (that is,
0.72) as a quotient of two integers.

Exercises 21–27 Evaluate the sum.

21. o
15

k51
~2k 2 1! 22. o

50

k51
~3k 1 2!

23. o
`

k51
S1

3Dk

24. o
`

k51
S1

4Dk

25. o
5

k51
~2k 2 k! 26. o

10

k51
~21!k~2k 2 1!

27. o
10

k51
S1

k
2

1
k 1 1D

Exercises 28–31 Specified Term The sequence $an% is
either arithmetic or geometric. Find the indicated term.

28. 5, 8, 11, 14, · · · ; a16

29. 3, 5
2 , 2, 3

2 , · · · ; a24

30. 2, 3, 9
2 , 27

4 , · · · ; a8

31. 4, 22, 1, 2 1
2 , · · · ; a10

Exercises 32–33 Geometric Series Find the sum of the
infinite geometric series.

32. 2
5 1 2

25 1 2
125 1 · · ·

33. 1
3 2 1

9 1 1
27 2 1

81 1 · · ·

Exercises 34–36 Mathematical Induction Use the Prin-
ciple of Mathematical Induction to prove that P (n) yields a
true statement for every positive integer n.

34. P~n!: 3 1 9 1 15 1 · · · 1 ~6n 2 3! 5 3n2

35. P~n!:
1
2

1
1
4

1
1
8

1 · · · 1
1
2n 5 1 2

1
2n

36. P~n!: 7n 2 1 is divisible by (a) 2 (b) 3 (c) 6.

37. Is it true that 3n3 1 6n is divisible by 9 for every posi-
tive integer n? Give reasons for your answer.

38. Is this a true statement: 3n # ~n 1 3!2 for every posi-
tive integer n? If so, give a proof; if not, give a coun-
terexample.

39. Evaluate (a)
6!

2! 4!
(b) S15

3 D (c) S8
2D 1 S8

3D.

Exercises 40–45 Binomial Theorem Use the binomial
theorem to expand the expression.

40. S2x 2
1
xD5

41. ~3 1 2x!4
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42. ~4 2 3x!5 43. ~1 2 Ï2!6

44. S1 2
1
xD5

45. ~x21 1 Ïy!6

46. Find the fourth term in the expansion of ~x 1 2y!8.

47. In the expansion of ~2 2 x
3!

10, write out the term that
contains x 8.

48. In the expansion of ~1 2 Ïx!8, write out the term that
contains x 3.

49. Suppose ~ x 2 1 1
x!

15 is expanded and the resulting terms
are simplified. Find the term that involves x 6.

50. Find the sum of all positive integers less than 400 that
are divisible by both 2 and 3.

51. Suppose a sequence $an% is given by an 5 S1 2
1
nDn

.

Find the term and give results rounded off to five deci-
mal places.
(a) a10 (b) a100 (c) a1,000 (d) a10,000

(e) Evaluate e21 and compare with an for large n.

52. Expand ~1 1 2Ïx 1 x!3. @Hint: First show that
1 1 2Ïx 1 x 5 ~1 1 Ïx !2.#

53. Explore Using Pascal’s Triangle, (a) evaluate the
sum of the squares of all entries in Row 1, Row 2, Row
3 and then find the sum as an entry in the triangle. (b)
On the basis of your results in part (a), guess a formula
for the sum of the squares of all entries in Row n. (c)
Test your formula for n 5 4, n 5 5.

Exercises 54–56 Limit of a Sequence (a) Use the Tech-
nology Tip (page 444) to find the limit L (6 decimal places)
of the sequence. (b) Use algebra to find the exact value of L.

54. a1 5 4, an11 5 4 2 1yan

55. a1 5 2, an11 5 0.5~an 1 5yan!

56. a1 5 Ï3, an11 5 Ï5 1 2an

Exercises 57–58 Subsequences The sequence $an%
diverges. Find a subsequence that converges.

57. a1 5 5, an11 5 4any~an 2 4!

58. a1 5 4, an11 5 3any~an 2 3!

Exercises 59–60 Calculator Evaluation Evaluate.

59. (a) ~ 17
20! (b) ~ 3

16! 1 ~14
16!

60. (a) ~28
30! · ~ 3

30! (b) ~ 5
17! 4 ~15

17!
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A CONSISTENT THEME THROUGHOUT THIS book is solving equations. So far, our
equations have involved a single variable or unknown. In this chapter we explore
methods for solving systems of equations, where the equations involve more than
one variable.

When we look at a given problem, it is often natural to label more than one
variable. Then we try to relate the variables. For example, suppose we know that
the hypotenuse of a right triangle is 17, the perimeter is 40, and we want to find the
lengths of the two legs. If x and y represent the lengths of the legs as shown in
Figure 1, then equations relating x and y are

x 1 y 1 17 5 40 or x 1 y 5 23

x 2 1 y 2 5 172 or x 2 1 y 2 5 289.
(1)

The two equations in (1) form a system of equations in two variables. It is simple
to verify that the solutions are given by x 5 8, y 5 15, or x 5 15, y 5 8. In either
case, the lengths of the legs are 8 and 15.

How do we find the number pairs (8, 15) and (15, 8) that satisfy system (1)?
This type of question will occupy much of this chapter. We first consider the role
of technology and then, in the first section, develop some systematic tools to help
us find solutions to systems of linear equations. Linear systems are the focus of the
first two sections of the chapter. We turn to systems of nonlinear equations in
Section 9.3. In Section 9.4 we consider systems of inequalities and the vital appli-
cation of linear programming. In the last two sections we give a brief introduction
to determinants and matrix algebra.

SYSTEMS OF EQUATIONS
AND INEQUALITIES

9.1 Systems of Linear Equations; Gaussian Elimination

9.2 Systems of Linear Equations as Matrices

9.3 Systems of Nonlinear Equations

9.4 Systems of Linear Inequalities; Linear Programming

9.5 Determinants

9.6 Matrix Algebra

FIGURE 1

489



[– 40, 40] by [– 25, 25]

x + y = 23

x2 + y2 = 289
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The Role of Technology

Perhaps one of the most important lessons we can learn in this course, where
technology is always part of our concern, is twofold:

technology is an incredibly powerful tool, and
technology has unavoidable limitations.

We already have considerable experience in using graphs to find solutions. If
we look at system (1) again, we recognize a line ~x 1 y 5 23! and a circle
~x 2 1 y 2 5 289!, and the solution to system (1) must consist of the coordinates of
any points of intersection of the line and circle. To see intersections, we need a
fairly good-sized window, say @240, 40# 3 @225, 25#, which shows us something
like Figure 2. It appears that the line may meet the circle twice (although that isn’t
entirely clear in this window). Tracing and zooming several times only allows us to
conclude that there are indeed two intersections, somewhere near (8, 15) and
(15, 8). Unless we are unreasonably lucky, we are unlikely to find either set of
coordinates exactly. If we use more sophisticated programs, such as the SOLVE routine
of the TI-85 or the HP-48, we don’t get reliably better information. Solving
23 2 x 5 Ï289 2 x 2 with starting guesses near 8, our calculators return answers
such as 8.00000000005, 7.9999999999998, 8, and 8.0000000000002. Which is
closest, and how do we tell?

Returning to system (1), it is easy to get an exact solution. From the first
equation, y 5 23 2 x. Substituting this expression into the second equation, we
get a quadratic equation x, which factors:

x 2 1 ~23 2 x!2 5 289,

2x 2 2 46x 1 240 5 0,

2~x 2 8!~x 2 15! 5 0.

Thus x 5 8 or 15, and the corresponding y-values are 15 and 8. Here is an example
where algebraic methods easily give us exact solutions.

While it is easy to be enthusiastic about the superiority of exact answers, we
must also keep in mind that exact answers aren’t always easy to get or even
meaningful. Suppose the problem leading to system (1) had a perimeter of (a) 42
or (b) 38. The corresponding systems are

(a) H x 1 y 5

x 2 1 y 2 5

25
289

(b) H x 1 y 5

x 2 1 y 2 5

21
289

System (a) has no solution, and system (b) has two solutions given by x 5

21 6 Ï137
2

(see Exercises 49–50). Graphs show that for system (a) the line does

not meet the circle. For system (b), in most practical problems, we would almost
certainly be happy with decimal approximations for x and y.

What do we conclude? Both algebra and technology are needed. Neither is as
powerful without the other. Algebraic methods give meaning to, and an under-
standing of limitations of, answers provided by technology; we cannot intelligently
make use of technology without a thorough understanding of the concepts that
underlie the technology. And technology allows us to go beyond algebra to get
approximate answers that may be entirely beyond the capacity of analytic methods.
The interplay of these two phases of our learning is nowhere better illustrated, nor
more important, than in systems of equations and inequalities.

FIGURE 2
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TECHNOLOGY TIP r Limitations and power

Always remember, when using technology to solve systems of equations or
inequalities, because of inherent, unavoidable complexities,

technology will sometimes give misleading, incorrect answers.

Nonetheless,

technology will enable us to get answers that would be impossible to obtain
in any other way.

9.1 S Y S T E M S O F L I N E A R E Q U A T I O N S ;
G A U S S I A N E L I M I N A T I O N

Mathematics is effective precisely because a relatively compact mathematical
scheme can be used to predict over a relatively long period of time the future
behavior of some physical system to a certain level of accuracy, and thereby
generate more information about the system than is contained in the
mathematical scheme to begin with.

P. W. C. Davies

Our focus in this section is linear equations in several variables, such as

3x 2 4y 1 2z 1 w 5 5 and 23s 1 2t 5 1.

The following equations are not linear:I also engaged in wild
x 2 2 y 5 4 Not linear in xmathematical discussions,

formulating vast and new x 1 3 _ y _ 2 z 5 7 Not linear in y
projects, new problems,

uv 1 ln w 5 0 Not linear in u, v, or wtheories and methods
bordering on the

For a system of linear equations, we indicate both the number of equations and thefantastic . . . .
number of variables. A 2 3 2 system consists of two equations in two variables, andStan Ulam
a 3 3 3 system has three equations in three variables:

H23x 1 4y 5

2x 2 3y 5

11
28

(2)

5
2a 2 5b 1 3c 5

a 1 5b 2 c 5

3a 1 2c 5

8
4
12

(3)

A solution to a system of linear equations consists of a value for each variable
such that when we substitute these values, every equation becomes a true state-
ment. For system (2) above, the values x 5 21, and y 5 2 satisfy both equations
in the system. A solution to system (3) can be written ~a, b, c! 5
~6, 21, 23!, which means that a 5 6, b 5 21, and c 5 23. The ordered pair of
numbers ~21, 2! is the only solution to system ~2!, but ~8, 22, 26! is one of many
solutions to system ~3!.
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Equivalent Systems

We need a systematic procedure to find all solutions to a system of equations. There
are several methods, some of which you may have seen in previous courses. We will
describe a technique that replaces a system of equations in turn by other, simpler
systems with the same solutions until we get a system simple enough that we can
read off the solution. For example, consider these 3 3 3 systems:

5
2x 2 5y 1 3z 5

x 2 2y 2 3z 5

23x 1 4y 1 2z 5

24
3
24

(4)

5
2x 2 5y 1 3z 5

y 2 9z 5

2z 5

24
10
1

(5)

It is simple to solve system ~5! by starting with the last equation to get z 5 21.
Substitute into the second equation and find y 5 1, and then substitute both y and
z values into the first equation to get x 5 2. In fact, it is easy to see that ~x, y, z! 5
~2, 1, 21! is the only solution for system ~5!. In Example 1 we will show that the
two systems have the same solution, and hence that our solution for system ~5! is
the solution for system ~4!. Two systems of linear equations are equivalent if they
have identical solutions.

In the process of going from system ~4! to system ~5!, we successively eliminate
variables. So x has been eliminated from the second equation in system ~5!, and
both x and y have been eliminated in the third equation. System ~5! is called an
echelon, or upper triangular, form of system ~4!.

Definition: echelon (upper triangular) form

A system of three linear equations in variables x, y, z is said to be in echelon
form if it can be written as

a1x 1 a2y 1 a3z 5 d1

b2y 1 b3z 5 d2

c3z 5 d3

where the coefficients a, b, c, and d are given numbers, some of which may
be zero.

Elementary Operations and Gaussian Elimination

The systematic elimination of variables to change a system of linear equations into
an equivalent system in echelon form from which we can read the solution is called
Gaussian elimination in honor of Carl Friedrich Gauss, one of the most brilliant
mathematicians of all time.

The key to Gaussian elimination (which can be done efficiently on computers)
is the idea of elementary operation, the replacement of one equation in a system
by another in a way that leaves the solution unchanged. Each of the following
operations gives an equivalent system, that has the same solution set. Ek denotes the
kth equation of the system and 22E1 1 E2 is what we get when we multiply both
sides of equation E1 by 22 and add the result to equation E2.
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Elementary operations and equivalent systems

Notation and MeaningOperation

1. Interchange two equations E2 ↔ E3 means interchange equations
E2 and E3.

2. Multiply by a nonzero constant 4E3 A E3 means replace equation E3

with 4E3.
4E2 1 E3 A E3 means replace E3 with3. Add a multiple of one equation

4E2 1 E3.to another equation

Performing any of the elementary operations on a system of linear equations
gives an equivalent system.

Follow the next example closely, performing each operation as indicated, to be
certain that you understand both the process by which we reduce the original
system to echelon form and the notation by which we keep track of and check each
step.

cEXAMPLE 1 Echelon form Reduce the following system to echelon form
and then find the solution.

E1 2x 2 5y 1 3z 5 24

E2 x 2 2y 2 3z 5 3

E3 23x 1 4y 1 2z 5 24

Solution
Follow the strategy. We will not repeatedly write the equation numbers, simply

Strategy: Since the
assuming in each system that the equations are numbered E1, E2, and E3, from topcoefficient of x in E2 is 1,
to bottom. Beginning with the given system, we perform elementary operations asfirst interchange E1 and E2,

then eliminate x from the indicated:
other two equations without
involving fractions. E1 ↔ E2 5

x 2 2y 2 3z 5

2x 2 5y 1 3z 5

23x 1 4y 1 2z 5

3
24
24

22E1 1 E2 A E2

3E1 1 E3 A E3
5

x 2 2y 2 3z 5

2y 1 9z 5

22y 2 7z 5

3
210
5

~22!E2 1 E3 A E3 5
x 2 2y 2 3z 5

2y 1 9z 5

225z 5

3
210
25

We now have a system in echelon form that is equivalent to the given system.
To solve the echelon-form system, start with the last equation and solve for z:

z 5 25
225 5 21. Substitute 21 for z into E2 and solve for y: 2y 1 9~21! 5 210,

or y 5 1. Substitute 21 for z and 1 for y into E1 and solve for x: x 2 2~1! 2
3~21! 5 3, or x 5 2. The solution is given by x 5 2, y 5 1, z 5 21. b

The process of solving a system of equations in echelon form has the name
back-substitution. This suggests the procedure of starting at the bottom and
working toward the top, substituting into each successive equation.
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cEXAMPLE 2 Eliminate x Use elementary operations to get an equivalent
system, eliminating the x-variable from E2 and E3.

2x 2 3y 1 z 5 21

23x 1 4y 2 z 5 2

2x 2 y 1 2z 5 23
Strategy: We can easily use Solution
E1 to eliminate x in E3, but

Carry out the elementary operations suggested in the strategy:to avoid fractions for E2, first
multiply E2 by 2, then add
3E1 to eliminate x.

~21!E1 1 E3 A E3 5
2x 2 3y 1 z 5

23x 1 4y 2 z 5

2y 1 z 5

21
2
22

2E2 A E2 5
2x 2 3y 1 z 5

26x 1 8y 2 2z 5

2y 1 z 5

21
4
22

3E1 1 E2 A E2 5
2x 2 3y 1 z 5

2y 1 z 5

2y 1 z 5

21
1
22

Complete the solution and verify that z 5 0, y 5 21, and x 5 22. b

cEXAMPLE 3 Gaussian elimination Solve the system by using Gaussian
elimination.

(a) 5
x 1 2y 2 2z 5 3

2x 1 3y 2 3z 5 1
24x 2 5y 1 5z 5 3

(b) 5
x 1 2y 2 2z 5 3

2x 1 3y 2 3z 5 1
24x 2 5y 1 5z 5 5

Solution

(a) The following elementary operations lead to an echelon form, from which we
find x, y, and z.

~22!E1 1 E2 A E2 5
x 1 2y 2 2z 5

2y 1 z 5

24x 2 5y 1 5z 5

3
25
3

4E1 1 E3 A E3 5
x 1 2y 2 2z 5 3

2y 1 z 5

3y 2 3z 5

25
15

3E2 1 E3 A E3 5
x 1 2y 2 2z 5 23

2y 1 z 5

0 · z 5 0
25

We now have an echelon form system in which E3, 0 · z 5 0, is satisfied by
any number z. Therefore, we have infinitely many solutions. Let z 5 t, where
t is any number. E2 implies y 5 z 1 5 5 t 1 5. Finally, we get x from E1.

x 5 3 2 2y 1 2z 5 3 2 2~t 1 5! 1 2t 5 3 2 2t 2 10 1 2t 5 27.



(– 1, 2)

y

x

– 3x + y = 5

2x – 3y = – 8

(a) Unique solution

y

x

– 3x + 6y = 5

x – 2y = 4

(b) Inconsistent system

4

– 2

y

x

– 3x + 6y = 15
x – 2y = – 5

(c) Dependent system

– 5

L
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Infinitely many solutions are given by

x 5 27, y 5 t 1 5, z 5 t,

where t is any number. For instance,

t 5 0 gives x 5 27, y 5 5, z 5 0
t 5 23 gives x 5 27, y 5 2, z 5 23.

(b) Note that the system of equations given here is the same as that in part (a)
except for the right side of E3. The same elementary operations performed in
the solution to Example 3a yield the following echelon form for the system.

x 1 2y 2 2z 5 3
2y 1 z 5 25

0 · z 5 2

Since no number z satisfies the equation 0 · z 5 2, the system has no solu-
tion. b

A system of linear equations that has infinitely many solutions is said to be
dependent, while a system with no solutions is called inconsistent. The system in
Example 3a is dependent and that in 3b is inconsistent. Another advantage of
echelon form is that the last equation tells us the nature of the solutions, which must
be one of the following possibilities.

Nature of solutions for a system of linear equations

1. There is exactly one solution; the solution is unique.
2. There are no solutions; the system is inconsistent.
3. There are infinitely many solutions; the system is dependent.

The next example illustrates the three possibilities for 2 3 2 systems. It shows
geometrically a unique solution, a dependent system, and an inconsistent system.

cEXAMPLE 4 Solutions and graphs Graph the pair of equations on the
same coordinate system, then solve the system.

(a) H23x 1 y 5

2x 2 3y 5

5
28

(b) H23x 1 6y 5

x 2 2y 5

5
4

(c) H23x 1 6y 5

x 2 2y 5

15
25

Solution
The graphs are shown in Figure 3. Use Gaussian elimination to verify the following
solutions.

(a) Unique solution; x 5 21, y 5 2. The two lines intersect at (21, 2).
(b) No solution; the system is inconsistent. The two lines are parallel; they have no

intersection.
(c) Infinitely many solutions; the system is dependent. Both equations determine

the same line; every point of the line satisfies both equations. b

FIGURE 3
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A system of any number of linear equations must have either a unique solution,
no solution, or be dependent, just as the 2 3 2 systems in Example 4. Unfortu-
nately, we cannot see the geometry as easily with larger systems as we can with
2 3 2 systems. In the next example we illustrate how linear systems occur in
applications.

cEXAMPLE 5 Mixture problem Dessert consists of chocolate pudding and
whipped cream. We are interested in the energy (calories) and vitamin A content.
The necessary information in the table is taken from a handbook on nutrition.

Energy Vitamin A
Food (calories) (units)

Pudding (1 cup) 385 390

Cream (1 tablespoon) 26 220

How much pudding (in cups) and cream (in tablespoons) will give a dessert with
283 calories and 674 units of vitamin A?

Solution
Follow the strategy. Let x be the number of cups of pudding and y be the number
of tablespoons of cream.

Since each cup of pudding contains 385 calories (see the table), x cups must
contain 385x calories. Similarly, y tablespoons of cream contain 26y calories.
Set the sum of these two equal to 283 calories: 385x 1 26y 5 283. In a similar
manner, to get 674 units of vitamin A, 390x 1 220y 5 674. Therefore, solve the
following system of equations.

E1: 385x 1 26y 5 283 Calories

E2: 390x 1 220y 5 674 Vitamin A

To eliminate x from E2, first multiply E1 by 390 ~390E1 A E1! and E2 by 2385
~2385E2 A E2!. Then add the resulting equations ~E1 1 E2 A E2!. This gives for
the last equation

274,560y 5 2149,120 or y 5 2. Check!

Substitute 2 for y in one of the original equations to get x 5 0.6. Hence 3
5 cup of

pudding with 2 tablespoons of cream will give the desired proportions of calories
and vitamin A. b

Technology Support for 2 3 2 Systems (Cramer’s Rule)

In one sense, all 2 3 2 systems of linear equations are the same; all can be solved
with exactly the same steps. The results can be summarized in a form that lends
itself to convenient implementation on a graphing calculator. A 2 3 2 system can
be written in the form

Hax 1 by 5 e
cx 1 dy 5 f

Strategy: To find the
numbers of cups and
tablespoons, assign variables
and write equations for
the number of calories
(5 283) and units of
vitamin A (5 674).
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We can solve the system by eliminating either x or y. To eliminate x, replace E2

by aE2 2 cE1, getting ~ad 2 bc!y 5 af 2 ce. If we choose to eliminate y, we
replace E1 by dE1 2 bE2, getting ~ad 2 bc!x 5 de 2 bf. In both cases the
coefficient of the variable is identical, ad 2 bc, and the system has a solution if
ad 2 bc 5/ 0. If ad 2 bc 5 0, then we do not use Cramer’s Rule; the system is
either dependent or inconsistent.

Furthermore, when ad 2 bc is nonzero, we can write down the solution:

x 5
de 2 bf
ad 2 bc

, y 5
af 2 ce
ad 2 bc

. (6)

A simple way to remember the form of this solution comes from determinants,
which we will introduce more formally in Section 9.5. At this point, however, since
we have solved the system, we only want a convenient way to keep the result in
mind.

The denominator and both numerators have the same form in solution (6).
Each can be written as a number associated with a 2 by 2 array, called a determi-
nant. The denominator is called the coefficient determinant of the system:

D 5 U a
c

b
d U 5 ad 2 bc; the product

a
H

d
minus the product

b
G

c
.

With this notation, the numerator for each variable is also a determinant, where we
replace the column of coefficients of each variable in D by the column of constants
on the right side:

x 5

U e
f

b
d U

D
5

ed 2 bf
D

, y 5

U a
c

e
f U

D
5

af 2 ec
D

.

The entire process is known as Cramer’s Rule for 2 by 2 linear systems.

Cramer’s rule for 2 by 2 linear systems

Given a system of two linear equations of the form

Hax 1 by 5 e
cx 1 dy 5 f

there is a solution if and only if the number D 5 Uac b
d U 5 ad 2 bc is

nonzero, in which case the solution is given by

x 5
ed 2 bf

D
, y 5

af 2 ec
D

,

where the numerator in each case is the determinant obtained from D by
replacing the coefficients of the variable by the column of constants.

We illustrate in the next example by using Cramer’s Rule for two systems we
have already solved.
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cEXAMPLE 6 Cramer’s rule Use Cramer’s Rule for the systems

(a) H23x 1 6y 5 5
x 2 2y 5 4

(b) H 385x 1 26y 5 283
390x 1 220y 5 674

Solution

(a) We begin by computing the coefficient determinant D:

D 5 U23
1

6
22U 5 ~23!~22! 2 ~6!~1! 5 0.

Since D 5 0, Cramer’s Rule does not apply. The system has no solution as we
already saw in Example 4b.

(b) With a calculator we don’t even have to write anything down, simply reading
the values for a, b, c, d from the system. We start with the determinant:
D 5 385 · 220 2 26 · 390, and store 74560, say in memory D. For x,

we replace the column F385
390G by the constant column, F283

674G, so x 5

~283 · 220 2 26 · 674!yD 5 0.6. Similarly, replacing the y-coefficients by the
constant column, y 5 ~385 · 674 2 283 · 390!yD 5 2 . The solution, as we
found in Example 5, is given by x 5 0.6, y 5 2. b

EXERCISES 9.1

Check Your Understanding

Exercises 1–7 True or False. Give reasons.

1. The equation 3x 2 Ï2y 5 5 is linear in x and y.

2. The equation 3Ïx 2 1 4y 5 7 is linear in x and y.

3. The graphs of 2x 2 3y 5 3 and x 1 y 5 3 intersect in
the first quadrant.

4. Both (0, 0, 0) and (23, 2, 1) are solutions to the system
x 1 y 1 z 5 0

y 2 2z 5 0

x 2 2y 2 z 5 0

5. The solution to the system
2x 1 y 5 5

x 1 3y 5 24

consists of a pair of positive integers.

6. The system
2x 1 y 5 0

x 2 3y 5 5

is dependent.

7. In the solution to the following system, x and y are
negative and z is positive.

x 1 y 2 z 5 4

y 1 2z 5 0

3x 1 y 5 5

Exercises 8–10 Fill in the blank so that the resulting state-
ment is true. Lines L1, L2, and L3 are given by L1:
x 2 3y 5 0, L2: x 1 3y 5 6, L3: x 2 9y 5 6.

8. Lines L1 and L2 intersect at .

9. Lines L1 and L3 intersect at .

10. Lines L3 and L2 intersect at .

Develop Mastery

Exercises 1–6 Pairs of Lines Solve the system of equa-
tions and graph the pair of lines on the same system of
coordinates. (See Example 4.)

1. x 1 y 5 4 2. 3x 1 y 5 25
3x 2 2y 5 23 2x 1 2y 5 4

3. 3x 1 4y 5 21 4. 3x 2 2y 5 4
23x 1 5y 5 22 25x 1 2y 5 8

5. 4x 2 2y 5 3 6. 2x 1 4y 5 3
22x 1 y 5 5 x 1 2y 5 1.5

Exercises 7–36 Linear Systems Solve the system of
equations.

7. 2x 2 y 1 z 5 6 8. x 1 3y 2 z 5 4
3y 1 2z 5 3 2y 2 3z 5 8

2z 5 3 3z 5 26

9. x 1 y 1 z 5 1 10. 2x 2 3y 1 z 5 6
2x 2 y 2 z 5 5 x 1 2y 1 2z 5 25

23x 2 y 2 z 5 62x 1 2y 2 3z 5 24
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11. 2x 2 y 1 3z 5 1 12. x 1 3y 2 z 5 1
x 1 y 2 5z 5 2 22x 1 y 1 3z 5 0

3x 2 2z 5 3 24x 1 9y 1 7z 5 3

13. 3.1x 2 2.5y 5 13.7 14.
3
4

x 1
1
3

y 5
1

12
1.7x 1 2.4y 5 23.8 2x 2 y 5 5

15. 371x 1 258y 5 2710 16. 325x 2 175y 5 2625
137x 1 125y 5 971 173x 2 276y 5 33

17. 2x 2 y 5 27 18. x 2 y 5 24
3x 2 4z 5 21 x 1 z 5 1

3x 1 y 2 4z 5 0 3x 1 y 1 2z 5 4

19. x 1 y 1 z 5 0 20. 2x 1 y 1 z 5 0
x 1 2y 1 z 5 0 3x 1 2y 1 4z 5 0

2x 1 3y 1 2z 5 0 x 2 2y 2 3z 5 0

21. x 2 y 1 2z 5 4 22. x 1 5y 1 3z 5 23
2x 1 3y 2 z 5 5 4x 1 3y 1 2z 5 2
3x 1 2y 1 z 5 8 3x 1 y 1 z 5 3

23. x 1 3y 1 z 5 0 24. x 2 3y 2 3z 5 25
22x 1 y 5 24 5x 2 7y 2 3z 5 15

4x 2 4y 2 3z 5 88x 1 3y 1 2z 5 12

26. 5x 1 6y 1 3z 5 2125. 2x 2 4y 1 3z 5 0
x 2 y 2 2z 5 26 x 1 4y 2 2z 5 8

6x 2 4y 1 z 5 28 x 1 3y 1 2z 5 2

28. 2x 2 4y 1 z 5 21427. 2x 1 6y 1 2z 5 1
2x 2 7y 1 z 5 13 3x 2 y 1 3z 5 2

2x 1 4y 2 z 5 1225x 1 7y 1 3z 5 0

30. x 1 3y 1 2z 5 029. x 2 2y 1 2z 5 23
x 2 2y 1 7z 5 213 6x 1 3y 1 2z 5 10

3x 2 2y 1 7z 5 23 3x 1 y 1 3z 5 17

31. x 1 y 2 2z 5 9 32. 2x 2 y 1 z 5 4
2x 2 y 5 0 x 2 y 5 0
3x 1 z 5 0 2x 1 z 5 0

33. 6x 2 4y 1 z 5 224 34. x 2 2y 5 0
7x 2 4y 1 z 5 226 23x 2 4y 1 z 5 0
6x 2 3y 1 z 5 220 2y 1 z 5 0

35. 2x 2 3y 1 z 5 11 36. 22x 1 y 2 3z 5 14
3x 2 2y 2 z 5 253x 2 y 1 2z 5 10

5x 1 4y 2 z 5 1 2x 1 2y 2 3z 5 7

Exercises 37–42 Cramer’s Rule Use Cramer’s Rule to
solve the system. Then find a window in which you can see
the intersection of the graphs.

37. 15x 1 37y 5 19 38. 192x 2 135y 5 2709
17x 1 14y 5 245 64x 1 83y 5 519

39. 72x 1 43y 5 141
129x 2 22y 5 21233

40. 429x 2 362y 5 25285
611x 1 243y 5 21306.8

41. 17x 1 43y 5 2118 42. 42x 2 36y 5 2113.4
61x 2 24y 5 72.912x 2 28y 5 2200

Exercises 43–46 Substitution Solve for x and y. ~Hint:
First let 1

x 5 u and 1
y 5 v.!

43.
1
x

1
1
y

5 4 44.
3
x

1
1
y

5 25

3
x

2
2
y

5 23
1
x

2
2
y

5 24

45.
3
x

2
2
y

5 4 46.
1
x

2
3
y

5 0

25
x

1
2
y

5 8
4
x

1
1
y

5 6

47. Find the point of intersection of the two lines given by
2x 2 3y 5 4 and 3x 1 y 5 25.

48. Find the point of intersection of the two lines given by
y 5 2x 2 5 and 2y 5 3x 2 8.

Exercises 49–50 Nonlinear Systems Follow the proce-
dure in the introductory section to solve the system; then
draw graphs of both equations on the same screen.

49. x 1 y 5 25 50. x 1 y 5 21
x 2 1 y 2 5 289 x 2 1 y 2 5 289

Exercises 51–54 Perimeter and Area One vertex of a
triangle is the point of intersection of lines L1 and L2, and
the other two vertices are the x-intercept points of L1 and
L2. Find (a) the perimeter of the triangle and (b) the area of
the triangular region.

51. L1: x 1 y 5 6 52. L1: x 1 2y 5 4
L2: x 2 3y 5 22 L2: 3x 2 y 5 29

53. L1: y 5 20.5x 1 2.5 54. L1: y 5 x 2 2
L2: y 5 23x L2: y 5 0.5x 1 0.5

Exercises 55–60 Systems Solve the system of equations.

55.
xy

x 1 y
5 3,

xz
x 1 z

5 4,
yz

z 1 y
5 6

SHint: If
xy

x 1 y
5 3, then

x 1 y
xy

5
1
y

1
1
x

5
1
3

.D
56. log~xyz! 5 2, logSxy

z D 5 0, logSyz
x D 5 0

~Hint: log~xyz! 5 log x 1 log y 1 log z.!

57. ln~xyz! 5 0.5, ln~x 2y! 5 1, lnSyz
x D 5 21.5

~Hint: See Exercise 56.!

58. 22x12y 5 4z 4 · 2x2y 5 8z 32 · 2y1z 5 4x

~Hint: Use properties of exponents.!

59. 4x 5 8 · 2x12y

9x26y 5 9 · 324y

60. log~2x 2 y! 1 log 5 5 1
log x 2 log y 5 0
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61. Triangle Suppose lines L1, L2, L3 are given by the
equations:

L1: 2x 1 2y 5 1
L2: x 1 2y 5 3 L3: 3x 1 2y 5 13.

(a) Draw a graph to show lines L1, L2, and L3.
(b) Find the points of intersection for each pair of the

three lines.
(c) For the triangle formed by the three lines in (a),

find the largest angle to the nearest degree.
62. Rectangle The area of a rectangle remains unchanged

if its width is increased by 2 and its length is decreased
by 2, or if its width is decreased by 2 and its length is
increased by 3. What is the perimeter of the rectangle?

63. Rectangle The perimeter of a rectangle is 24 cm. If its
length is 2 cm greater than its width, what is the area of
the rectangular region?

64. Gardening A gardener wants to buy two kinds of
flowers to plant a border. Ajugas are $1.10 each, and
Lilliput Zinnias are $0.85 each. The gardener wants to
spend exactly $200 to purchase exactly 200 plants. Can
some combination of ajugas and zinnias meet this
need? If so, how many of each should be bought?

65. Investing A total of $2500 is invested at simple inter-
est in two accounts. The first pays 8 percent interest and
the second pays 10 percent interest per year. The total
interest earned from the two accounts after one year is
$234. How much is invested in each account?

66. Mixture Problem A mixture of 36 pounds of peanuts
and cashews costs a total of $33. If peanuts cost $0.80
per pound and cashews cost $1.10 per pound, how
many pounds of each does the mixture contain?

67. Two Numbers The sum of two numbers is 63 and the
first is twice the second. What is the product of the two
numbers?

68. Fencing A rectangular lot has a length-to-width ratio
of 4 to 3. If 168 meters of fence will enclose it, what are
the dimensions of the lot?

69. Mixture Problem Suppose x grams of food A and y
grams of food B are mixed and the total weight is 2000
grams. Food A contains 0.25 units of vitamin D per
gram, and food B contains 0.50 units of vitamin D per
gram. Suppose the final mixture contains 900 units of
vitamin D. How many grams of each type of food does
the mixture contain?

70. Filling a Tank Two pipelines A and B are used to fill
a tank with water. The tank can be filled by running A
for three hours and B for six hours, or it can be filled by
having both of the supply lines open for four hours. How
long would it take for A to fill the tank alone? How long
would it take for B to fill the tank alone? (Hint: If x is
the number of hours it takes A to fill the tank alone, then
in one hour, A will fill 1

x of the total capacity of the tank.)

71. Airspeed When flying with the wind, it takes a plane
1 hour and 15 minutes to travel 600 kilometers; when
flying against the wind it takes 1 hour 40 minutes to
travel 600 kilometers. What is the airspeed of the plane
and the speed of the wind?

72. Mixture Problem One cup of half-and-half cream
contains 28 g of fat and 7 g of protein, while one cup of
low-fat milk contains 5 g of fat and 8 g of protein. How
many cups of half-and-half and how many cups of low-
fat milk should be combined to get a mixture that con-
tains 71 g of fat and 38 g of protein?

73. Finding Costs The cost of a sandwich, a drink, and a
piece of pie is $2.50. The sandwich costs a dollar more
than the pie, and the pie costs twice as much as the
drink. What is the cost of each?

74. Investing A total of $3600 is invested in three differ-
ent accounts. The first account earns interest at a rate of
8 percent, the second at 10 percent, and the third at 12
percent. The amount invested in the first account is
twice as much as that in the second account. If the total
amount of simple interest earned in one year is $388,
how much is invested in each account?

75. Mixture Problem Suppose x grams of food A, y grams
of food B, and z grams of food C are mixed together for
a total weight of 2400 grams. The vitamin D and calorie
content of each food is given in the table.

Units of Vitamin D Calories
Food per Gram per Gram

A 0.75 1.4

B 0.50 1.6

C 1.00 1.5

The 2400-gram mixture contains a total of 1725 units
of vitamin D and 3690 calories. How many grams of
each type of food does it contain?

76. Finding a Quadratic
(a) Find an equation for the quadratic function whose

graph passes through the three points (21, 8),
(0, 5), and (1, 24). (Hint: Let the parabola have
equation y 5 Ax 2 1 Bx 1 C, substitute coordi-
nates of the given points, and solve for A, B, and C.)

(b) What is the distance between the x-intercept points
of the parabola?

77. Filling a Tank A large tank full of water has three
outlet pipes, A, B, and C. If only A and B are opened, the
tank empties in three hours. If only A and C are open,
the tank drains in four hours. If only pipes B and C are
open, the tank drains in six hours. How long does it take
to empty the tank if all three pipes are open? (Hint: If
outlet A can empty the tank in x hours, how much drains
through A in one hour?)
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9.2 S Y S T E M S O F L I N E A R E Q U A T I O N S A S M A T R I C E S

If you have a thousand equations in a thousand unknowns, you know there
exists a solution, but how do you compute it?

Garrett Birkhoff

A close inspection of Gaussian elimination shows that the method combines appli-
cation of elementary operations together with careful bookkeeping. One way to
streamline the entire process is to note that it makes no difference what letters we
use for the variables. For instance, if we used u, v, and w, in place of x, y, and z, the
problem and technique for solving the system would be the same. However, if we
altered any of the coefficients or constants in the equations, the problem would
change. The coefficients of the variables and the numbers on the right side com-
pletely describe the system.

Therefore, we may consider a system of linear equations in terms of a rectan-I applied the matrix tower
idea to the Ramanujan gular array of numbers consisting of the coefficients and constants on the right side,
series for pi. You are arranged in the same order as they appear in the equations. Then Gaussian elimina-
evaluating the series

tion becomes a matter of operating on rows of numbers. We refer to the rectangularexactly. In other words if
array of numbers as a matrix.you evaluate a million

To illustrate the notion of a matrix let us consider the system of equations giventerms of this series and
that’s worth say eight in Example 1 of the preceding section.
million digits of pi, what

E1 2x 2 5y 1 3z 5 24you actually have is the
exact rational fraction E2 x 2 2y 2 3z 5 3

(1)
which is the sum of those
million terms, which is E3 23x 1 4y 1 2z 5 24
something massively larger

System (1) can be described by the matrix M:than eight million digits. I
must have a hundred
million digits of stuff in
there. M 5 3

2
1

23

25
22

4

3
23

2

24
3

244
BR1

BR2

BR3 (2)Bill Gosper

Array (2) consists of three rows and four columns of numbers; it is a 3 3 4 matrix.
We refer to the rows as R1, R2, and R3.

Gaussian elimination can now be described as a process of elementary opera-
tions on rows of a matrix to obtain a sequence of matrices that correspond to
equivalent systems of equations, until we get one in echelon form. This process is
referred to as row reduction to echelon form.

When we apply any elementary row operation to a matrix we get an equivalent
matrix. To describe row operations, we shall use notation analogous to that in the
preceding section. For instance, R1 @ R2 means interchange rows one and two;
3R1 1 R2 A R2 means multiply R1 by 3 and add to R2 to get the new R2.

Elementary Row Operations

The elementary operations on equations of a system of linear equations listed in the
preceding section translate into corresponding elementary row operations on ma-
trices as follows.
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Elementary row operations

Notation and MeaningOperation

R1 @ R3: interchange rows R11. Interchange two rows
and R3.

2R2 A R2: replace R2 by 2R2.2. Multiply by a nonzero constant
R3 1 2R2 A R3: replace R3 by3. Add a multiple of one row to

another row. R3 1 2R2; that is, add 2R2 to R3.

We illustrate elementary row operations and related notation in the following
example which uses matrices to solve the system given in Example 1 of the preced-
ing section.

cEXAMPLE 1 Solution by matrices Express the system of equations in
terms of a matrix, and then get an equivalent matrix in echelon form that can be

Strategy: Since the used to get the solution.
coefficient of x in E2 is 1,
first interchange R1 and R2 in 2x 2 5y 1 3z 5 24
order to avoid working with x 2 2y 2 3z 5 3fractions.

23x 1 4y 1 2z 5 24

Solution
The matrix M that corresponds to the system of equations is

M 5 3
2
1

23

25
22

4

3
23

2

24
3

244
The following steps are analogous to those in the solution of Example 1 in Sec-
tion 9.1.

3
2
1

23

25
22

4

3
23

2

24
3

244 R1 @ R2 3
1
2

23

22
25

4

23
3
2

3
24
244 22R1 1 R2 A R2

3R1 1 R3 A R3

3
1
0
0

22
21
22

23
9

27

3
210

54 22R2 1 R3 A R3 3
1
0
0

22
21

0

23
9

225

3
210

254
The final matrix corresponds to a system of equations in echelon form. Use it

for back-substitution to get the desired solution. The last row represents the equa-
tion 225z 5 25 and so z 5 21. Similarly from rows 2 and 1, y and x are given
by y 5 1, x 5 2. b

It isn’t always necessary to reduce a matrix to echelon form, even though it is
often a good practice. The next example illustrates the use of a matrix to solve a
system, always keeping in mind what each row represents.

cEXAMPLE 2 Finding an equation Any three noncollinear points (not onStrategy: A circle has an
equation of the form any line) determine a unique circle. Find the center and radius of the circle contain-
x 2 1 y 2 1 ax 1 by 1 ing the points P~6, 8!, Q~7, 1!, R~22, 4!.
c 5 0. Substitute coordi-
nates of the given points into Solution
the equation and solve the

Follow the strategy. Substituting the coordinates of each point into the equationresulting system.
x 2 1 y 2 1 ax 1 by 1 c 5 0, we get the following equations:
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HISTORICAL NOTE MATRICES

P~6, 8! : 36 1 64 1 6a 1 8b 1 c 5 0, or 6a 1 8b 1 c 5 2100.

Q~7, 1! : 49 1 1 1 7a 1 b 1 c 5 0, or 7a 1 b 1 c 5 250.

R~22, 4! : 4 1 16 2 2a 1 4b 1 c 5 0, or 22a 1 4b 1 c 5 220.

The matrix representation for this system is 3 6
7

22

8
1
4

1
1
1

2100
250
220

4. Rather than

reducing this to echelon form, we will simply use the matrix to keep track of the
operations as we eliminate variables. It is simple to eliminate two entries in the third
column (coefficients of c):

R2 2 R1 A R2

R3 2 R1 A R3 3 6
1

28

8
27
24

1
0
0

2100
50
80
4. 1

4 R3 1 2R2 A R3 36
1
0

8
27

215

1
0
0

2100
50

120
4.

The last row represents the equation 215b 5 120, from which b 5 28. Substitut-
ing 28 for b into the second equation, we have a 2 7~28! 5 50 or a 5 26.
Finally, substituting both of these values into the first equation, we find that c 5 0.

In this section we introduce a
matrix as a single array that carries
all the significant information about
a system of linear equations. As one
mathematician described the
process, “strip the linear functions
of every piece of clothing and there
remain the matrices.”

Matrices have been around in
one form or another for a long
time. Cauchy (France, 1789–1857)
seems to have been the first to use
such arrays, but the British mathematician Arthur
Cayley was the first to study them systematically,
considering sums and products of matrices. He
announced to the Royal Society of London in
1858 a “peculiarity” of matrix multiplication: if A
and B are square matrices of the same size, then
the products AB and BA are also square, but, in
general, they are not equal; AB 5/ BA.

In 1925 Werner Heisenberg, trying to keep
track of the characteristic states of orbiting
electrons in the atomic nucleus, entered the data
in square arrays. He then worked out ways to

combine these arrays to describe
subatomic interactions and
developed the first successful
quantum mechanics.
Heisenberg appears to have been
embarrassed by the discovery that
his multiplication of arrays is not
generally commutative ~AB 5/ BA!.
He mentions it casually in one
sentence and immediately gives an
example without the
noncommutativity. Heisenberg’s

teacher and collaborator, Max Born, was
apparently one of the few European physicists
who knew anything about matrix analysis. He
recognized Heisenberg’s matrices for what they
were and explored all kinds of applications of the
new physics. Interestingly, both Heisenberg and
Born were later awarded the Nobel prize in
physics.

Today matrices are indispensable throughout
mathematics and physics. Most calculus sequences
are followed by a linear algebra course in which
matrices are a powerful and indispensable tool for
analysis of all kinds of linear systems.

The atomic structure of
sodium
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Therefore, an equation for the circle containing points P, Q, and R is
x 2 1 y 2 2 6x 2 8y 5 0.

To identify the center and radius of the circle, we complete the squares on the
x- and y- terms:

~x 2 2 6x 1 32! 1 ~y 2 2 8y 1 42! 5 32 1 42, or

~x 2 3!2 1 ~y 2 4!2 5 25.

The center of the circle is the point (3, 4) and the radius is 5. The circle is shown
in Figure 4. b

Echelon form is especially useful when a system of linear equations is depen-
dent (has infinitely many solutions) or inconsistent (no solutions).

cEXAMPLE 3 Echelon form Solve the system of equations using matrix
notation and row reduction to echelon form.

x 1 3y 2 z 5 0

22x 1 y 5 24

8x 1 3y 2 2z 5 12

Solution
The matrix that corresponds to the system is

M 5 3
1

22
8

3
1
3

21
0

22

0
24
124

Find a sequence of equivalent matrices:

3
1

22
8

3
1
3

21
0

22

0
24
124 2R1 1 R2 A R2

28R1 1 R3 A R3

3
1
0
0

3
7

221

21
22

6

0
24
124 3R2 1 R3 A R3 3

1
0
0

3
7
0

21
22

0

0
24

04
The equation that corresponds to R3 of the final matrix is 0 · x 1 0 · y 1
0 · z 5 0, which is satisfied by any numbers for x, y, and z. We want x, y, and z that
satisfy the equations for R1 and R2. Thus the system reduces to

x 1 3y 2 z 5 0

7y 2 2z 5 24

If z 5 k (any number), then from the second equation y 5
2k 2 4

7
. Substitute

2k 2 4
7

for y and k for z in the first equation and solve for x.

x 1
3~2k 2 4!

7
2 k 5 0 or x 5

k 1 12
7

FIGURE 4



pg505 [R] G1 5-36058 / HCG / Cannon & Elich kr 12-1-95 MP2

9.2 Systems of Linear Equations as Matrices 505

The system of equations is dependent and has infinitely many solutions given by

x 5
k 1 12

7
y 5

2k 2 4
7

z 5 k,

where k is any number. b

Partial Fractions

Elementary algebra courses devote considerable time to learning to add and sub-
tract fractions to get a single fraction. Here we consider the problem of going in the
opposite direction. Suppose we have a given rational expression in which the
denominator can be expressed in factored form with linear or quadratic factors.
What fractions could have been added or subtracted to get the given rational
expression? The following examples illustrate a method to answer this question. The
technique demonstrated here is called the method of partial fractions.

cEXAMPLE 4 Partial fractions Express
6x 2 1 3x 1 1

x 3 2 x
as a sum of frac-

tions.

Strategy: To add fractions, Solution
we need a common denomi- Follow the strategy. The given fraction can be written as
nator. To reverse the pro-
cess, identify the factors that 6x 2 1 3x 1 1

x 3 2 x
5

6x 2 1 3x 1 1
x~x 1 1!~x 2 1!

.make up the denominator.
Begin by factoring,
x 3 2 x 5 x~x 1 1!~x 2 1!. It seems reasonable to expect that the given rational expression must have come
Look for fractions with from adding three fractions whose denominators are x, x 1 1, and x 2 1. Find
denominators of x, x 1 1,

three numbers a, b, and c (the unknowns) for which the following is an identity:and x 2 1 that can be added
to get the given fraction. 6x 2 1 3x 1 1

x~x 1 1!~x 2 1!
5

a
x

1
b

x 1 1
1

c
x 2 1

(3)

Add the fractions on the right side and collect like terms in the numerator to get:

6x 2 1 3x 1 1
x~x 1 1!~x 2 1!

5
~a 1 b 1 c!x 2 1 ~2b 1 c!x 2 a

x~x 1 1!~x 2 1!
Check this.

The two fractions in the last equation will be identically equal if we choose a, b,
and c so that the corresponding coefficients in the numerators are the same; that
is, if

a 1 b 1 c 5 6

2b 1 c 5 3

2a 5 1

We solve this system of equations and get a 5 21, b 5 2, and c 5 5. Replacing
a, b, and c by 21, 2, and 5, respectively, in Equation (3) gives the desired result.

6x 2 1 3x 1 1
x~x 1 1!~x 2 1!

5 2
1
x

1
2

x 1 1
1

5
x 2 1

b

In the next example we consider a denominator that contains a quadratic factor.
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cEXAMPLE 5 Another partial fraction Express
3x 2 2 2x 1 5

x 3 2 1
as a sum

of fractions with simpler denominators.

Strategy: Begin by factor-
Solutioning the denominator as a dif-
Follow the strategy. Note that x 3 2 1 5 ~x 2 1!~x 2 1 x 1 1!. It is reasonable toference of cubes.
assume that the given fraction can be written as a sum of fractions of the form

3x 2 2 2x 1 5
~x 2 1!~x 2 1 x 1 1!

5
A

x 2 1
1

Bx 1 C
x 2 1 x 1 1

Add the two fractions on the right side and collect like terms in the numerator to
get (Check!):

3x 2 2 2x 1 5
~x 2 1!~x 2 1 x 1 1!

5
~A 1 B!x 2 1 ~A 2 B 1 C!x 1 ~A 2 C!

~x 2 1!~x 2 1 x 1 1!

Equating corresponding coefficients in the numerator gives a system of linear
equations.

A 1 B 5 3

A 2 B 1 C 5 22

A 2 C 5 5

Solving the system, A 5 2, B 5 1, and C 5 23. Therefore

3x 2 2 2x 1 5
~x 2 1!~x 2 1 x 1 1!

5
2

x 2 1
1

x 2 3
x 2 1 x 1 1

b

Up to this point we have not had any repeated linear factors in a denominator.
Check this addition:

2
x 2 2

1
3

~x 2 2!2 5
2x 2 1
~x 2 2!2

This sets the pattern for the next example.

cEXAMPLE 6 Repeated factor Express
5x 2 2 8x 1 2
x 3 2 2x 2 1 x

as a sum of frac-

tions with simpler denominators.

Strategy: The denominator Solution
factors as x~x 2 1!2, so try Follow the strategy. The given fraction may be expressible as a sum of fractions
x, x 2 1, ~x 2 1!2 as de- as follows.
nominators.

5x 2 2 8x 1 2
x~x 2 1!2 5

A
x

1
B

x 2 1
1

C
~x 2 1!2

Add the fractions on the right side and collect like terms in the numerator to get

5x 2 2 8x 1 2
x~x 2 1!2 5

~A 1 B!x 2 1 ~22A 2 B 1 C!x 1 A
x~x 2 1!2
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Equating corresponding coefficients in the numerator gives us the following system
of linear equations:

A 1 B 5 5

22A 2 B 1 C 5 28

A 5 2

Solving the system, we find that A 5 2, B 5 3, and C 5 21. Therefore

5x 2 2 8x 1 2
x~x 2 1!2 5

2
x

1
3

x 2 1
2

1
~x 2 1!2 . b

EXERCISES 9.2

Check Your Understanding

Exercises 1–6 True or False. Give reasons.

1. The matrix for the system

2x 2 y 5 5

x 1 2y 5 3

is

F2
1

21
2

5
3G.

2. The system of linear equations that correspond to the
matrix

F3
0

21
1

0
0G

is

3x 2 y 5 0

y 5 0.

3. For the system of equations in x and y that correspond
to the matrix

F2
0

21
3

0
6G,

the solution is given by x 5 1, y 5 2.

4. The systems of linear equations that correspond to the
following matrices are equivalent.

31
0
0

22
1
0

23
29

1

3
10

214 31
0
0

0
1
0

0
0
1

2
1

214
5. The triangle formed by the three lines 2x 2 3y 5 1,

2x 1 3y 5 4, and 3x 1 2y 5 3 is a right triangle.
(Hint: Consider the slopes of the lines.)

6. The triangle formed by the three lines x 1 2y 5 3,
2x 2 2y 5 5, and x 2 2y 5 4 is a right triangle.
(Hint: Consider the slopes of the lines.)

Exercises 7–10 Fill in the blank so that the resulting
statement is true. Solve the system of equations that corre-
sponds to the matrix.

7. F1
0

21
21

3
2G; solution is .

8. F2
1

0
2

24
6G; solution is .

9. 31
0
0

22
1
0

0
21
23

23
4
64; solution is .

10. 3 1
21

0

0
0
2

21
0

21

4
23

54; solution is .

Develop Mastery

Exercises 1– 4 Matrix to System For the given matrix,
write the corresponding system of linear equations.

1. F1
1

2
23

21
2G 2. F22

1
0

24
3
1G

3. 3 1
2

21

21
3

22

0
24

3

1
1
54

4. 3 0
21

3

1
22

2

3
0
1

2
0

214
Exercises 5–8 System to Matrix Write the matrix that
corresponds to the system of equations.

5. 2x 2 y 5 3 6. 23x 1 2y 5 1
x 1 2y 5 21 5x 2 y 5 23

7. x 1 y 2 z 5 1 8. 3x 2 y 1 z 5 24
2x 2 y 5 3 x 1 y 5 3

2x 1 2y 2 z 5 0 y 2 z 5 5
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Exercises 9–12 Matrix Systems Solve the system of lin-
ear equations given in matrix form. Use x, y, and z as the
variables.

9. 31
0
0

1
1
0

2
0

22

21
2
44

10. 32
0
0

21
1
0

3
1
3

0
3

264
11. 30

1
2

0
2
1

2
21

0

24
0

214
12. 30

1
0

2
2
1

2
23

1

5
1
24

Exercises 13–24 Linear Systems Solve the system of
equations by expressing it in terms of a matrix, and then
complete row reduction to achieve echelon form.

13. 3x 1 y 5 21 14. x 2 3y 5 5
x 2 y 5 3 3x 1 y 5 5

15. 0.4x 2 0.5y 5 2.8
21.5x 1 0.6y 5 25.4

16. 6x 2 12y 5 7 17. 4x 2 8y 5 25
4x 2 8y 5 25 22x 1 4y 5 2.5

18.
x
3

2
y
2

5 4 19. x 1 2y 1 z 5 3

x
2

2 y 5 7
23x 1 4z 5 5
23y 1 2z 5 1

20. x 1 2y 1 z 5 1 21. x 1 y 1 3z 5 21
22x 1 y 2 2z 5 22 3x 2 4z 5 24

2x 1 2y 1 2z 5 22x 1 8y 2 z 5 2

22. 3x 1 4y 2 4z 5 21 23. 2x 1 y 5 2
6x 2 2y 2 2z 5 22 3x 1 4z 5 5

y 2 3z 5 23 4x 2 y 1 4z 5 3

24. 2x 2 y 2 3z 5 1
x 1 y 1 5z 5 2

3x 1 2z 5 3

Exercises 25–28 Fitting Points Find an equation for the
geometric figure that contains the given points. (Hint: As-
sume an equation for a parabola of the form y 5 ax 2 1
bx 1 c.)

25. Circle; P~0, 2!, Q~6, 21!, R~0, 27!

26. Circle; P~3, 2!, Q~0, 21!, R~22, 7!

27. Parabola; P~2, 1!, Q~21, 25!, R~23, 7!

28. Parabola; P~21, 0!, Q~1, 4!, R~2, 3!

Exercises 29–36 Partial Fractions Use the method of
partial fractions to express the rational expression as a sum
or difference of fractions with simpler denominations.

29.
28

3x 2 2 4x 2 4
30.

14x
3x 2 1 5x 2 2

31.
210x 2 4

x 3 2 4x
32.

5x 2 1 x
2x 3 1 x 2 2 2x 2 1

34.
3x 2 2 3x 1 5

~x 2 1!~x 2 1 2x 1 2!
33.

5x 2 2 3x 1 2
x 3 2 x 2 1 x 2 1

35.
x 2 1 5x 2 12
x 3 2 4x 2 1 4x

36.
x 2 2 6x 2 13

~x 2 1!~x 1 2!2

37. Finding Numbers The average of three numbers is
8. The first is 3 greater than twice the second, and the
third is the sum of the first two. What are the numbers?

38. Mixture Problem A grocery store sells two kinds of
candy, A and B, each at a certain price per pound. When
these are combined in a ratio of 3 to 1 (by weight) of A
to B, then the price per pound of the mixture is $1.10.
However, if the corresponding ratio is 3 to 2, then the
price per pound is $1.04. If a ratio of 4 to 1 were made,
what should be the price per pound of the resulting
mixture?

39. Mixture Problem A breakfast menu is to consist of
oatmeal, whole milk, and fresh orange juice. We are
interested in the protein, calcium, and vitamin C con-
tent. The following table gives the pertinent informa-
tion.

Protein Calcium Vitamin C
Food (grams) (milligrams) (milligrams)

Oatmeal
(1 cup; 245 g) 5 22 0

Milk
(1 cup; 244 g) 8 291 2

Orange juice
(1 cup; 248 g) 2 27 124

How many cups of each (oatmeal, milk, and orange
juice) are required to get a breakfast with 9 grams of
protein, 185.7 milligrams of calcium, and 125 milli-
grams of vitamin C?

40. Mixture Problem A mixture of 50 pounds of pea-
nuts, cashews, and walnuts costs a total of $49. If
peanuts cost $0.80 per pound, cashews cost $1.10 per
pound, and walnuts cost $1.20 per pound, and if the
mixture contains twice as many pounds of peanuts as
walnuts, how many pounds of each does the mixture
contain?



[– 5, 5] by [– 3, 3]

(– 2, – 1)

(– 2, 1)

(1, – 2)

(1, 2)
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9.3 S Y S T E M S O F N O N L I N E A R E Q U A T I O N S

In economics and psychology, linear least squares or constant
input–output matrices are often used, and indeed, sometimes used
automatically by means of canned programs, when fundamental force
interactions are nonlinear. Unfortunately, linear models may be very poor
approximations for nonlinear models.

Donald Greenspan

Gaussian elimination and matrix methods are well-suited for systems of linear
equations. However, we often must deal with systems that include nonlinear equa-
tions. Such systems can sometimes be difficult to solve, even with the aid of
technology. Several of the ideas we have used to solve systems of linear equationsI would read about the have applicability to nonlinear systems. In particular, we often use the method of

history of the subject I was
substitution, which is a special case of eliminating a variable. If we can graph thetaking . . . so I had a more
equations, we can make use of technology as well.comprehensive view of the

subject than my fellow
students. Many times I

cEXAMPLE 1 A nonlinear system For the system Hx 2 1 y 2 5 5
x 5 y 2 2 3

, (a) de-would walk up to the exam
with some classmate and

scribe three different strategies for solving, and (b) show that two of your strategiessay, “I will review you for
the exam, I’ll ask you some in part (a) yield the same solution set.
questions,” and he would

Solutiongive me the answers he
had studied. I’d go in, take (a) (i) Since the second equation is already solved for x, we can substitutethe exam, and get 20

y 2 2 3 for x in the first equation and solve the resulting equation for y.percent more than he did.
He’d be so full of the

(ii) Writing the system in the form H x 2 1 y 2 5 5
x 2 y 2 5 23

, we can eliminate y 2 bysubject, he couldn’t see the
woods for the trees.

adding equations ~replace E2 by E2 1 E1!.I. I. Rabi
(iii) We can solve both equations for y and graph four equations: y 5

6Ï5 2 x 2, y 5 6Ïx 1 3. Then use graphical methods.
(b) (i) Substituting for x, the first equation becomes

~y 2 2 3!2 1 y 2 5 5, or y 4 2 5y 2 1 4 5 0.

Factoring, ~y 2 2 1!~y 2 2 4! 5 0, so y 5 61 or y 5 62. The corre-
sponding x-values are 22 and 1. The solution set consists of the four
points $~22, 1!, ~22, 21!, ~1, 2!, ~1, 22!%.

(ii) Adding equations gives x 2 1 x 5 2, with solutions x 5 22, 1. Substitut-
ing each x-value into either of the original equations and solving for y gives
the same four points as the solution set.

(iii) Graphing the four equations y 5 6Ï5 2 x 2, y 5 6Ïx 1 3 on the
same screen gives something like Figure 5. In a decimal window we can
read the coordinates of the same four points exactly, but in general we
would have to settle for approximations. b

cEXAMPLE 2 Solving with graphs Solve the system of equations and show
the solutions graphically.

x 1 2y 5 24

y 5 x 2 2 2x 2 3FIGURE 5



x

y

(– ,  – )1�
2

7�
4

x + 2y = – 4

y = x2 – 2x – 3

(2, – 3)

x

y

x2 + y = 1

2x + y = 3

3

1
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SolutionStrategy: Eliminate either x
or y by substituting from the Follow the strategy. Solving the first equation for x gives x 5 22y 2 4. Substitute
first equation into the sec- into the second equation and solve for y.
ond, and then solving a
quadratic. y 5 ~22y 2 4!2 2 2~22y 2 4! 2 3

y 5 4y 2 1 16y 1 16 1 4y 1 8 2 3

4y 2 1 19y 1 21 5 0

~4y 1 7!~y 1 3! 5 0

Therefore, y 5 2 7
4 or y 5 23. Now use x 5 22y 2 4 to get the corresponding

values of x. For y 5 2 7
4 , x 5 2 1

2 ; for y 5 23, x 5 2.
The graph of the first equation is a line and that of the second is a parabola that

opens upward with vertex at ~1, 24!. See Figure 6. The points of intersection are
~2 1

2 , 2 7
4! and ~2, 23!, which correspond to the two solutions. b

cEXAMPLE 3 Complex solution Solve the system of equations and inter-
pret the solution graphically.

2x 1 y 5 3

x 2 1 y 5 1

Solution
Solve the second equation for y to get y 5 1 2 x 2. Substitute into the first equation
and solve for x.

2x 1 ~1 2 x 2! 5 3

x 2 2 2x 1 2 5 0

To solve the quadratic equation, apply the quadratic formula.

x 5
2 6 Ï4 2 8

2
5

2 6 Ï24
2

5
2 6 2i

2
5 1 6 i.

We find the coordinates of the points of intersection, if any, of the parabola and the
line by solving the system for real number solutions only. Since we have imaginary
number solutions, there are no points of intersection, as we see from the graphs in
Figure 7. b

cEXAMPLE 4 Eliminate variable Find the solution set for the system of
equations

x 2 2 y 2 5 3

2x 2 1 y 2 5 9.

Solution
Eliminate y by adding the two equations and then solve for x.

3x 2 5 12 x 2 5 4 x 5 62.

To get the corresponding values of y, substitute 2 or 22 into either of the given
equations, say the first.

4 2 y 2 5 3 y 2 5 1 y 5 61.

This gives four solutions. The solution set is $~2, 1!, ~2, 21!, ~22, 1!,
~22, 21!%. b

FIGURE 6

FIGURE 7



x

y

y = 2 ln x
(2, 2 ln 2)

x = 4

y = ln (4 – x) + ln 2
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Strategy: The domain of cEXAMPLE 5 Graph intersections Find the points of intersection of the
y 5 2 ln x is ~0, `! while graphs of y 5 2 ln x and y 5 ln~4 2 x! 1 ln 2. Draw the graphs.
that of y 5 ln~4 2 x! is
~2`, 4!. Thus any solution Solution
will be such that x is in Follow the strategy. Eliminate y from the equations.
~0, 4!. To draw graphs, use
properties of the ln function 2 ln x 5 ln~4 2 x! 1 ln 2
from Chapter 4.

Now use properties of logarithms from Chapter 4 and then solve for x.

ln x 2 5 ln@2~4 2 x!#

x 2 5 2~4 2 x!

x 2 1 2x 2 8 5 0

~x 2 2!~x 1 4! 5 0

Therefore, we get two possible solutions for x: x 5 2 or x 5 24, but 24 is not a
solution. See the Strategy. To find the corresponding value of y use either of the
given equations, say y 5 2 ln x. For x 5 2, y 5 2 ln 2 5 ln 4. The graphs of the
two equations intersect at only one point ~2, ln 4! < ~2, 1.39!. See Figure 8. b

EXERCISES 9.3

Check Your Understanding

Exercise 1–6 True or False. Give reasons.

1. The system of equations

Ï2x 2 Ï5y 5 4

Ï3x 1 Ï7y 5 3

is a nonlinear system.

2. The graphs of y 5 x 2 and y 5 2x 2 1 intersect at two
points.

3. The graphs of y 5 _ x _ and y 5 x have in common only
one point, ~0, 0!.

4. The system of equations

x 2 y 5 0

x 2 1 y 2 5 8

has exactly two solutions.

5. The system

x 2 2y 2 1 5 0

x 2 1 y 2 1 1 5 0

has no real solutions.

6. The system

x 2 1 y 5 0

x 2 2 y 5 0

has no real solutions.

Exercises 7–10 Fill in the blank so that the resulting state-
ment is true.

7. The graphs of y 5 x 2 2 1 and y 5 1 2 x 2 intersect at
.

8. The graphs of x 2 1 y 2 5 25 and 4x 1 3y 5 0 inter-
sect at .

9. The graphs of _ x _ 1 y 5 0 and y 1 2 5 0 intersect at
.

10. The graphs of y 5 _ x _ 2 1 and y 5 1 2 _ x _ intersect
at .

Develop Mastery
Exercises 1–16 Solve, Draw Graphs Find all pairs of
real numbers x, y that satisfy the system of equations. Draw
graphs and show points of intersection (if any).

1. y 5 3x 1 4 2. 2x 2 y 1 2 5 0
y 5 x 2 x 2 1 y 2 5 169

3. 3x 1 y 5 0 4. 2x 2 y 5 22
2x 2 1 4x 1 y 5 0 xy 5 4

5. 2x 1 3y 5 23 6. 5x 2 y 5 10
xy 5 23 x 2 1 x 2 y 5 6

7. 2x 2 y 5 0 8. x 1 y 5 2
x 2 2 y 5 23 x 2 1 y 2 5 2

9. 3x 2 y 5 5 10. y 5 x 2 2 4x 1 4
x 2 1 y 2 5 25 y 5 22x 2 1 x 1 16

FIGURE 8
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11. x 2 y 5 2 12. y 5 Ïx
x 2 1 y 5 2 y 5 2x 2 6

13. x 2 y 5 2 14. 2x 2 y 5 0
Ïx 2 y 5 0 xy 2 y 5 2

15. x 2 2 y 2 5 0 16. x 2 y 5 0
x 2 1 y 2 5 8 x 3 2 3x 1 y 5 0

Exercises 17–30 Nonlinear Systems Solve the system of
equations. If results involve irrational numbers, give ap-
proximations rounded off to two decimal places.

17. y 5 ln x 18. y 5 ex

y 5 ln~2 2 x! x 1 ln y 5 0

19. y 5 2 ln x 20. y 5 ln x 2

y 5 ln~3 2 x! 1 ln 4y 5 ln~3 2 x! 1 ln 4

22. x 1 ln~y 1 1! 5 221. x 2 ln y 5 2
x 2 ln y 5 1x 2 ln~y 2 3! 5 3

23. 2x 1 y 5 16 24. 3x 1 3y 5 10
2x11 2 y 5 8 3x21 2 y 5 8

25. x 2y 5 2 26. xy 5 2
y 5 2x 2 y 5 Ïx 1 1

27. x 2 1 2y 2 5 6 28. x 2y 5 1
xy 5 2 y 5 2x 2 1 2

29. x 2 1 y 2 2 xy 5 3
x 2 1 y 2 5 5

30. 2x 2 1 5xy 1 3y 2 5 4
xy 5 22

Exercises 31–34 Trigonometric Functions Solve the
system of equations. Assume that 0 # x # 2p ; for Exer-
cises 33 and 34, 0 # y # 2p .

31. sin x 2 y 5 0 32. sin x 1 y 5 0
cos x 2 y 5 0 sin 2x 2 y 5 0

33. 2 sin x 1 cos y 5 2
sin x 2 cos y 5 20.5

34. sin x 1 cos y 5 0
2 sin x 2 4 cos y 5 3Ï2

Exercises 35–36 Absolute Values Solve the system of
equations. (Hint: How could you graph an equation involv-
ing _ y _ ?!

35. 3_ x _ 2 2_ y _ 5 22
_ x _ 1 3_ y _ 5 14

36. 2_ x _ 2 3_ y _ 5 0
4_ x _ 1 3_ y _ 5 18

Exercises 37–42 Nonlinear Systems

37. 6ex 2 ey 5 1 38. ex 1 2ey 5 8
3ex 1 ey 5 8 2ex 2 ey 5 1

39. ln x 1 ln y 5 0 40. ln x 1 ln y 5 0
2 ln x 1 ln y 5 1 3 ln x 1 4 ln y 5 2

41. x 1 y 1 _ x _ 5 9
x 2 y 1 _ y _ 5 12
(Hint: What are the possible values of x 1 _ x _ ?)

42. x 1 y 1 Ïx 2 5 6
x 1 Ïy 2 2 y 5 8

Exercises 43–46 Rectangles

43. The perimeter of a rectangle is 40 cm and the area is
96 cm2. Find the dimensions of the rectangle.

44. Find the dimensions of a rectangle that has a diagonal
of length 13 cm and a perimeter of 34 cm.

45. One side of a rectangle is 3 cm longer than twice the
shorter side, and the area is 230 cm2. Find the perimeter
of the rectangle.

46. A rectangle is inscribed in a circle of radius Ï10. If the
area of the rectangle is 16, find its dimensions.

Exercises 47–48 Line Through Intersections

47. Find an equation for the line that passes through the
points of intersection of the graphs of y 5 x 2 1 2x and
y 5 2x 2.

48. Find an equation for the line that passes through the
points of intersection of the graphs of y 5 x 2 2 4x 2 5
and y 5 2x 2 1 2x 1 3.

49. An altitude of a triangle is twice as long as the corre-
sponding base and the area of the triangle is 36 cm2.
Find the altitude and the base. Does the given informa-
tion determine a unique triangle? Suppose the problem
states that one of the other sides is 4Ï10. What is the
perimeter of the triangle?

50. Explore Find all pairs of real numbers (if any) such
that
(a) their difference is 1 and their product is 1.
(b) their sum is 1 and their product is 1.
(c) their difference is 1 and their quotient is 1.
(d) their sum is 1 and their quotient is 1.



x

y

M(x1, y1)

P(x1, y2)

(0, 2)
(– 2, 1)

Q(x1, y3)

L: y = x + 21�
2

L

x

y

(0, 2)
(– 2, 1)

L: y = x + 2
1�
2
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9.4 S Y S T E M S O F L I N E A R I N E Q U A L I T I E S ;
L I N E A R P R O G R A M M I N G

My earliest recollection Consider the problem of assigning 70 men to 70 jobs. Unfortunately there are
of feeling that

70 factorial permutations, or ways to make the assignments. The problem is tomathematics might some
compare 70 factorial ways and to select the one which is optimal, or “best” byday be something special

was perhaps in the fourth some criterion. Even if the Earth were filled with nano-speed computers, all
grade when I showed the programmed in parallel from the time of the Big Bang until the sun grows
arithmetic teachers that cold, it would @be# impossible to examine all the possible solutions. The
the squares always end

remarkable thing is that the simplex method with the aid of a modernin—well, whatever it is that
computer can solve this problem in a split second.they end in.

George P. DantzigIrving Kaplansky

In earlier chapters we solved inequalities that involved single variables. We noted
that the solution sets could be shown on a number line. In this section we are
interested in solving inequalities in which two variables are involved. We shall see
that the solution set may be shown as a region of the plane.

Linear Inequalities

In Section 9.1 we studied linear equations that can be written in the form
ax 1 by 5 c. If we replace the equal sign by one of the inequality symbols, #, ,,
$, or ., we have a linear inequality. The example that follows illustrates a
technique for representing the solution set for a linear inequality.

cEXAMPLE 1 A line and Inequalities Show all points in the plane that
satisfy (a) 2x 1 2y 5 4, (b) 2x 1 2y , 4, and (c) 2x 1 2y . 4.

Solution

(a) The points ~x, y! that satisfy the equation are on line L whose equation may
also be written y 5 1

2 x 1 2. This appears in Figure 9, which also shows some
typical points M, P, and Q, where M is on the line, P is below M, and Q is above
M. Since y2 , y1 and y1 5 1

2 x1 1 2, then y2 , 1
2 x1 1 2. Similarly,

y3 . 1
2 x1 1 2.

(b) The inequality can be written y , 1
2 x 1 2. The diagram in Figure 10 shows

that the coordinates of any point below the line L, such as P~x1, y2!, will satisfy
the given inequality. Any point on or above the line will not. Therefore, the set
of points ~x, y! that satisfy 2x 1 2y , 4 consists of all points below L. This

FIGURE 9 FIGURE 10



x

y

(0, 2)

(– 2, 1)

L: y = x + 2
1�
2

x

y

(0, 0)

(0, – 3)

(2, 0)

P(– 1, 4)

Q(3, – 2)

L: 3x – 2y = 6
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is the shaded region (or half-plane) in Figure 10, where L is shown as a broken line
to indicate that the points on L are not included in the solution set. Your graphing
calculator may be able to graph the kinds of shaded regions in Figures 10 and 11.
Look for a DRAW menu.
(c) In a similar manner, the given inequality is equivalent to y . 1

2 x 1 2, and the
solution set consists of all points in the half-plane above L. See Figure 11. b

Parts (b) and (c) of Example 1 suggest the following definition.

Definition: half-plane

The solution set for a linear inequality, such as ax 1 by , c, consists of all
points on one side of the defining line, ax 1 by 5 c. The graph of the linear
inequality is a half-plane.

cEXAMPLE 2 A linear inequality Graph the inequality 3x 2 2y # 6.

Strategy: Begin with the Solution
boundary line L, We want all points ~x, y! that satisfy 3x 2 2y , 6 and all those that satisfy
3x 2 2y 5 6, and choose a 3x 2 2y 5 6. The graph will consist of all points in a half-plane together with the
test point that is not on the

points on the boundary line.line. If the coordinates sat-
Follow the strategy, referring to Figure 12. We must decide which half-planeisfy the desired inequality,

the solution is the half-plane (above or below L) satisfies the inequality. To do this, take a test point not on L, say
that contains the test point; (0, 0), and see if it satisfies the inequality.
if not, choose the other half-

3 · 0 2 2 · 0 # 6 or 0 # 6plane.

Since 0 # 6 is a true statement, the half-plane that contains (0, 0) is the one we
want, the portion of the plane above and to the left of L. The shaded region in
Figure 12 including the line L (drawn solid) is the graph of the inequality. b

The technique for determining the solution set by drawing a graph of a linear
inequality, as illustrated in the above example, can be expressed in algorithmic
form.

Algorithm for solving a linear inequality

1. Replace the inequality symbol by an equal sign and graph the
corresponding line L (broken, for a strict inequality, solid otherwise).

2. Take a test point P not on line L and see if it satisfies the inequality. If it
does, then the desired solution set includes all points in the half-plane that
contains P; if not, then the solution set consists of the half-plane on the
other side of L.

Systems of Inequalities

A system of linear inequalities consists of two or more linear inequalities that
must be satisfied simultaneously. The following two examples illustrate techniques
for determining the solution set or the graph of such a system.

cEXAMPLE 3 System of linear inequalities Solve the system of inequali-
ties and show the solution set as a graph in the plane.

FIGURE 11

FIGURE 12



x

y

(0, 0)

A(– 1, 2)

B(5, – 1)

C(– 3, – 4)

L1

L2
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y

(2, 2)

(1, 3)

(4, 1)
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2
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x 1 2y # 3

23x 1 y , 5

23x 1 8y $ 223

Strategy: Each inequality Solution
defines a half-plane, so the Follow the strategy. First draw graphs of the three lines L1, L2, and L3:
solution set for the system is
the intersection of three L1: x 1 2y 5 3 L2: 23x 1 y 5 5 L3: 23x 1 8y 5 223.
half-planes. Draw each

The points of intersection of these three lines, called corner points, are obtainedboundary line, find the coor-
dinates of the intersections, by solving the equations in pairs.
and identify the correct half-
planes by taking test points. AH x 1 2y 5 3

23x 1 y 5 5
BH x 1 2y 5

23x 1 8y 5

3
223

CH23x 1 y 5 5
23x 1 8y 5 223

The three corner points are A~21, 2!, B~5, 21!, and C~23, 24!. In Figure 13
L2 is shown as a broken line, and points A and C are indicated by open circles,
since the points on L2 are not in the solution set.

Returning to the inequalities, identify the points that belong to all three half-
planes. Using (0, 0) as a test point, the desired half-planes are below L1, below L2,
and above L3. The intersection of the three half-planes, the solution set, is shown
as the shaded region in the figure. Any other test point not on any of the three lines
would serve as well to identify the three half-planes and their intersection. b

cEXAMPLE 4 Mixture problem A dietitian wishes to combine two foods,
A and B, to make a mixture that contains at least 50 g of protein, at least 130 mg
of calcium, and not more than 550 calories. The nutrient values of foods A and B
are given in the table.

Food Protein (g/cup) Calcium (mg/cup) Calories (cup)

A 20 20 100

B 10 50 150

Strategy: We want numbers
How many cups of each of the foods should the dietitian use?of cups of A and B, so assign

letters (variables). Write in- Solution
equalities for grams of Follow the strategy. Let x be the number of cups of food A and y be the number of
protein ($50), milligrams of

cups of food B. The three conditions to be met can be written as inequalities:calcium ($130), and num-
ber of calories (#550), then Protein: 20x 1 10y $ 50
draw a graph to show the so-

Calcium: 20x 1 50y $ 130lution set.

Calories: 100x 1 150y # 550.

Simplify the inequalities by dividing each of the first two by 10 and the third by 50,
and then graph the three lines L1, L2, and L3,

L1: 2x 1 y 5 5 L2: 2x 1 5y 5 13 L3: 2x 1 3y 5 11.

Find the points of intersection of L1, L2, and L3 and draw the lines, as shown in
Figure 14. The solution set for the system of inequalities is the region shown.
Therefore, any point in the region will give a combination of foods A and B that will
satisfy the given constraints. For instance, point (2, 2) is in the region. Taking two
cups of each type of food will provide 60 g of protein, 140 mg of calcium, and 500
calories. b

FIGURE 13

FIGURE 14
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HISTORICAL NOTE SIMPLEX AND KARMARKAR ALGORITHMS FOR LINEAR PROGRAMMING

Linear Programming

The Historical Note in this section describes some applications of linear program-
ming. For most such problems we want to maximize or minimize a function, called
the objective function, subject to conditions (linear inequalities) called con-
straints. The constraints define a set (the set satisfying the system of inequalities)
referred to as the feasible set. The remarkable fact that makes it possible to solve
such optimization problems effectively is the following theorem.

Linear programming theorem

If the objective function of a linear programming problem has a maximum or
minimum value on the feasible set, then the extreme value must occur at a
corner point of the feasible set.

Some of the problems that linear programming helps solve can include dozens
of variables and even more constraints. Such complex problems require sophisti-

Example 5 illustrates a kind of
problem that modern industry and
government face all the time—that
of maximizing or minimizing some
function subject to constraints or
restrictions. An oil refinery, for
example, may produce a dozen
products (grades of engine oil,
gasoline, diesel, and so on), each of
which requires different crude oil
purchases, refining processes, and
storage. Transportation costs and
customer demand vary. Refinery
and storage capacity and raw
material availability also affect
what can be produced and the
profitability of the whole operation.

The constraints can usually be
described by a set of linear inequali-
ties such as those in Example 5. The
set of points satisfying the system of inequalities
forms some kind of polyhedral region in a high
dimensional space like the regions pictured in
Figure 15. It turns out that the desired maximum
or minimum always occurs at a corner point of the
graph. Many industrial or economic applications
may present dozens or even hundreds of variables,

and locating and testing corner
points becomes a staggering problem.

In 1947 an American
mathematician, George B. Dantzig,
developed a new method for dealing
with such problems called the
simplex algorithm for linear
programming. The algorithm uses
computers to manipulate matrices
in a way that essentially moves
from one corner to the next,
improving the result at each step.
The simplex algorithm has saved
untold billions of dollars for
industries and consumers
worldwide.

Now a new algorithm under
investigation promises to deal with
even larger problems in less time.
This new algorithm, named for its

developer, Narendra Karmarkar of Bell
Laboratories, intuitively takes shortcuts through
the polyhedron, instead of moving along the
edges. Scientists, engineers, and economists are
working and experimenting to see if computer
utilization of the Karmarkar algorithm can
significantly improve on the simplex algorithm.

Algorithms for linear
programming are used to

solve complex problems that
face oil companies and firms

in other industries



x

y

C(40, 80)

B(0, 120)

A(0, 38)

R = 1900 R = 7020

R = 7200
R = 6000

D(64, 38)
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cated computer techniques, but we can illustrate all of the key ideas with much
simpler problems. We begin by outlining the basic ideas for solving a linear pro-
gramming problem.

Solving a linear programming problem

1. Name the variables; express the constraints and the objective function in
terms of the variables.

2. Sketch the boundaries of the feasible set (one boundary for each
constraint).

3. Find the corners of the feasible set.
4. Evaluate the objective function at each corner point to identify maximum

and minimum values.

cEXAMPLE 5 Linear programming A farmer planning spring planting has
decided to plant up to a total of 120 acres in corn and soybeans. An estimate of the
investment required and the expected return per acre for each appears in the table.

Crop Investment Return

Corn $20 $50

Soybeans $35 $80

Because corn is needed for feed purposes on the farm, the farmer needs at least 38
acres of corn, and the budget can cover at most $3000 for both corn and soybeans.
How many acres of corn and how many acres of soybeans should be planted to
maximize the return from these two crops?

Solution
Let x be the number of acres to be planted in soybeans and y the number of acres
of corn. Then we must have x $ 0 and the need for corn as feed implies y $ 38.
The total allowable acreage for the two crops is 120 acres, so x 1 y # 120. The
investment required by x acres of soybeans and y acres of corn is 35x 1 20y, so
35x 1 20y # 3000. Finally, the objective function is the expected return, which
is R~x, y! 5 80x 1 50y.

We want to maximize R~x, y! on the feasible set, which is defined by the
inequalities

x $ 0 y $ 38 x 1 y # 120 35x 1 20y # 3000.

Draw a diagram and shade the feasible set. See Figure 15. To find coordinates of
the corner points, find the intersections of the boundary lines. The corner points
are: A~0, 38!, B~0, 120!, C~40, 80!, and D~64, 38!. Finally, determine the estimated
return for each choice, that is, evaluate R~x, y! 5 80x 1 50y at each corner point:

R~0, 38! 5 1900 R~0, 120! 5 6000

R~40, 80! 5 7200 R~64, 38! 5 7020.

The farmer will get the greatest return, subject to the given constraints, by planting
40 acres of soybeans and 80 acres of corn, for a return of $7200. bFIGURE 15
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EXERCISES 9.4

Check Your Understanding

Exercises 1–6 True or False. Give reasons.

1. The point ~21, 2! is in the solution set for
2x 1 3y , 4.

2. The solution set for the system x , 0, y . 0,
x 1 y . 1 contains only points in the second quad-
rant.

3. The solution set for the system x , 0, y . 0,
x 1 y . 1 is the empty set.

4. The solution set for the system x , 0, x 2 y . 1 con-
tains points in the third quadrant only.

5. The solution set for the system x , 1, y , x contains
no points in the fourth quadrant.

6. Point (2, 23) is a corner point for the system of inequal-
ities, 2x 1 3y # 25, 3x 2 y $ 9, x 2 y # 1.

Exercises 7–10 Fill in the blank with the quadrant(s) that
make the resulting statement true.

7. The solution set for y . x 1 2 contains no points in
.

8. The solution set for y $ 2x 1 1 contains points in
.

9. The solution set for the system y $ x, y # 2x contains
points in .

10. The expression Ïx 2 y 2 2 is a real number for some
points ~x, y! in .

Develop Mastery

Exercises 1–4 Locating Points Determine whether or
not the given pair of numbers (x, y) belongs to the solution
set of the system of inequalities.

1. x 2 3y , 4 (a) ~1, 1!
2x 1 y , 3 (b) ~Ï2, 20.5!

2. 22x 1 y . 23 (a) ~21, 2!
5x 1 2y , 1 (b) ~1, 25!

3. x 2 3y $ 1 (a) ~1, 21!
4x 2 y # p (b) ~Ï2, p!

4. y # 2x (a) ~0, 0!
3x 1 y . 0 (b) ~21, 3!

Exercises 5–12 Graphing Inequalities (a) Draw a
graph showing all points ~x, y! in the solution set of the
given inequality. (b) Give coordinates of any two specific
pairs ~x, y! that satisfy the inequality.

5. x 1 2y , 4 6. 2x 1 y . 3

7. 2x 2 3y $ 6 8. 4x 2 2y # 9

9. x 1 y 1 4 , 0 10. 2x . y 2 4

11. y $ 2x 12. 2y , 3x 2 4

Exercises 13–24 Solving Inequalities with Graphs
Draw a graph showing the solution set for the system of
inequalities. Determine the coordinates of any corner
points and show them on your diagram. Indicate which
boundary curves and corner points belong and which do not
belong to the solution set.

13. x 1 y , 4 14. 3x 2 2y . 5
2x 2 y , 21 2x 2 y , 25

15. x 2 2y $ 4 16. 3x 2 4y , 6
_ x _ . 2 _ x _ , 2

_ y _ , 3

17. 2x 1 2y , 5 18. 4x 1 3y # 16
2x 1 y . 0 2x 1 y . 24
3x 2 y , 5 6x 1 y $ 10

19. y . 0 20. x , 0
x 1 y . 1 x 1 y . 1

21. x , 0 22. 21 , x 2 y # 2
y . 0 22 , x 1 y # 2

x 1 y . 1

23. x . 2 24. _ x 2 y _ # 2
y . 21 _ x 1 y _ # 2

x 1 y , 3

Exercises 25–28 Which Quadrants? For the system of
inequalities, determine which quadrants contain points in
the solution set.

25. y . 2x 26. x . 1
y . 4 2 x y . x

27. x 1 y # 1 28. x 2 y $ 2
x 2 y # 21 2x 1 y $ 4

Exercises 29–36 Domains Show on a graph all points
(x, y) for which the expression will be a real number.

29. Ï2x 2 y 2 4 30. Ïx 2 y 1 1

31. ln~2x 1 y 2 2! 32. log~x 2 2y 2 4!

33. Arcsin~y 2 x! 34. Arcsin~x 1 y 1 1!

35. ln x 1 ln~y 2 x!

36. log~x 1 y! 2 log~2x 2 y!
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(0, 2)
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(3, 0)
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(– 2, – 3)

(0, – 1)
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Exercises 37–39 Write an Inequality Write a linear in-
equality whose solution set is the shaded region in the diagram.

37.

38.

39.

Exercises 40–42 Write a System Find a system of inequal-
ities whose solution set is the shaded region in the diagram and
give the coordinates of the corner points.

40.

41.

42.

Exercises 43–46 System Defining Triangular Region
(a) Draw a diagram showing the set of all points inside the
triangle whose vertices are the points A, B, and C. (b) Find
a system of inequalities whose solution set consists of all
points inside the triangle.

43. A~22, 0! B~0, 4! C~4, 22!

44. A~23, 2! B~3, 22! C~5, 2!

45. A~23, 0! B~0, 4! C~2, 0!

46. A~0, 0! B~22, 2! C~4, 2!

Exercises 47–48 Verbal to System Sketch a graph for
the set described and find a system of inequalities for which
the set described is the solution set.

47. All points above the line 2x 2 y 5 1 and below the
line x 1 2y 5 4.

48. All points above the line y 5 2x and below the line
x 1 2y 5 5.

Exercises 49–54 Linear Programming Find the mini-
mum and maximum values of the objective function subject
to the given constraints. (Hint: First draw a diagram show-
ing the feasible set and use the linear programming theo-
rem.)

49. Objective function: T 5 48x 1 56y 1 120
x 1 y $ 4, y # 2x 1 1, 4x 1 y # 13

50. Objective function: T 5 36x 1 73y 2 16
x $ 1, y # x, y $ 3x 2 8
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51. Objective function: T 5 67x 1 35y
y # 2, y # 2x, y $ x 2 4

52. Objective function: T 5 65x 1 124y 2 200
x 1 y $ 3, y # 2x, 4x 1 y # 12

53. Objective function: T 5 84x 1 73y 2 78
x $ 0, y $ 0, x 2 3y 1 14 $ 0, 5x 1 2y # 32,
4x 1 5y $ 12

54. Objective function: T 5 47x 1 56y 2 24
x 2 3y 1 11 $ 0, 4x 1 y # 21, 3x 1 4y $ 6

Exercises 55–58 Applied Inequalities

55. A concert is to be presented in an auditorium that has
a seating capacity of 800. The price per ticket for 200 of
the seats is $6, and $3 each for the remaining 600 seats.
The total cost for putting on the concert will be $2100.
Draw a graph to show the various possible pairs of
numbers of $6 and $3 tickets that must be sold for the
concert to avoid financial loss.

56. A rancher wants to purchase some lambs and goats—at
least five lambs and at least four goats—but cannot
spend more than $800. Each lamb costs $80, and goats
cost $50 each. How many of each can the rancher buy?
Draw a graph to list all possible pairs, keeping in mind
that lambs and goats come in whole numbers.

57. A sheep rancher raises two different kinds of sheep for
market, Rambis and Eustis, with only enough summer
range to support 3000 animals for sale each year. To
satisfy loyal customers, the rancher must have at least
750 of each breed available, and because of different
range demands, at least a third of the herd should be
Rambis. The average profit for the Rambis breed is $8
per animal, while each Eustis should yield an average of
$10. How many of each breed should the rancher raise
to maximize the profit? (Hint: If x is the number of
Rambis sheep and y is the number of Eustis, the condi-
tion that at least a third should be Rambis can be ex-

pressed as x $
~x 1 y!

3
or y # 2x.)

58. A fish cannery packs tuna in two ways, chunk style and
solid pack. Limits on storage space and customer de-
mand lead to these constraints:

The total number of cases produced per day must
not exceed 3000.

The number of cases of chunk style must be at least
twice the number of cases of solid pack.

At least 600 cases of solid pack must be produced
each day.

How many cases of each type can be produced per day
if all constraints are to be satisfied? Draw a graph of the
solution set and show the coordinates of the corner
points.

Exercises 59–61 Mixture Problems Use the informa-
tion from the following table, which gives nutrient values for
four foods, A , B, C, and D. Each unit is 100 grams.

Energy Vitamin C Iron
Food (calories/unit) (mg/unit) (mg/unit)

A 200 2 0.5

B 100 3 1.5

C 300 0 2.0

D 400 1 0.0

Calcium Protein Carbohydrate
Food (mg/unit) (g/unit) (g/unit)

A 10 2 15

B 4 3 30

C 20 9 10

D 5 3 10

59. In preparing a menu, determine how many units of A
and of B can be included so that the combined nutrient
values will satisfy the following constraints:

At least 8 milligrams of vitamin C

At least 18 milligrams of calcium

Not more than 800 calories

60. How many units of A and C can be included in a menu
to contribute:

At least 3 milligrams of vitamin C

At least 40 milligrams of calcium

Not more than 60 grams of carbohydrates

61. How many units of C and D will give a combined total
that satisfies these constraints:

At least 2 milligrams of vitamin C

At least 15 grams of protein

Not more than 6 milligrams of iron

Not more than 2100 calories

Exercises 62–66 Acreage and Fertilizer Choices

62. Would the farmer’s decision in Example 5 be different
if there were no minimum acreage to be alotted to corn?

63. What would be the optimal planting scheme for
Example 5 if the expected return on soybeans
were (a) $100 per acre? (b) $110 per acre?

64. In Example 5 how many acres of corn should be planted
and how many of soybeans if the return of corn were to
drop to $25 per acre?
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65. A commercial gardener wants to feed plants a very
specific mix of nitrates and phosphates. Two kinds of
fertilizer, Brand A and Brand B, are available, each sold
in 50 pound bags, with the following quantities of each
mineral per bag:

Phosphate Nitrate

Brand A 2.5 lbs 10 lbs

Brand B 5.0 5

9.5 D E T E R M I N A N T S

. . . A staggering paradox hits us in the teeth. For abstract mathematics
happens to work. It is the tool that physicists employ in working with the nuts
and bolts of the universe! There are many examples from the history of
science of a branch of pure mathematics which, decades after its invention,
suddenly finds a use in physics.

F. David Peat

In Section 9.2 we introduced matrices as convenient tools for keeping track ofFrom childhood on,
coefficients and handling the arithmetic required to solve systems of linear equa-Shannon was fascinated by
tions. Matrices are being used today in more and more applications. A matrixboth the particulars of

hardware and the presents a great deal of information in compact, readable form. Finding optimal
generalities of solutions to large linear programming problems requires extensive use of matrices.
mathematics. (He) tinkered

The properties and applications of matrices are studied in linear algebra, a disci-with erector sets and radios
pline that includes much of the material of this chapter. In this section we introducegiven him by his father . . .
the determinant of a square matrix as another tool to help solve systems of linearand solved mathematical

puzzles supplied by his equations.
older sister, Catherine, who
became a professor of Dimension (Size) of a Matrix and Matrix Notation
mathematics.

Claude Shannon A matrix is a rectangular array arranged in horizontal rows and vertical columns.
The number of rows and columns give the dimension, or size, of the matrix. A
matrix with m rows and n columns is called an m by n (m 3 n) matrix. Double
subscripts provide a convenient system of notation for labeling or locating matrix
entries.

Here are some matrices of various sizes:

A 5 3
a11

a21

a31

a12

a22

a32

a13

a23

a33
4 B 5 3

b11

b21

b33
4 C 5 F1

0
0
1G

Matrix A is 3 3 3, B is 3 3 1, and C is 2 3 2. A and B show the use of double
subscripts: aij is the entry in the ith row and the jth column. The first subscript
identifies the row, the second tells the column; virtually all references to matrices
are given in the same order, row first and then column. A matrix with the same
number of rows and columns is a square matrix.

The gardener wants to put at least 30 lbs of nitrates and
15 lbs of phosphates on the gardens and not more than
250 lbs of fertilizer altogether. If Brand A costs $8.50 a
bag and Brand B costs $3.50 a bag, how many bags of
each would minimize fertilizer costs?

66. Repeat Exercise 65 if the cost of Brand B fertilizer
increases to $6.00 a bag.
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Determinants

Every square matrix A has an associated number called its determinant, denoted
by det(A) or _ A _ . To evaluate determinants, we begin by giving a recursive
definition, starting with the determinant of a 2 3 2 matrix, the definition we gave
informally in Section 9.1.

Determinant of a 2 3 2 matrix. For 2 3 2 matrix A, we obtain _ A _ by multiply-
ing the entries along each diagonal and subtracting.

Definition: determinant of a 2 3 2 matrix

For the 2 3 2 matrix

A 5 Fa
c

b
dG ,

the determinant of A is given by

det A 5 _ A _ 5 U a
c

b
d U 5 ad 2 bc.

As in Section 9.1, the easiest way to remember the formula is by visualizing
products taken in the direction of two arrows:

U a
c

b
d U 5 ad 2 bc.

Thus, for example,

U 3
24

2
1 U 5 ~3!~1! 2 ~2!~24! 5 3 1 8 5 11, and

U 9
2

0
25 U 5 ~9!~25! 2 ~0!~2! 5 245 2 0 5 245.

For larger square matrices, the determinant definition uses determinants of
smaller matrices within the given matrix. The determinant of a 3 3 3 matrix uses
2 3 2 determinants, the determinant of a 4 3 4 matrix uses 3 3 3 determinants,
and so on.

Minors and cofactors. We associate with each entry aij of square matrix A a
minor determinant Mij and a cofactor Cij. The minor determinant, more com-
monly called simply the minor, of an entry is the determinant obtained by deleting
the row and column of the entry, so Mij is the determinant we get by crossing out
the ith row and the jth column. The cofactor Cij is the signed minor given by

Cij 5 ~21!i1 jMij.

In Example 1, to make it easier to visualize the minor determinant for a given
element, we shade the row and column containing that element. When you practice
evaluating 3 3 3 (or larger) determinants, it may help to have a mental picture of
a similar shading.
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cEXAMPLE 1 Finding cofactors Find the cofactor for each element in theStrategy: The elements of
the first row are a11, a12, a13. first row of the matrix.
Apply the definition of
cofactor for each set of
subscripts. A 5 3

1
3

21

23
2
5

22
21

04
Solution3

j1
3

21

23
2
5

22
21

04 Follow the strategy. In the first row, a11 5 1, a12 5 23, and a13 5 22. For the
minor M11, we delete the shaded row and column in the first margin matrix, leaving(a) Minor M11 of a11

(unshaded).
the (unshaded) minor U 2

5
21

0 U and then use C11 5 ~21!111M11.

C11 5 ~21!111 U 2
5

21
0 U 5 ~21!2@0 2 ~25!# 5 5.3

1
3

21

V23
2
5

22
21

04
To obtain M12, delete row 1 and column 2 (see the second margin in matrix) and(b) Minor M12 of a12

(unshaded). then use C12 5 ~21!112M12.

C12 5 ~21!112U 3
21

21
0 U 5 2@0 2 ~1!# 5 13

1
3

21

23
2
5

V22
21

0 4 In a similar manner (third margin matrix) C13 is given by
(c) Minor M13 of a13

(unshaded).
C13 5 ~21!113 U 3

21
2
5 U 5 @15 2 ~22!# 5 17 b

Determinant of a 3 3 3 matrix. The determinant of a 3 3 3 matrix can be
obtained using the elements of the first row.

Definition: cofactor expansion by the first row

Let A be a 3 3 3 matrix with entires aij. If Cij and Mij are the cofactor and
minor, respectively, of aij as defined above, then the determinant of A is
given by

_ A _ 5 a11 C11 1 a12 C12 1 a13 C13 5 a11 M11 2 a12 M12 1 a13 M13. (1)

It is helpful to remember that the cofactors have signs, so that each term of the
cofactor expansion of a determinant is a product of three factors: an entry aij, a sign
factor ~21!i1 j, and a minor Mij. Because the sign factor is either 1 or 21 and
depends only on the address (location) of aij, many people like to use a “sign3

1

2

1

2

1

2

1

2

1
4

matrix,” that gives the pattern of signs. The sign matrix in the margin may be
3 3 3 Sign Matrix extended as needed, following the same pattern. Then the above expansion of the

determinant has the form

_ A _ 5 a11~11! M11 1 a12~21! M12 1 a13~11! M13.
F L E

entry sign minor

Determinants of any size have a remarkable property. We get the same number
using the entries and cofactors of any row or column. For example, each of the
following gives the same value for _ A _ as Equation (1).

Expansion by second row _ A _ 5 a21 C21 1 a22 C22 1 a23 C23

Expansion by third column _ A _ 5 a13 C13 1 a23 C23 1 a33 C33
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To illustrate that the cofactor expansion is independent of the row or column
chosen, we return to the matrix from Example 1, for which we already have some
cofactors.

cEXAMPLE 2 Cofactor expansion Evaluate the determinant of matrix A by
(a) the first row (b) the second column.

A 5 3
1
3

21

23
2
5

22
21

04
Solution
Follow the strategy.

(a) Using C11 5 5, C12 5 1, and C13 5 17 from Example 1, then by Equation (1),

_ A _ 5 1 · 5 1 ~23! · 1 1 ~22! · 17 5 5 2 3 2 34 5 232.

(b) Expansion by the second column gives

_ A _ 5 a12 C12 1 a22 C22 1 a32 C32

5 ~23!~21! M12 1 ~2!~11! M22 1 ~5!~21! M32

5 3U 3
21

21
0 U 1 2U 1

21
22

0 U 2 5U 1
3

22
21 U

5 3~21! 1 2~22! 2 5 · 5 5 232,

the same value as for the first-row expansion. b

Determinant of an n 3 n matrix. Since we know how to evaluate 3 3 3 deter-
minants, we can use a similar cofactor expansion for a 4 3 4 determinant. Choose
any row or column and take the sum of the products of each entry with the
corresponding cofactor. The determinant of a 4 3 4 matrix involves four 3 3 3
determinants, one for each of the four entries in the chosen row or column. Simi-
larly, the determinant of a 5 3 5 matrix uses five 4 3 4 determinants. We give no
formal definition of the procedure to evaluate the determinant of an n 3 n matrix,
but it should be clear from the form of Equation (1). It should also be clear that the
number of arithmetic operations required to evaluate a determinant grows stagger-
ingly large as the size of the matrix increases.

Elementary row (column) operations and determinants. One way to simplify the
evaluation of determinants is to recognize that certain elementary matrix opera-
tions leave the determinant unchanged.

Elementary operation property

Given a square matrix A, if the entries of one row (column) are multiplied by
a constant and added to the corresponding entries of another row (column),
then the determinant of the resulting matrix is still equal to _ A _ .

Applying the Elementary Operation Property (EOP) may give some zero
entries that make the evaluation of a determinant much easier, as illustrated in the
next example.

Strategy: (a) Since matrix
A is the same as the matrix
in Example 1, we already
have the cofactors for expan-
sion by the first row. Multi-
ply each cofactor by its
entry, and add.
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cEXAMPLE 3 Elementary operations Evaluate the determinant of the
matrix

A 5

22
2

21
0

2
21

0
23

0
3
2
5

1
0

24
3

Solution
Follow the Strategy. Several choices seem reasonable, including using the last 1 in
the first row to get three zeros in the first row, or using the 21 in the first column
to get zeros in the first column or in the third row. To get zeros in the first column,
perform the following elementary row operations: 22R3 1 R1 A R1 and 2R3 1
R2 A R2. The result is matrix B. Evaluate its determinant by the first column
expansion.

_ B _ 5

0
0

21
0

2
21

0
23

24
7
2
5

9
28
24

3

5 0 · C11 1 0 · C21 1 ~21!C31 1 0 · C41.

Thus

_ A _ 5 _ B _ 5 ~21!~11!*
2

21
23

24
7
5

9
28

3 *
Apply elementary row operations 2R2 1 R1 A R1 and 23R2 1 R3 A R3 to get a
matrix with two zeros in the first column:

_ B _ 5 ~21!*
0

21
0

10
7

216

27
28
27 * 5 ~21!U 10

216
27
27 U

5 2~270 2 112! 5 2158.

Since _ A _ 5 _ B _ , _ A _ 5 2158. b

Technology and Larger Determinants

The arithmetic of determinant evaluation grows so rapidly that computers and
calculators must use approximation techniques. Most graphing calculators will give
excellent approximations for determinants (look for operations in the Matrix
menu). To use the power of this technology well, we must understand something
about determinants ourselves while at the same time being alert to computational
limitations.

As a simple example, we know from the definition that a determinant is a sum
of signed products of entries of a matrix. It follows that if all the entries in a matrix
are integers, then its determinant must be an integer. For

A 5 3
1
4
7

2
5
8

3
6
94 ,

Strategy: Use the EOP to
get a matrix with three zeros
in a row or column and use
that row or column for the
cofactor expansion.
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HISTORICAL NOTE DETERMINANTS

several calculators (including the TI-81 and TI-82) give _ A _ 5 0, but the TI-85
returns a value of 22.4E-12 , or _ A _ 5 20.0000000000024. Obviously the TI-85 is
programmed in a way that gives an approximation that is (very slightly) in error.
This is not a criticism of the TI-85; every calculator will fail on some relatively
simple similar example. What we need to recognize is the meaning of the result.
When we see such a ridiculously small number, we should understand that the
calculator is telling us (see Exercise 12) that the determinant of matrix A is equal
to zero.

If you keep such calculator limitations in mind, you should not hesitate to use
your calculator to check all determinant computations. The chances are very good
that your calculator makes fewer arithmetic errors than you do, and the greatest
source of error is probably entering numbers incorrectly or pressing a wrong key.

Why learn cofactor expansion? With all of the power and convenience of calcu-
lator computation, why shouldn’t we rely entirely on technology? In addition to the
fact that we cannot use technology wisely without having some feeling for what a
machine is doing for us (“garbage in, garbage out”), it turns out that a number of

Most students of mathematics today
learn about determinants only in
connection with matrices.
Historically, though, determinants
had a lively role of their own long
before matrices were recognized.
Matrices as such have been studied
only for a little more than one
hundred years, and were not widely
known even into the first third of
this century (see “Matrices” in
Section 9.2). Determinants are
numbers rather than arrays, and it
probably should not be surprising that they have
been recognized more than twice as long as
matrices.

At least three important mathematicians
independently developed and used some
properties of determinants. Leibnitz, best known
for his part in the invention of calculus, wrote
letters in 1693 that described how to determine
whether a given system of homogeneous
equations is consistent by calculating a single
number, which we now call a determinant.
Maclaurin probably used Cramer’s rule

twenty years before Cramer
published it in 1750.

We would probably not recognize
Cramer’s rule in its original form. It
used none of the special notation we
use today. There were also formulas
for the solution of three by three
systems, but it is likely that neither
Maclaurin nor Cramer extended the
rule to larger systems—with good
reason. A formula for quotients of two
24-term expressions is too complicated
to be worth much.

By 1773 Lagrange was using essentially
modern notation for certain problems. He is
responsible for the formula given in this section
for the area of a triangle as a determinant.
Cauchy applied the name determinant to a
class of functions including those that we now
call determinants, and Jacobi broadened
Cauchy’s usage to a determinant consisting of
derivatives. Cayley finally related determinants
and matrices in 1858, when he used them to
describe points and lines in higher-dimensional
geometry.

English mathematician
Arthur Cayley
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the most important applications of determinants require the evaluation of highly
symbolic determinants, where the result is not a number at all. In vector calculus
and linear algebra and differential equations, it is necessary to know how to
calculate and manipulate determinants; it is not enough to know what buttons to
push to get a number.

In the next example we illustrate the use of a determinant involving unit
vectors, i, j, and k that are used in physics and engineering. This particular example
computes the cross product of two vectors, an operation that we do not discuss but
that is used in calculus. Example 5 comes directly from linear algebra.

cEXAMPLE 4 A vector product Looking Ahead to Calculus Suppose
u 5 i 1 2k, v 5 3i 2 j 1 k are vectors in 3-space. Then the cross product of u
and v is given by

u 3 v 5 *
i
1
3

j
0

21

k
2
1 *,

where the second and third rows are the components of u and v. Use cofactor
expansion by the first row to obtain the cross product in standard form.

Solution
Using the definition,

u 3 v 5 i U 0
21

2
1 U 2 j U 1

3
2
1 U 1 k U 1

3
0

21 U
5 i~0 1 2! 2 j~1 2 6! 1 k~21 2 0!

5 2i 1 5j 2 k.

This last expression describes a 3-dimensional vector that is perpendicular to the
two vectors u and v. b

cEXAMPLE 5 A determinant equation (a) Expand the determinant and
(b) solve the equation for x.

*
x 2 1

23
0

24
x 2 2

0

2
24

x 1 1 * 5 0

Solution

(a) Using the cofactor expansion by the last row (since there are two zeros), the
determinant equals

0 2 0 1 ~x 1 1!U x 2 1
23

24
x 2 2 U 5 ~x 1 1!~~x 2 1!~x 2 2! 2 12!

5 ~x 1 1!~x 2 2 3x 2 10! 5 ~x 1 1!~x 2 5!~x 1 2!.

(b) The equation reduces to ~x 1 1!~x 2 5!~x 1 2! 5 0, whose solutions are
given by x 5 22, 21, 5. We suggest that you check by substituting each
x-value into the original determinant. b



x

y

A(– 1, 1)

B(0, – 2)

C(5, 3)
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Applications of Determinants

As suggested in the previous examples, applications of determinants abound in
different areas of mathematics. We will see another in Section 9.6 when we use
inverses of matrices for solving systems of linear equations. Determinants also
provide a convenient way to do some things we have previously considered in this
text, among them a way of writing an equation for a line through two given points
and another way to compute the area of a triangle from the coordinates of its
vertices. We are not interested here in deriving Equations (2) and (3), but are
merely illustrating uses of determinants. Examples and exercises support the valid-
ity of these formulas.

Equation of a line

Given two points P~a, b! and Q~c, d!, an equation for the line PQ may be
written as

*
1
1
1

x
a
c

y
b
d * 5 0. (2)

Area of a triangle

Given DPQR with vertices P~a, b!, Q~c, d!, and R~e, f ! going around the
triangle counterclockwise, then the area K of the triangle is given by

K 5
1
2*

1
1
1

a
c
e

b
d
f *. (3)

If we disregard the order of vertices, then we must take the absolute value of
the determinant.

cEXAMPLE 6 Determinant applications Given points A~21, 1!, B~0, 22!,
C~5, 3!.

(a) Verify that Equation (2) gives an equation for the line AC.
(b) Show that nABC is a right triangle and verify that the area K of the triangle

is given by Equation (3).

Solution

(a) Figure 16 shows nABC and line AC. Substituting the coordinates of points A
and C into Equation (2) and expanding by the first row gives us

*
1
1
1

x
21

5

y
1
3 * 5 1~23 2 5! 2 x~3 2 1! 1 y~5 1 1! 5 0,

or 2x 1 3y 5 4, which is obviously an equation of a line. It is a simple task
to verify that the coordinates of both A and C satisfy the equation, so Equa-
tion (2) is an equation for the line containing the points A and C.

(b) From the diagram in Figure 16 we see that the slope of line AC is 1
3 and the

slope of line AB is 23. Thus the lines are perpendicular and DABC is a right
triangle. Using Equation (3), we can go around the triangle counterclockwiseFIGURE 16



pg529 [R] G1 5-36058 / HCG / Cannon & Elich cr 11-30-95 MP1

9.5 Determinants 529

in order ABC (or, if we prefer, BCA or CAB). We have, using the first row for
cofactor expansion,

K 5
1
2*

1
1
1

21
0
5

1
22

3 * 5
1
2

~1~0 1 10! 2 ~21!~3 1 2! 1 1~5 2 0!! 5 10.

Because we have a right triangle with legs b and c, we can compute the area as 1
2 bc

as soon as we have those lengths.

b 5 _ AC _ 5 Ï62 1 22 5 2Ï10, c 5 _ AB _ 5 Ï12 1 32 5 Ï10.

Thus K 5 1
2 bc 5 1

2 ~2Ï10!~Ï10! 5 10, in agreement with Equation (3). b

It is interesting to observe that Equation (3) does not depend on whether or not
the triangle has a right angle. Equation (3) can be used with any triangle in the
coordinate plane. To find the area of a general triangle without the use of a
determinant would require considerably more work.

Cramer’s Rule

We conclude this section by revisiting a topic we introduced in Section 9.1. There
is a technique, known as Cramer’s Rule, for solving systems of linear equations
using determinants. In Section 9.1 we solved a 2 3 2 linear system directly and
observed that the solution could be expressed in terms of what we now know are
determinants. The same process works for any n 3 n linear system. For complete-
ness, we state the theorem here in its more general form, but we do not recommend
its use for larger systems. Computationally it is too inefficient. In the next section
we will get a matrix approach that is very easy to implement with technology.

Cramer’s rule

Given a system of n linear equations in variables x1, x2, . . . , xn, where A is
the coefficient matrix and B is the column of constants, let D 5 _ A _ and let
Di be the determinant of the matrix obtained by replacing the ith column of
A by column B. If D 5/ 0, the system has a unique solution given by

x1 5
D1

D
, ex2 5

D2

D
, . . . , xn 5

Dn

D
.

EXERCISES 9.5

Check Your Understanding

Exercises 1–6 True or False. Give reasons.

1. The determinant of

F2
3

21
25G

is equal to 27.

2. The only solution of the equation

U x
4

22
2 U 5 6

is given by x 5 21.

3. * 1
0
0

3
1
1

22
4
1 * 5 U 1

1
4
1 U .

4. The solution of the equation

* x
0
0

3
1
1

22
4
1 * 5 3

is given by x 5 21.
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5. The solution set for the equation

U sin x
2cos x

cos x
sin x U 5 1

is the empty set.

6. If every element of 2 3 2 matrix A is a positive num-
ber, then the determinant of A is a positive number.

Exercises 7–10 Fill in the blank so that the resulting
statement is true. All questions refer to the matrix

A 5 3 0
1

21

21
1
0

1
21

24.

7. The determinant of A is equal to .

8. The minor M31 is equal to .

9. The cofactor C11 is equal to .

10. The cofactor C12 is equal to .

Develop Mastery

Exercises 1–4 Cofactor Evaluation Evaluate the indi-
cated cofactors.

1. * 2
3
1

21
2
0

3
25
22 * Find C12, C31.

2. * 21
2
2

0
5

21

0
3
4 * Find C23, C32.

3. * 0
5

22

22
Ï3

0

Ï3
2
1 * Find C22, C33.

4. * 2
3
5

21
e
2

e
21
23 * Find C11, C13.

Exercises 5–12 Determinants by Cofactors Evaluate
the determinant of the given matrix. Use cofactors for the
3 3 3 matrices.

5.
A 5 F3

2
25

5G 6.
A 5 F 0

23
4
2G

7.
B 5 36

7
6

24
24
23

1
1
14

8.
A 5 31

0
0

0
3
1

2
3
54

9.
B 5 32

6
2

5
2
2

2
21

14
10.

C 5 31
0
1

1
1
0

0
1
14

11.
C 5 33

4
1

22
21
21

2
1
14

12.
D 5 31

4
7

2
5
8

3
6
94

Exercises 13–20 Determinants by Technology Use a
calculator to evaluate the determinant of the matrix.

13.
A 5 3 2

Ï3
Ï75

21
Ï12
Ï48

0
Ï27

2Ï34
14.

B 5

1
21

2
0

3
0
0
1

0
1
4
2

0
1

22
1

15.

C 5

1
3

22
21

0
21

1
22

2
2
4
3

21
1

21
1

16.

A 5

21
23

1
2

0
2

22
1

22
1

21
4

0
23

3
22

17.
A 5 3 0.3

20.8
0.0

0.7
21.3

1.0

1.2
0.4
2.14

18.
D 5 3 4

2
30

12
21
20

28
0

704
19.

M 5 31001
2001
4001

101
201
401

11
21
414

20.

D 5

17
283

25
26

0
20

100
28

0
0

500
210

0
0
0

5000

Exercises 21–34 Solving for x The equation involves
the variable x. (a) Expand the determinant and (b) solve
for x.

21. U 2x
3x

24
2 U 5 3 22. U 3

x
24x

25 U 5 6

23. U ex

e
e
1 U 5 0 24. * 1

3
25

0
21

3

x
2
0 * 5 22

25. * 22x
0

2x

1
3
1

0
2
5 * 5 4

26. * x
2
1

4
2
1

0
2x

1 * 5 0
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27. * x
3x
2x

22x
1

2x 1 1

1
22
23 * 5 0

28. * ex

21
0

0
2
2

1
23
21* 5 4

29. * 4 sin x
21

2

1
1

21

0
3

21 * 5 23

30.

* x
x
1

0
2
x

1
21

1 * 5 0

31. * x 2 2
0
3

1
x 2 3

1

0
21

x 1 1 * 5 0

32. * x 2 1
22

0

3
x 2 4

21

2
24

x 2 2 * 5 0

33. * x
x
2

0
x 1 1

1

0
5

x 2 1 * 5 0

34. * x 2 1
2
1

2
x 2 2

0

2
22

x * 5 0

Exercises 35–40 Cramer’s Rule Use Cramer’s Rule to
solve the system of equations. If the determinant of the
coefficient matrix is zero, use Gaussian elimination.

35. 6.3x 1 2.1y 5 18.9 36. 2.4x 2 5.2y 5 28.0
1.5x 1 3.4y 5 24.2 1.6x 1 2.4y 5 6.4

37. 371x 1 285y 5 2726 38. 325x 2 175y 5 2625
137x 1 125y 5 977 173x 2 276y 5 33

39. x 1 y 2 2z 5 0 40. x 1 2y 2 z 5 5
3x 2 2y 2 z 5 0 2x 1 y 1 2z 5 3

2x 1 4y 2 3z 5 0 x 2 y 1 3z 5 0

Exercises 41–48 Areas of Polygons Find the area en-
closed by the polygon with the given vertices. (Hint: If there
are more than three vertices, break up the figure into trian-
gles.)

41. A~1, 0!, B~6, 4!, C~8, 0!

42. A~1, 0!, B~5, 22!, C~7, 2!

43. A~2, 0!, B~1, 22!, C~4, 3!

44. A~5, 5!, B~5, 25!, C~0, 21!

45. A~1, 0!, B~4, 6!, C~8, 0!, D~7, 23!

46. A~0, 0!, B~4, 6!, C~3, 0!, D~5, 22!

47. A~0, 4!, B~2, 4!, C~0, 2!, D~22, 4!

48. A~0, 0!, B~7, 23!, C~8, 0!, D~8, 6!, E~4, 6!

Exercises 49–52 Explore Evaluate the three determi-
nants. State a theorem about such determinants and explain
why you think your theorem is true.

49. (a) U 1
2

0
0 U (b) * 5

0
4

23
0
1

2
0

23 *
(c) 5

0
4
5

3
2

26
0

0
0
0
0

21
5
8

22

50. (a) U 2a
3

a
4 U (b) U k

22k
5
3 U (c)U 2

c
1

2c U
51. (a) * 1

2
21

a
2a
2a

0
3
1 *

(b) * k
2

21

2k
2
0

k
1
1 *

(c) * 1
5
c

0
1

2c

22
0
c *

52. (a) * 1
2
3

2
4

25

21
22

1 *
(b) * 2

6
1

6
18

0

23
29

5 *
(c) * 40

8
5

225
25

1

0
0

24 *
(Hint: Consider the first two rows.)

Exercises 53–54 Lines Through Two Points Use Equa-
tion (2) to find an equation for the line that passes through
points P and Q.

53. P~21, 2! Q~3, 4! 54. P~2, 23! Q~23, 5!

Exercises 55–56 Cross Product Find the cross product
of the vectors u and v. See Example 4.

55. u 5 2i 1 3j 2 k, v 5 i 1 3j 1 2k

56. u 5 i 2 j, v 5 3i 1 4j 2 k
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9.6 M A T R I X A L G E B R A

A genuine discovery should do more than merely conform to the facts: it
should feel right, it should be beautiful. Aesthetic qualities are important in
science, and necessary, I think, for great science.

Roger Penrose

In Sections 9.2 and 9.5 we introduced some ideas related to matrices, but we did
not discuss the algebra of matrices themselves. In this section we present a small
portion of matrix algebra for solving systems of linear equations. We limit most of
our discussion to 2 3 2 or 3 3 3 systems, but all of the essential ideas can be
applied to larger systems, as well.

Matrix Equality

Since matrices have many entries, we need to know when two matrices are equal.
Equality requires not only that the matrices are the same size, but that all corre-
sponding entries be the same.

Definition: equality of matrices

Matrices A and B are equal, written A 5 B, if and only if

1. A and B have the same size, and
2. each entry in A is equal to the corresponding entry in B: aij 5 bij.

Matrix Product

The product of two matrices is probably most easily introduced with an example.

cEXAMPLE 1 Sales by matrix multiplication A bicycle dealer has three
outlets, one downtown, one in a mall, and one at a nearby resort. A special
mountain bike sale features three brands of bikes with these sale prices: Hoppit
($375), Runner ($425), Climber ($315). The numbers of bikes sold at the three
outlets during the special promotion are displayed in a matrix:

H R C
Downtown
Mall
Resort 3

8
4
5

7
14

8

12
9

164
Find the sales total in dollars at each outlet.

Solution
We could find the desired information without using matrices. The dollar total from
the downtown store is 8~$375! 1 7~$425! 1 12~$315! 5 $9,755, and the same
operations will give us the gross sales figures for the mall store ($10,285) and the
resort store ($10,315). Matrix multiplication is defined to do precisely these oper-

[In college] there were no
women teaching
mathematics but I
remember women teaching
biology and psychology.
Naturally I elected to major
in mathematics. [Most
math] students [were]
planning to be engineers.
There were also girls who
were going to be teachers.
At that time I had no idea
that such a thing as a
mathematician (as opposed
to math teacher) existed.

Julia Robinson
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ations. Let A and B be matrices.

A 5 3
8
4
5

7
14

8

12
9

164 and B 5 3
375
425
3154

The product AB is a 3 3 1 matrix C:

AB 5 3
8
4
5

7
14

8

12
9

164 · 3
375
425
3154

5 3
8 · 375 1 7 · 425 1 12 · 315
4 · 375 1 14 · 425 1 9 · 315
5 · 375 1 8 · 425 1 16 · 3154 5 3

9,755
10,285
10,3154 5 C

From the matrix C, read off sales totals: c11 5 $9,755 (downtown), c21 5 $10,285
(mall), and c31 5 $10,315 (resort). b

The matrix product in Example 1 is sometimes called a row-by-column
product. Each entry in product AB is obtained by multiplying the entries of a row
of A by the entries of a column of B, and each entry cij of the product is the sum
of the products of the entries in the ith row of A with the corresponding entries of
the jth column of B. More specifically, c11 is given by c11 5 a11b11 1 a12b21 1
a13b31. Similarly, c21 comes from the second row of A and the first column of B:
c21 5 a21b11 1 a22b21 1 a23b31, and c31 5 a31b11 1 a32b21 1 a33b31. See the il-
lustration in the margin.

The row-by-column idea defines the product of two matrices in general. The
product AB requires that the number of entries in each row of A matches the
number of entries in each column of B. It is easy to see in a particular example
whether or not A and B allow multiplication, but we can also read the information
from the dimensions of A and B.

Definition: product of two matrices

Let A be an m 3 k matrix and B be a k 3 n matrix. The product AB is an
m 3 n matrix C, where the entry cij is obtained by multiplying the entries of
the ith row of A by the corresponding entries of the j th column of B and
then adding the resulting products:

cij 5 ai1b1j 1 ai2b2j 1 ai3b3j 1 · · · 1 aikbkj.

cEXAMPLE 2 AB 5/ BA Find the products AB and BA if matrices A and B are
given by

A 5 3
1
3
2

22
2
0

0
21
214 B 5 3

4
0

22

21
1
1

2
3

214.

@@@@@B
@a b c# 3 3r

s
t4 É

5 ar 1 bs 1 ct

Row-by-column product is a
number.

Strategy: (a) Using the
row-by-column definition, if
AB 5 C, then c11 5 1 · 4 1
~22!0 1 0~22! 5 4, and
so on.
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Solution
Follow the strategy.

AB 5 3
1
3
2

22
2
0

0
21
214 · 3

4
0

22

21
1
1

2
3

214
5 3

1 · 4 1 ~22!0 1 0~22!

3 · 4 1 2 · 0 1 ~21!~22!

2 · 4 1 0 · 0 1 ~21!~22!

1~21! 1 ~22!1 1 0 · 1
3~21! 1 2 · 1 1 ~21!1
2~21! 1 0 · 1 1 ~21!1

1 · 2 1 ~22!3 1 0~21!

3 · 2 1 2 · 3 1 ~21!~21!

2 · 2 1 0 · 3 1 ~21!~21!4
5 3

4
14
10

23
22
23

24
13

54
BA 5 3

4
0

22

21
1
1

2
3

214 · 3
1
3
2

22
2
0

0
21
214 5 3

5
9

21

210
2
6

21
24

04 b

In the solution to Example 2 note that AB 5/ BA, which implies that matrix
multiplication is not necessarily commutative.

cEXAMPLE 3 Associativity Matrices A, B, and C are

A 5 F21
3

2
25G B 5 F 1

21
4
2G C 5 F21

2
0
3G.

Find the matrix products (a) ~AB!C and (b) A~BC!.

Solution
Follow the strategy.

(a) ~AB!C 5 SF21
3

2
25GF 1

21
4
2GDF21

2
0
3G

5 F23
8

0
2GF21

2
0
3G 5 F 3

24
0
6G

(b) A~BC! 5 F21
3

2
25GSF 1

21
4
2GF21

2
0
3GD

5 F21
3

2
25GF7

5
12

6G 5 F 3
24

0
6G. b

The solution to Example 3 illustrates a general property of matrix multiplica-
tion: matrix multiplication is associative. Whenever the products are defined,
~AB!C 5 A~BC!.

cEXAMPLE 4 Identity Matrices A and B are given by

A 5 F21
3

2
21G B 5 F1

0
0
1G.

Find the matrix products (a) AB and (b) BA.

Strategy: (a) First find AB,
then multiply the result by C
(with C on the right) to get
~AB!C.
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Solution

(a) AB 5 F21
3

2
21GF1

0
0
1G 5 F21

3
2

21G
(b) BA 5 F1

0
0
1GF21

3
2

21G 5 F21
3

2
21G b

The solution to Example 4 shows that AB 5 BA 5 A, so the matrix B acts
much like the number 1 in ordinary arithmetic ~a · 1 5 1 · a 5 a!. For any 2 3 2
matrix, C, CB 5 BC 5 C, and we call B the identity matrix for the set of 2 3 2
matrices. It is customary to denote the identity matrix by the letter I. There is an
identity matrix of size n 3 n for every dimension n. The 3 3 3 identity is the
matrix

I 5 3
1
0
0

0
1
0

0
0
14

The same letter I can denote the identity matrix of any size under discussion, but
the context should make it clear which size identity is intended.

cEXAMPLE 5 Inverses Find matrix products AB and BA, where

A 5 3
1

25
22

0
1
1

1
25
214 B 5 3

4
5

23

1
1

21

21
0
14

Solution

AB 5 3
1

25
22

0
1
1

1
25
2143

4
5

23

1
1

21

21
0
14 5 3

1
0
0

0
1
0

0
0
14

BA 5 3
4
5

23

1
1

21

21
0
143

1
25
22

0
1
1

1
25
214 5 3

1
0
0

0
1
0

0
0
14 b

The product of the two matrices in Example 5 (in either order) is the identity
matrix. In the set of real numbers two numbers whose product is 1 are called
reciprocals or multiplicative inverses of each other. We use the same terms in
matrix algebra. If AB 5 BA 5 I, then A and B are inverses of each other, B 5 A21.
In general, AA21 5 A21A 5 I. Not all matrices have inverses, but every square
matrix with a nonzero determinant does have an inverse.

We sum up our discussion so far in a list of some properties of matrix algebra.

Properties of matrix algebra

1. In general, matrix multiplication is not commutative: AB 5/ BA.
2. Matrix multiplication is associative: ~AB!C 5 A~BC!.
3. The square matrix I with 1s on the main diagonal and 0s everywhere else

is an identity matrix: AI 5 IA 5 A.
4. Any square matrix A with a nonzero determinant has an inverse:

AA21 5 A21A 5 I.
5. The matrix kA is obtained by multiplying every entry of A by the

number k.
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Finding the Inverse of a Square Matrix without Technology

Matrix inverses have several important applications. Among them is another tech-
nique for solving systems of linear equations. To use the technique we need a
method for finding the inverse of a matrix. The following algorithm is simple and
relatively efficient.

Algorithm to find the inverse of a square matrix

Suppose A is a square matrix with a nonzero determinant.

1. Adjoin the identity matrix to the right of A, getting a matrix with the
structure @A _ I#.

2. Use elementary row operations on @A _ I# to get a matrix of the form
@I _ B#.

3. The inverse of A is the matrix B.

We illustrate the algorithm with matrix A of Example 5.

@A _ I# 5 3
1

25
22

0
1
1

1
25
21 *

1
0
0

0
1
0

0
0
14 5R1 1 R2 A R2

2R1 1 R3 A R3 3
1
0
0

0
1
1

1
0
1 *

1
5
2

0
1
0

0
0
14

~21!R2 1 R3 A R3 3
1
0
0

0
1
0

1
0
1 *

1
5

23

0
1

21

0
0
14

~21!R3 1 R1 A R1 3
1
0
0

0
1
0

0
0
1 *

4
5

23

1
1

21

21
0
14

The last matrix has the form @I _ B#, so

A21 5 B 5 3
4
5

23

1
1

21

21
0
14,

as we found in Example 5, which showed that AB 5 I.

Solving Systems of Linear Equations

We stated that a goal of this section was to develop the matrix algebra needed to
express an n 3 n system of linear equations as a matrix equation and then to use
matrix algebra to solve the system. Two examples illustrate this process.

cEXAMPLE 6 Matrix form of linear system For the matrices

A 5 3
1

25
22

0
1
1

1
25
214, X 5 3

x
y
z4, and C 5 3

3
22

44,

(a) write the matrix product AX, and
(b) write the system of linear equations that results if AX 5 C.
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Solution

(a)

AX 5 3
1

25
22

0
1
1

1
25
214 · 3

x
y
z4 5 3

x
25x
22x

1

1 y 2

1 y 2

z
5z
z 4

(b) If AX 5 C, then

3
x 1 z

25x 1 y 2 5z
22x 1 y 2 z4 5 3

3
22

44 so
x

25x
22x

1

1

y
y

1

2

2

z
5z

z

5

5

5

3
22
4

b

Using Technology to Solve Matrix Equations

Any system of linear equations can be expressed as a matrix equation AX 5 B as
in Example 6. If the coefficient matrix A is square and has an inverse, then we can
solve the system, at least symbolically. We simply multiply both sides of the equa-
tion on the left by A21 and use the associative property of matrix multiplication.

A21~AX! 5 A21B, ~A21A!X 5 A21B, IX 5 A21B, or X 5 A21B.

That is, given the matrix equation AX 5 B, as long as A has an inverse, we can
solve the system by premultiplying B by A21. This is a tremendous boon if we can
use technology to find the inverse and perform the matrix multiplication. Therein,
of course, lies the rub. Finding the inverse of a large matrix can tax the most
sophisticated computer software and finding better ways to manipulate linear sys-
tems to improve methods of solution continues as an area of active mathematical
research.

If we recognize the limitations, though, the technology we have available to us
allows us to solve a great many linear system problems efficiently and easily.
Determinants continue to play a role in solving a system. It turns out that the inverse
of a matrix involves division by the determinant of the matrix. When the determi-
nant of a matrix is zero, there is no inverse, and if the determinant is near zero,
there is a possibility of substantial error in approximations.

A warning example. Consider the following system:

3
1
4
7

2
5
8

3
6
94 3

x
y
z4 5 3

2
21

14.

We mentioned in Section 9.5 that the TI-85 evaluates the determinant of the
coefficient matrix A as 22.4E-12. We should recognize that such a number indicates
that the determinant is equal to 0 and that hence that A has no inverse. If, however,
we disregard our warning, enter the matrix A and the column matrix B and go ahead
and compute A21B, the calculator immediately returns an answer. We read that
x 5 6.25E12, y 5 2 1.25E12, and z 5 6.25E12, a highly suspicious result to say the least. If
we want to check by multiplying the result by A, we should get B again, but the
calculator indicates that the entries are 1.1, 23, 26, nowhere close to the numbers
2, 21, 1 in B. If we look at A21, we see huge numbers (suspicious again), and if we
calculate AA21 or A21A, we get reasonable looking numbers but not the identity
matrix.
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We emphasize again that this problem is part of any computing technology, not
a peculiarity of the TI-85. With a little work we can find such an example for any
calculator. What we must do is work within the limitations of our technology. With
care, we can take advantage of the power we have available, as outlined below.

Solving a matrix system AX 5 B

1. Enter the coefficient matrix A in your calculator.
2. Compute the determinant of A. If det A 5 0 or if the calculator shows

det A as a very small number, stop. Use Gaussian elimination to solve the
system.

3. If you are confident that det A 5/ 0, then enter the column matrix B.
4. On your home screen evaluate A21B. The result is the solution matrix.
5. Check by premultiplying your result by A. The product should be B.

TECHNOLOGY TIP r Calculating A21B

Note that to solve the system AX 5 B, we need not necessarily even compute
A21, although some calculators do compute and display A21 in the process.

TI-calculators Having entered the matrix A, on the home screen, we just
enter A (or @A#) and the x21 key, followed by B, and ENTER.

Casio fx-7700 only handles three matrices. After entering matrix A, press F4

to evaluate A21, which is displayed in the C register. We want it in the A
register, so F1 performs the interchange. Then after putting in B, press PRE.
Then F5 does the multiplication and puts the product in C.

Casio fx-9700 allows us to store several matrices, so after entering A and
B, we EXIT twice and simply press F1 ALPHA A x21 F1 ALPHA B to display
Mat A21 3 Mat B and EXE.

HP-38 Having entered matrix A as M 1 and B as M 2, return to the home
screen. On the command line, type M1`21*M2 (use the A...Z key for M, the

d inverse key for `21), and ENTER.
HP-48 Having entered A on the stack, 1yx computes the matrix A21 and enters

it in place of A. Then put B on the stack in Level 1 and press the
amultiplication key (the order of matrix multiplication on the HP-48 is
Level 2 3 Level 1).

We strongly suggest that you check your ability to handle matrices by doing all of
the calculations in Example 7.

cEXAMPLE 7 Matrix solution Use a graphing calculator to find the inverse
of the coefficient matrix, and solve the system.

x 1 z 5 3

25x 1 y 2 5z 5 22

22x 1 y 2 z 5 4

Solution

For this system, A 5 3 1
25
22

0
1
1

1
25
21
4 and B 5 3 3

22
4
4. The calculator shows the
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inverse of A as A21 5 3 4
5

23

1
1

21

21
0
1
4. As a check, see Example 5. The solution

is given by A21B 5 3 6
13

23
4, so x 5 6, y 5 13, z 5 23. b

EXERCISES 9.6

Check Your Understanding

Exercises 1–10 True or False. Give reasons.

1. If A5F21
0

0
21G, then A · A 5 F1

0
0
1G.

2. The inverse of F1
1

4
5G is F 5

21
24

1G.

3. If A 5 30
1
0

1
0
0

0
0
14, then A21 5 A.

4. If A 5 F1
0

21
1G and B 5 F21

21
1
0G, then BA 5 AB.

5. If A 5 F 2
21

23
2G and B 5 F2

1
3
2G, then BA 5 AB.

Exercises 6–10 Let A 5 @21, 3#

B 5 F22
21G, C 5 F 1

21
0
2G.

6. The only entry in AB is positive.

7. AC is a square matrix.

8. All entries in BA are negative.

9. (BA) C 5 B (AC)

10. A(BC) is undefined.

Develop Mastery

Exercises 1–4 Matrix Notation (a) Give the dimension
of matrix A and (b) find a12 and a21 when possible. If this is
not possible, explain why.

1.
A 5 F 2

21
23
24G 2.

A 5 F0
2

21
0G

3.
A 5 31

0
1

1
0
2

21
2
44

4.
A 5 322

5
14

Exercises 5–12 Matrix Products Evaluate the matrix
product when possible; if the product is not defined, explain
why. Use the matrices

A 5 F 2
21

23
24G B 5 F 3

21G
C 5 321

3
22

0
21

0

2
4
14 D 5 321

5
24

E 5 F 0
21

1
2G F 5 30

3
4

21
22

0

2
1
24

5. AB 6. BA 7. CD 8. AE

9. EA 10. CF 11. FC 12. A~EA!

Exercises 13–20 Matrix Inverse Use the algorithm of
this section to find the inverse of the matrix if it has an
inverse; if it has no inverse, explain how you know. Check
by technology.

13.
A 5 F 5

23
23

2G 14.
B 5 F 3

21
5

22G
15.

C 5 F1
6

0
2G 16.

A 5 F22
24

1
3G

17.
B 5 F 3

21G
18.

A 5 30
2
04

19.
A 5 31

1
1

2
3
2

4
3
34

20.
B 5 3 1

0
22

21
21

6

0
1

234
Exercises 21–28 Inverses by Calculator Use your cal-
culator to find A21 If A has an inverse; if not, explain why.
(Hint: It may help to evaluate (det A) A21.)

21.
A 5 324

10
21

2
25

1

23
8

214
22.

A 5 3 4
5

23

1
1

21

21
0
14
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23.
A 5 323

2
5

21
1
2

1
2
04

24.
A 5 3 1

2
24

7
4

28

23
1

294
25.

A 5 3 2
24
22

0
1
1

2
24
214

26.
A 5 3 57

412
24255

93
2611
13589

179
84

59954
27.

A 5

4
5
3
2

1
1

21
0

21
0
1
1

3
5

22
5

28.

A 5

1
5
0

24

4
1
4
7

3
21

1
5

2
1
1
3

Exercises 29–40 Matrix Systems (a) Evaluate _ A _ .
(b) If A has an inverse, find A21 and solve the system of
equations by solving the matrix equation AX 5 C.

29. 3x 1 4y 5 2 30. x 1 3y 5 4
27x 2 9y 5 3 3x 1 5y 5 22

31. 23x 1 2y 5 4 32. 22x 1 y 5 3
5x 2 3y 5 21 25x 1 3y 5 1

33. x 2 y 5 0 34. x 1 2y 1 2z 5 21
2y 1 z 5 4 x 1 3y 1 2z 5 22

22x 1 6y 2 3z 5 1 2x 1 6y 1 5z 5 3

35. x 1 2y 1 4z 5 21 36. x 1 7y 2 3z 5 0
x 1 3y 1 3z 5 2 2x 1 4y 1 z 5 24
x 1 2y 1 3z 5 24 24x 2 8y 2 9z 5 22

37. 23x 2 y 1 z 5 2 38. 2x 2 2y 1 3z 5 15
2x 1 y 1 2z 5 21 x 1 y 2 z 1 2w 5 26

2x 1 3z 5 0 x 1 y 2 z 1 w 5 24
2x 1 y 2 z 1 3w 5 26

39. x 2 y 1 4z 2 w 5 4
2x 1 y 2 3z 1 5w 5 21

4x 1 3z 2 2w 5 13
22x 1 4y 2 3z 5 5

40. x 1 y 1 z 1 w 1 v 5 4
2x 2 y 1 3z 1 w 2 v 5 22

5x 1 y 1 w 1 2v 5 11
x 2 2y 2 z 2 2w 5 27

2x 1 3y 1 2z 2 6w 1 4v 5 3

Exercises 41–43 Find a Circle For the circle that passes
through the three points, (a) write an equation in the form
x 2 1 y 2 1 bx 1 cy 5 d and (b) find the radius and the
coordinates of the center.

41. ~21, 22!, ~5, 6!, ~6, 5!

42. ~21, 21!, ~0, 2!, ~2, 2!

43. ~0, 2!, ~7, 1!, ~8, 22!

Exercises 44–46 Find a Parabola For the parabola that
passes through the three points, (a) write an equation in the
form y 5 ax 2 1 bx 1 c and (b) find the coordinates of the
x-intercept points and the vertex.

44. ~0, 1!, ~1, 22!, ~2, 23!

45. ~21, 21!, ~0, 2!, ~2, 2!

46. ~0, 7!, ~1, 1!, ~2, 21!

47. The height from ground level of an object is given by an
equation of the form h~t! 5 at 2 1 bt 1 c, where t is
the time in seconds and h is measured in feet.
(a) Find a, b, and c, if h~1! 5 240, h~2! 5 246, and

h~3! 5 248.
(b) At what time will the object be at ground level?

Exercises 48–51 Inverse of a Product For matrices A
and B, find (a) AB, (b) ~AB!21, (c) A21B21 and B21A21.

48.
A 5 F 2

21
23

2G B 5 F2
3

3
4G

49.
A 5 F1

1
4
5G B 5 F 2

21
21

1G
50.

A 5 324
10

21

2
25

1

23
8

214 B 5 31
1
2

2
3
6

2
2
54

51.
A 5 3 3

21
0

2
1

22

22
0
14 B 5 323

2
5

21
1
2

1
2
04

Exercises 52–63 Powers of a Matrix For matrix A, find
(a) A2 ~5 A · A!, (b) A3, (c) A16, and (d) A47.

52.
A 5 F22

3
21

2G 53.
A 5 F1

4
3
4

5
4

2 1
4
G

54.
A 5 31

0
0

0
0
1

0
1
04

55.
A 5 31

0
0

0
4
5

0
23
244

56.
A 5 3 1

3
26

4
5

212

2
3

274
57.

A 5 F22
1

26
3G

58.
A 5 F 6

23
10

25G 59.
A 5 F2

4
21
22G
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60.
A 5 30

0
0

2
0
0

21
3
04

61.
A 5 322

6
4

1
23
22

23
9
64

62.
A 5 326

23
29

8
4

12

2
1
34

63.
A 5 3 2

21
21

6
23
21

2
21

14
Exercises 64–65 Multiple of I For the given matrix,
show that the given expression is equal to some multiple of
the identity matrix.

64.
A 5 3 2

2
27

2
1
2

0
1

234; 13A 2 A3

65.
B 5 31

2
0

0
2
0

22
4
24; 3B 2 B 2

CHAPTER 9 REVIEW

Test Your Understanding

True or False. Give reasons.

1. The equation 3x 2 4y 1 z 5 7 is linear in x, y, and z.

2. The equation Ï3x 2 Ï5y 5 Ï6 is not a linear equa-
tion in x and y.

3. The system

2x 2 3y 5 5

24x 1 6y 5 7

has infinitely many solutions. It is dependent.

4. The solution for the system

x 2 2y 2 3z 5 4

y 2 2z 5 6

3z 5 29

is given by x 5 25, y 5 0, z 5 23.

Exercises 5–8 Refer to the system of inequalities:

2x 2 y # 0

2x 1 y $ 4

5. Point (0, 1) is in the solution set.

6. Point (2, 4) is not in the solution set.

7. Point (1, 2) is a corner point.

8. The solution set contains no points in Quadrants III
or IV.

Exercises 66–69 Your Choice Find two 2 3 2 matrices
A and B such that the first row of A is 1, 2 1 and such that
A and B satisfy the given condition.

66. AB 5 I 67. AB 5 BA

68. AB 5/ BA

69. A and B have no zero entries but AB is the zero matrix.

70. Explore: Generating the Fibonacci Sequence Let F

be the matrix F0
1

1
1G and let A 5 F0

1G.

(a) Compute the first few powers of F by entering F
and then iterating F*ANS.

(b) Guess a formula for F n in terms of the Fibonacci
sequence.

(c) Enter A and iterate F*ANS. How would you de-
scribe the entries you observe?

(d) Describe how to generate the Lucas sequence,
which is defined recursively by L0 5 1, L1 5 3,
and Ln11 5 Ln 1 Ln21, n $ 1.

Exercises 9–12 Lines L1 and L2 are given by

L1: x 1 2y 5 0 L2: 3x 2 4y 5 25

9. Point (22, 1) is on both L1 and L2.

10. Point (21, 1
2) is on both L1 and L2.

11. Point (1, 2) is on L2, but not on L1.

12. Point (0, 1) is above L1 and below L2.

Exercises 13–18 Let G be the set of all points (x, y) that
satisfy the system

x 2 2y $ 26

x 1 y $ 23

7x 2 2y # 6

13. Point (0, 3) is in G.

14. Point (0, 0) is in G.

15. Point (0, 23) is a corner point of G.

16. Point (24, 1) is not a corner point of G.

17. Point (2, 4) is not in G.

18. There is no point on the line 2x 1 y 5 0 that is also
in G.

Exercises 19–23 Line L and parabola P are given by

L: x 2 2y 5 21 P: y 5 x 2 2 1

19. There is exactly one point that is on both L and P.

20. There are exactly two points that are on both L and P.
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21. Point (1, 1) is on both L and P.

22. Point (21, 0) is not on both L and P.

23. Point (0, 21) is on L, but not on P.

24. If A 5 F 2
21

23
2G, then A21 5 F2

1
3
2G.

25. If A 5 F1
1

4
5G and B 5 F 5

21
24

1G, then AB 5 I.

Exercises 26–31 Let G be the graph of the equation
given by

* x
2
1

y
3
1

1
1
1* 5 0.

26. G is a line.

27. Point (2, 3) is on G.

28. Point (21, 21) is on G.

29. G is a line with slope 4
3 .

30. The x-intercept point of G is (1
2 , 0).

31. The y -intercept point of G is (0, 2 2
3).

32. The equation U x 2

21
3
1 U 5 4 has two real solutions.

33. The equation 3 1 U x
21

1
1 U 5 4 has no real solutions.

Exercises 34–36 Assume that A 5 F23
25

1
2
G.

34. _ A _ 5 211

35. A21 5 F 2
25

1
23G

36. The solution the matrix equation AFx
yG 5 F23

5G is

F11
30G.

Exercises 37–40 Assume that A 5 33
3
1

2
3
1

2
4
1
4.

37. _ A _ is a positive number.

38. Matrix A has an inverse all of whose entries are posi-
tive.

39. The solution to the matrix equation AX 5 C, where

C 5 3 0
23

44, is given by x 5 28, y 5 2 27,

z 5 215.

40. Not all entries of A2 are positive.

Review for Mastery

Exercises 1–9 Linear Systems Solve the system of equa-
tions. If it is dependent (has infinitely many solutions), de-
scribe all solutions and then give two specific ones.

1. 3x 2 2y 5 5 2. 22x 1 y 5 3
x 2 y 5 21 5x 2 3y 5 24

3.
x
2

2
y
3

5 4 4. 0.4x 1 0.6y 5 0

x
4

1
y
2

5 22

0.8x 2 1.2y 5 2

5. x 2 2y 1 z 5 3 6. x 1 2y 5 2
22x 1 y 2 z 5 0 3x 2 4y 1 z 5 22
4x 2 3y 1 2z 5 1 x 1 3z 5 28

7. x 1 2y 2 5z 5 1 8. x 2 y 1 z 5 3
3x 1 2y 1 z 5 22 5x 2 4y 1 3z 5 2

3x 2 2y 1 17z 5 27 x 2 2y 1 3z 5 16

9.
1
x

2
2
y

5
1
3

2
x

2
5
y

5 2
2
5

Exercises 10–15 Solve and Graph Solve the system of
equations and draw graphs to illustrate the solution graph-
ically.

10. y 5 23x 1 4 11. 2x 2 3y 5 226
y 5 x 2 x 2 1 y 2 5 169

12. y 5 22x 13. 2y 5 x 1 2
y 5 2x 2 2 3x xy 5 4

14. x 1 y 5 4 15. y 5 x 2 2 4x 1 4
x 2 1 y 2 5 4 y 5 22x 2 1 5x 1 4

Exercises 16–19 Graphical Inequalities Draw a graph
of the set of points (x, y) that satisfy the inequality or in-
equalities.

16. 2x 2 y , 1

17. x 1 y . 1 and 2x 2 y , 5

18. y # x and x 2 y , 2

19. 2x 1 y , 4 and x 2 2y $ 1

Exercises 20–22 System of Inequalities Draw a graph
of the region described by the system of inequalities, identi-
fying all corner points.

20. x 2 y # 4 21. 2x 2 y $ 8
2x 1 y $ 2 2x 1 y # 4
x 1 2y # 4 x 2 y # 8

22. y $ x 2 1
x 1 2y # 10
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Exercises 23–25 Solution Set with Determinants Find
the solution set.

23. U 2x

1
1
2 U 5 7

24. * x
0
1

0
x
1

1
0
x * 5 0

25. *x 2 1
1
0

x
2
1

0
x

x 1 1 * 5 5x

Exercises 26–31 Matrix Products and Equations Use
the matrices:

A 5 F7
2

3
1G B 5 F4

3
1
1G

C 5 F22
3G X 5 Fx

yG
26. Find (a) AB (b) BA.

27. Find (a) A21 (b) B21.

28. Find (a) ~AB!21 (b) B21A21.

29. Find (a) ~BA!21 (b) A21B21.

30. (a) Express the matrix equation AX 5 C as a system of
equations

(b) Solve the system using X 5 A21C.

31. Solve the matrix equation BX 5 C for X.

32. Find the inverse of the matrix A where

A 5 3 4
1

21

5
1
0

23
21

14
33. Use the result in Exercise 32 to solve the system of

equations

4x 1 5y 2 3z 5 1

x 1 y 2 z 5 3

2x 1 z 5 24

Exercises 34–37 Linear Programming A system of lin-
ear constraints is given. (a) Draw a graph to show the
feasible set F and determine the corner points. (b) For the
given objective function, determine the point in F that will
give the indicated optimal solution.

34. Constraints: x 2 y $ 0, 4x 1 2y # 5, y $ 0. Objec-
tive function: z 5 5x 2 2y; maximum.

35. Constraints: x 2 y $ 0, 4x 1 2y # 5, y $ 0. Objec-
tive function: z 5 5x 1 4y; maximum.

36. Constraints: y # x 1 2, y $ 2x 2 1, y $ 2x 1 2.
Objective function: z 5 2x 1 3y; maximum.

37. Constraints: y # x 1 2, y $ 2x 2 1, y $ 2x 1 2.
Objective function: z 5 3x 1 4y; minimum.

Exercises 38–39 Area Find the area enclosed by the
polygon with the given vertices.

38. A~5, 4!, B~2, 21!, C~0, 1!

39. A~5, 4!, B~2, 21!, C~0, 1!, D~2, 1!

40. Mixture Problem If 1 cup of oatmeal contains 5
grams of protein and 20 milligrams of calcium, and 1
cup of milk contains 8 grams of protein and 300
milligrams of calcium, determine the amount (in cups)
of oatmeal and milk that will give a serving that
contains 12 grams of protein and 383 milligrams of
calcium.

41. Ticket Sales A musical sponsored by the student
association is to be held in the school auditorium, which
seats 1500. Ticket prices are $5 each for the 500
reserved seats and $3 each for the remaining 1000
general admission seats. The cost to present the musical
will be $3700. How many reserved seat tickets and how
many general admission tickets must be sold to cover
the cost of the production?

42. Filling a Reservoir Two pipelines, A and B, supply
water to a reservoir, while pipeline C (located at the
bottom) drains the reservoir. When all three pipelines
are open it takes 18 hours to fill the reservoir. If A and
B are open and C is closed, it takes 12 hours to fill the
reservoir. If A and C are open and B is closed, it takes
24 hours to fill the reservoir. How many hours does it
take to fill the reservoir if only A is open?

Exercises 43–45 Linear Programming

43. A producer of lawn fertilizer makes two different kinds.
Type A contains 20 percent nitrogen and 10 percent
potash, while type B contains 10 percent nitrogen and 4
percent potash. The firm has a sufficient supply of each
and wishes to put together a mixture that contains a total
of at least 240 kg. The mixture should also contain at
least 15 percent nitrogen and not more than 8 percent
potash. The costs per kilogram of A and B are 20 cents
and 15 cents, respectively.
(a) Draw a graph showing the amounts of each that

will give the desired mixture.
(b) For each corner point of the graph, find the corre-

sponding cost of the mixture.

44. A computer manufacturer has orders from two retail
stores, one in Harmony and one in Gladstone. The Har-
mony store has ordered 50 computers and the Glad-
stone store needs 60. The manufacturer has supplies of
computers in two warehouses, 80 computers in Salem
and 40 in Trent. Shipping costs (in dollars per com-
puter) are shown in the table.

Harmony Gladstone

Salem $20 $12

Trent $16 $10
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Let x be the number of computers shipped from the
Salem warehouse to the Harmony store and let y be the
number shipped from Salem to Gladstone. How many
must be shipped from Trent to each retail store? If the
manufacturer wants to minimize shipping costs, how
many computers should be sent from each warehouse to
each retailer?

45. Solve the problem in Exercise 44 if the shipping costs
are

Harmony Gladstone

Salem $10 $16

Trent $12 $ 8

Exercises 46–50 Fitting Points Find an equation for
the geometric figure that contains the given points. (Hint:
Assume an equation for a parabola of the form y 5
ax 2 1 bx 1 c, and x 2 1 y 2 1 ax 1 by 1 c 5 0 for a
circle.)

46. Parabola; P~1, 3!, Q~22, 21!, R~0.5, 3.5!

47. Parabola; P~1, 11!, Q~21, 3!, R~0.5, 7.5!

48. Circle; P~3, 22!, Q~0, 21!, R~0, 25!

49. Circle; P~21, 5!, Q~21, 21!, R~2, 2!

50. Circle; P~4, 2!, Q~1, 3!, R~6, 22!
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ANALYTIC GEOMETRY IS THE NAME given to the marriage of algebra and geometry.
The early Greeks developed a rich geometry, but their algebra was limited. The
algebra-free geometry that came through Euclid is called synthetic geometry.
Algebra developed independently, with little connection to geometry. Not until the
early 1600s were the two melded, primarily by René Descartes ~after whom Carte-
sian coordinates are named! and Pierre de Fermat.

The idea that a geometric picture can illuminate an equation is not new. Graphs
are an integral part of our thinking, learning, and understanding. Most of our work
has started with an equation or functional relation; in this chapter we more often
begin with a geometric property and use algebra to interpret the geometry.

In the first section we consider new ways to make geometric proofs and extend
our tools for computing distance, with special applications to lines and circles.
Then we look more closely at a topic we have already used extensively, parametric
representations of geometric figures and curves. The next sections deal with conic
sections, a classical part of analytic geometry, and we end with a different way to
describe sets of points in the plane using polar coordinates.

10.1 A L G E B R A I C M E T H O D S F O R G E O M E T R Y

The physical theory of general relativity could not have evolved were it not
for the work of many generations of mathematicians . . . who were able to
free geometry from its earlier imprisonment in Euclidean rigidity.

Roger Penrose

Early Greek mathematicians explored geometric relationships with great ingenu-
ity, but with no algebraic tools comparable to ours. They used congruence, similar-
ity, and ratios. Where we apply the Pythagorean theorem to a triangle in terms of

ANALYTIC GEOMETRY
10.1 Algebraic Methods for Geometry

10.2 Parametric Equations

10.3 Conic Sections

10.4 Translations and Coordinate
Transformations

10.5 Polar Coordinates

545
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an equation, say a2 1 b 2 5 c 2, the Pythagoreans saw a triangle with actual
squares on the sides. See Figure 1. They found ways to cut up the region and show
that the sum of the areas of the two smaller squares is actually equal to the area of
the large square.

Theorems from Greek geometry continue as a living part of our mathematical
heritage. When we can draw a picture to model a problem, we often use geometry
to relate variables. A good part of geometry has become the bedrock on which we
build today. But powerful and enduring as the methods of synthetic geometry have
proved over the centuries, there are times when we must be able to go beyond.
Analytic geometry is one of the tools we need.

Deriving Equations for Geometric Figures

We already have some experience with analytic geometry. A circle is defined in
terms of points and a distance, and we may represent it by a rough sketch or by a
more careful drawing with a compass. For most purposes in algebra, though, we. . . @B#y the time I

was in the sixth grade I want an equation. The most fundamental step is putting a coordinate system on
understood algebra and the plane. In the coordinate plane, we can use the synthetic definition of a circle as
geometry fairly well. I the set of all points equidistant from a fixed point. From the distance formula, we
knew the rudiments of

can write an equation that is satisfied by just those points that lie on the circle. Ascalculus and a smattering
a familiar example, the set of points satisfying the equation x 2 1 y 2 5 1 is theof number theory, which I

liked very much. I felt circle with center at the origin and radius 1.
rather isolated. A lot of Since many geometric definitions involve distance, the distance formula is used
teachers are very over and over again. The distance formula involves a square root, so we frequently
threatened when they find

need to square both sides of an equation. We must be alert to the possibility ofa child is studying
squaring introducing extraneous points. We have the following useful criterion.advanced things. And I was

reluctant at that time to Squaring property
talk to other children

If U and V are expressions in x and y and both are nonnegative for the x, ybecause I felt they found
values being considered, then these are equivalent equations:my interest in math

somewhat strange.
U 5 V and U2 5 V 2

Paul Cohen

cEXAMPLE 1 Theorem from geometry Given points A~1, 2! and
B~3, 22!, show that the set of points that are equidistant from A and B is the
perpendicular bisector of the segment AB.

Solution
Follow the strategy. First draw the diagram shown in Figure 2, where dA and dB

denote the distances from P to A and P to B, respectively. Let S be the set of all points
for which dA 5 dB. The distance formula for dA and dB gives:

Ï~x 2 1!2 1 ~y 2 2!2 5 Ï~x 2 3!2 1 ~y 1 2!2 (1)

To simplify Equation (1), since both sides are nonnegative, we can use the
squaring property.

~x 2 1!2 1 ~y 2 2!2 5 ~x 2 3!2 1 ~y 1 2!2 (2)

Expanding and simplifying, Equation (2) reduces to x 2 2y 2 2 5 0, an
equation of a line L. Thus all points in S are on the line L. Reversing the above steps
would also show that every point on the line L satisfies Equation (1) and hence is
equidistant from A and B.

FIGURE 1

Strategy: Draw a diagram
to visualize the problem, in-
cluding a typical point
P~x, y! that is equidistant
from A and B. Get an equa-
tion by setting the distances
from P to A and P to B
equal and simplifying.
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To show that L is the perpendicular bisector of AB, show that (i) L contains the
midpoint M of AB and (ii) L is perpendicular to the line through A and B.

(i) The coordinates of the midpoint M are

xm 5
1 1 3

2
5 2 and ym 5

2 1 ~22!

2
5 0,

so M is point ~2, 0!. Substituting into the equation for L shows that M is
a point on L.

(ii) The slope m1 of the line through A and B is given by

m1 5
22 2 2
3 2 1

5 22.

The slope m2 of line L can be found by putting the equation for L into point-
slope form ~that is, by solving for y!: y 5 1

2 x 2 1, so m2 5 1
2 . Since

m1m2 5 21, line L is perpendicular to the line through A and B. b

cEXAMPLE 2 Find an equation For the given points A~24, 21! and
B~2, 5!, let K be the set of points P such that the distance _ AP _ is twice the distance
_ BP _ . Find an equation for K and sketch the graph.

Solution
We begin with a figure showing A and B and a typical point P~x, y! belonging to K
~see Figure 3!. The condition that must be satisfied for P to belong to K is that
dA 5 2dB. Expressing dA and dB in terms of coordinates, we get the following
equation:

Ï~x 1 4!2 1 ~y 1 1!2 5 2Ï~x 2 2!2 1 ~y 2 5!2.

Applying the squaring property, expanding, and simplifying, we have

~x 2 1 8x 1 16! 1 ~y 2 1 2y 1 1!

5 4@~x 2 2 4x 1 4! 1 ~y 2 2 10y 1 25!#

3x 2 2 24x 1 3y 2 2 42y 1 99 5 0.

Now we divide through by 3 and complete squares.

~x 2 2 8x 1 16! 1 ~y 2 2 14y 1 49! 5 233 1 16 1 49

~x 2 4!2 1 ~y 2 7!2 5 32 (3)

We recognize Equation (3) as an equation for the circle C with center at
C~4, 7! and radius 4Ï2 (see Figure 4). Thus every point in K is on the circle.
Conversely, we leave it to the reader to show that by reversing the above steps, every
point P on the circle C has the property that _ AP _ 5 2_ BP _ and hence belongs to
the set K. Therefore K consists precisely of those points on the circle. b

Examples 1 and 2 were stated in terms of specific points, which assumes a
given coordinate system. The next example shows how a judicious choice of a
coordinate system can simplify the proof of a geometric theorem.

FIGURE 2

FIGURE 3

FIGURE 4
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HISTORICAL NOTE A NEW VIEW OF THE WORLD

cEXAMPLE 3 Theorem from geometry Show that the diagonals of a par-
allelogram bisect each other.

Solution
Follow the strategy and draw a typical parallelogram like the one in Figure 5.
Assuming coordinates A~0, 0! and D~t, 0! makes it easy to get coordinates for B and
C. With no special assumption about the x- coordinate of B, BC is parallel to AD,
so B and C must have the same y-coordinate, and the lengths of AD and BC are the
same, so the difference between x- coordinates of B and C must be the same as the
difference between A and D, namely t. Thus, if B has coordinates ~r, s!, then C must
have coordinates ~r 1 t, s!, as shown in Figure 5.

Strategy: Choose a conve-
nient location for an arbi-
trary parallelogram, say with
a vertex at the origin and
one side along the positive x-
axis. Give coordinates to the
other vertices and finally try
to show that the diagonals
have the same midpoints.

Analytic geometry and the curves
it describes have profoundly
affected the way we think about our
universe. To the ancient Greeks
with their love of beauty and ideal
form, it was unthinkable that the
motion of the sun and planets could
involve anything except circles.
Careful observations, however,
revealed that the planets do not
move around the earth in smooth
circular paths. At least from the
earth, some planets even
occasionally move backward! To
harmonize observations with the
perfection of circles, elaborate
schemes were developed. Ptolemy
~150 A.D.! described circles rolling around on
circles, all rotating about an ideal point
somewhere off in space.

By the middle ages, dogma was more
important than observation and dictated
circular orbits centered about the earth.
Copernicus proposed ~1543! that the earth and
planets orbited a stationary sun, but the idea was
heretical. When Galileo reported ~1610! that
through his newly invented telescope he had seen
the moons of Jupiter orbiting a heavenly
body other than the earth, he was forced to

recant, but not before his widely
read “Dialogue” spread
Copernicanism.

Johannes Kepler, a “closet
Copernican,” was invited to assist
the Danish astronomer Tyche
Brahe, undoubtedly the most
patient and accurate observer of
his ~or most any! age. At Brahe’s
death ~1601!, Kepler inherited the
mountains of data Brahe had
collected in over 20 years of
watching the night sky. More than
ten years of prodigious calculations
with Brahe’s data forced Kepler to
the conclusion that the orbit of
Mars is not a circle but an ellipse

having the sun at one focus. Ten years of further
computation with Brahe’s observations ultimately
yielded Kepler’s laws about times of revolution
and distances from the sun.

By Newton’s time, mathematics had
progressed to the point that when Halley ~of
Halley’s comet! asked Newton about the curve
that would describe the motion of planets,
assuming Newton’s formulation of
gravitational force. Newton immediately
replied, “An ellipse.” And how did he know it?
“Why I have calculated it.”

Astronomers used principles
of analytic geometry to

disprove the Ptolemaic view
of the universe, in which the

planets orbited in circles
around a stationary earth.
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In terms of the coordinates shown in Figure 5, find the midpoints of the
diagonals AC and BD. Denote the midpoints of AC and BD by MAC and MBD,
respectively.

MAC 5 S0 1 r 1 t
2

,
0 1 s

2 D 5 Sr 1 t
2

,
s
2D and MBD 5 Sr 1 t

2
,

s
2D

Since the midpoints are the same point, the diagonals bisect each other. b

Forms of Equations; Distance from a Point to a Line

We have often observed the utility of changing the form of an equation. Different
forms display different information. Taking a line for instance, we have a number
of options.

y 2 y1 5 m~x 2 x1! Point-slope form, given point ~x1, y1!, slope m.

Ax 1 By 5 C Standard form, can be multiplied by any nonzero
constant.

y 5 mx 1 b Slope-intercept form; solving for y displays slope,
y-intercept.

x
a

1
y
b

5 1 Intercept-form; dividing by C displays x-intercept a and
y-intercept b.

We haven’t previously encountered the intercept form, but it is a simple matter to
verify that when we take a standard form and divide through to get 1 on the right
side, the x-intercept point is ~a, 0! and the y-intercept point is ~0, b!.

There are several ways to derive the formula for the distance between a given
point P and a given line L, whose equation we write in the form

ax 1 by 1 c 5 0.

The distance d, shown in Figure 6, is measured along the perpendicular from P to
L. There is an obvious way to think about finding the distance: write an equation
for the line perpendicular to L containing P, find the coordinates of the point of
intersection, and then use the familiar distance formula to find d. This process,
while it may be obvious, is messy, and we do not include any details. We invite any
interested reader to take up the challenge of filling in the missing steps. There are
less messy derivations that involve triangles or vectors, but we simply state the
result:

d 2 5
~ax0 1 by0 1 c!2

a2 1 b 2 .

Taking the positive square root of both sides we have the following formula.

Distance from a point to a line

Given a line L with equation ax 1 by 1 c 5 0 and a point P~x0, y0!, to find
the distance d from P to L, substitute the coordinates of P into the left side of
the equation for L, take the absolute value, and divide by Ïa2 1 b 2:

d 5
_ ax0 1 by0 1 c _

Ïa2 1 b 2
. (4)

FIGURE 5

FIGURE 6

d 5
_ ax0 1 by0 1 c _

Ïa2 1 b 2
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cEXAMPLE 4 Distances between lines Consider lines L: 3x 2 2y 5 6
and K: 6x 2 4y 1 5 5 0.

(a) Show that L and K are parallel.
(b) Find the distance d between L and K.
(c) Find the distance from the origin O to each line.

Solution

(a) Follow the strategy. See Figure 7. Write each equation in point-slope form:

L: y 5
3
2

x 2 3 K: y 5
3
2

x 1
5
4

Since each line has slope 3
2 , the lines are parallel.

(b) The equation for K is already in the proper form. Two convenient points on L
are the intercept points. If we use A~2, 0!, then substituting its coordinates into
Equation (4) yields

d 5
_ 6 · 2 2 4 · 0 1 5 _

Ï62 1 42
5

17

2Ï13
.

If we use the other intercept point B~0, 23!, Equation (4) becomes

d 5
_ 6 · 0 2 4 · ~23! 1 5 _

Ï62 1 42
5

17

2Ï13
,

as we would expect.
(c) To get the distances from O to each line we substitute 0 for both coordinates

and get two distances.

dL 5
_ 3 · 0 2 2 · 0 2 6 _

Ï32 1 22
5

6

Ï13
, dK 5

_ 6 · 0 2 4 · 0 1 5 _

Ï62 1 42
5

5

2Ï13
.

From the diagram in Figure 7, it is apparent that the distance between L and
K should equal the sum of the distances from O to each line, and from our
calculations we can see that d 5 dL 1 dK 5 6

Ï13
1 5

2Ï13
5 17

2Ï13
. b

cEXAMPLE 5 Equation of a circle Find an equation for the circle of ra-
dius 3 with center on the line y 5 2x that is tangent to the y-axis.

Solution
It is essential to begin with a picture, as the diagram in Figure 8, where we start
with the line y 5 2x. From the picture, we can see two circles, each of which has
an equation of the form

~x 2 h!2 1 ~y 2 k!2 5 32.

We want to find the coordinates ~h, k! of the centers. The center of each circle must
lie on the line y 5 2x and hence its coordinates satisfy the equation of the line.
Therefore, k 5 2h, so that the center has coordinates ~h, 2h!. Furthermore, for a
circle that is tangent to the y-axis, the distance from the center to the y-axis must
equal 3. In this instance, we don’t need the distance formula; the distance from
(h, k! to the y-axis is _ h _ . Setting _ h _ 5 3, we have h 5 3 or h 5 23.

Strategy: Draw a diagram.
To show the lines are paral-
lel, compare slopes. The dis-
tance between parallel lines
is the distance from any
point on one line to the
other line.

FIGURE 7

FIGURE 8
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Therefore we have two circles satisfying the given conditions, one with center
(3, 6) and the other with center (23, 26). Equations are

~x 2 3!2 1 ~y 2 6!2 5 32 and ~x 1 3!2 1 ~y 1 6!2 5 32. b

Lines Tangent to a Circle

Geometrically, it is clear that a line and a circle can intersect in exactly two points,
exactly one point, or not at all. When a line and a circle have only one point P0 in
common, the line is tangent to the circle at P0, and point P0 is the point of
tangency. Figure 9 shows line L tangent at point P0~x0, y0! to the circle with center
at Q~h, k! and radius r. Recall from geometry that the line through P0 and Q is
perpendicular to L and the length of the line segment P0 Q is equal to r. We have
the following theorem.

Tangent line theorem

A line L is tangent to the circle with center Q~h, k! and radius r if and only if
the distance from the center Q~h, k! to line L is equal to r.

cEXAMPLE 6 Lines tangent to a circle Line L: 3x 1 4y 5 26 contains
point ~22, 8!.

(a) Show that L is tangent to circle C: ~x 2 8!2 1 ~y 2 3!2 5 4.
(b) Find the other line that contains ~22, 8! and is tangent to C.

Solution

(a) We could find the intersection of the line and circle by solving the equations
simultaneously. If there is only one solution, then L is tangent to C. It is easier,
however, to calculate the distance from the center of the circle, C~8, 3!, to L.
By the Tangent Line theorem, L is tangent if the distance equals the radius, 2.

Use Equation (4) for the distance d from C~8, 3! to L, first writing the
equation for L in standard form.

d 5
_ 3 · 8 1 4 · 3 2 26 _

Ï9 1 16
5

_ 24 1 12 2 26 _

5
5 2

Since d 5 2 and r 5 2, L is tangent to C.
(b) The other line L9 contains ~22, 8! and is tangent to C, as shown in Figure 10.

In terms of the slope m, write an equation for L9 as y 2 8 5 m~x 1 2!, or in
standard form,

L9: mx 2 y 1 ~2m 1 8! 5 0

Again by the Tangent Line theorem, for L9 to be tangent to C the distance
from the center C~8, 3! to the line must equal 2. Express d in terms of the
slope m, and then find the values of m for which the distance from C to the line
equals 2. Substitute the coordinates ~8, 3! into Equation (4) and divide by
ÏA2 1 B 2 5 ~Ïm2 1 1!,

d 5
_ m · 8 2 1 · 3 1 ~2m 1 8! _

Ïm2 1 1
5 2.

FIGURE 9

Strategy: A general line
through ~22, 8! can be writ-
ten y 2 8 5 m~x 1 2!.
Rewrite this in standard
form and use Equation ~4! to
find the slope m for which
the distance to the center of
C equals 2.

FIGURE 10
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Square, clear fractions, and simplify:

~10m 1 5!2 5 4~m2 1 1!

96m2 1 100m 1 21 5 0

~4m 1 3!~24m 1 7! 5 0.

Thus m 5 23
4 or m 5 27

24 . Line L in part (a) has slope 23
4 , so the slope of the

other line is 27
24 . An equation for L9 is

y 2 8 5 S2
7

24D~x 1 2! or 7x 1 24y 2 178 5 0. b

EXERCISES 10.1

Check Your Understanding

Exercises 1–10 True or False. Give reasons.

1. The distance from point ~3, 24! to line y 2 2 5 0 is
equal to 6.

2. Line 3x 1 4y 1 25 5 0 is tangent to circle x 2 1 y 2 5
25 at point ~3, 4!.

3. Line y 5 2x is not tangent to circle ~x 2 10!2 1 y 2 5
80.

4. The distance from point ~22, 4! to line y 5 2x is
greater than 3.7.

5. Line y 5 x is a perpendicular bisector of the line seg-
ment with endpoints at ~4, 0! and ~0, 4!.

6. If line 3x 2 2y 5 4 is tangent to a circle with center at
~0, 6! then the radius of the circle must equal 4.

7. The distance between the parallel lines y 5 x and y 5
x 1 2 equals 2.

8. The distance between the x-intercept points of the circle
~x 2 2!2 1 y 2 5 4 is equal to 4.

9. If A is the point ~23, 0! and B is the point ~7, 0!,
then the line segment AB is a diameter of the circle
~x 2 2!2 1 y 2 5 25.

10. There are two lines, both of which contain the point
~4, 4! and are tangent to circle x 2 1 y 2 5 16.

Develop Mastery

Exercises 1–8 Verbal to Equation Find an equation for
the set of points P~x, y! that satisfy the condition.

1. Equidistant from A~23, 0! and B~0, 3!.

2. Equidistant from A~23, 0! and B~3, 0!.

3. Equidistant from A~3, 21! and B~1, 5!.

4. _PA _ 5 2_PB _ , for A~6, 0! and B~0, 0!.

5. _PA _ 5 2_PB _ , for A~21, 24! and B~5, 8!.

6. _PA _ 5 3_PB _ , for A~28, 5! and B~8, 23!.

7. _PA _ 5 3_PB _ , for A~6, 4! and B~2, 0!.

8. The distance _PA _ for A~0, 1
4! equals the distance from

P to line y 1 1
4 5 0. ~Hint: What are the coordinates of

point B in the diagram?!

Exercises 9–16 Theorems from Geometry For the geo-
metric theorem, first draw a figure and then prove the theo-
rem analytically. See Example 3.

9. The medians to the equal sides of an isosceles triangle
are equal in length. ~Hint: Locate the base on the x-axis
with the opposite vertex on the positive y-axis.!

10. The midpoint of the hypotenuse of a right triangle is
equidistant from all vertices of the triangle.

11. The line segment that joins the midpoints of two sides
of a triangle is parallel to the third side and half the
length of the third side.

12. The diagonals of a square are perpendicular to each
other.

13. If the diagonals of a rectangle are perpendicular to each
other, then the rectangle is a square.

14. The line segments that join midpoints of opposite sides
of a quadrilateral bisect each other.

15. Given a quadrilateral ABCD, let R, S, T, and U be the
midpoints of sides AB, BC, CD, and DA, respectively.
Segments RS and TU are parallel.
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16. The medians of any triangle are concurrent. That is,
given nABC with midpoints of opposite sides Ma, Mb,
Mc as in the diagram, the segments AMa, BMb, CMc all
have a common point.

Exercises 17–25 Equations of Circles Find an equation
for the circle that satisfies the conditions. (Hint: Draw a
figure.)

17. Center ~3, 2!, contains the origin.

18. Center ~3, 2!, tangent to the x-axis.

19. Center ~3, 2!, tangent to the y-axis.

20. Center ~3, 2!, tangent to the line x 1 y 5 0.

21. Contains ~2, 9!, tangent to both axes.

22. A diameter is the line segment that joins A~1, 1! and
B~7, 25!.

23. Center on the x-axis, contains A~3, 5! and B~21, 7!.

24. Center on line x 2 y 5 0, contains A~3, 5! and
B~21, 7!.

25. Center on line 3x 2 2y 1 3 5 0, tangent to lines
x 5 1 and x 5 5.

Exercises 26–29 Circle Circumscribing a Triangle Find
an equation for the circle that circumscribes the triangle
whose vertices are the points of intersection of the given
three lines. (Hint: First check to see if the triangle is a right
triangle. The hypotenuse of a right triangle inscribed in a
circle is a diameter of the circle.)

26. The coordinate axes and line 3x 1 4y 5 12

27. 5x 1 y 5 22, x 2 5y 1 6 5 0, and 2x 1 3y 5 1

28. 2x 2 y 5 0, x 1 2y 5 0, and 3x 2 4y 1 10 5 0

29. 3x 2 4y 5 6, 7x 2 y 5 39, and x 1 7y 1 23 5 0

Exercises 30–35 Tangent Lines Find an equation for
the line or lines that are tangent to the circle as specified.

30. x 2 1 y 2 5 17, at A~24, 1!.

31. x 2 1 y 2 2 6x 2 2y 1 8 5 0, where the circle meets
the x-axis.

32. x 2 1 y 2 5 8, perpendicular to y 5 x 1 2.

33. x 2 1 y 2 5 1, contains point A~4, 1!.

34. x 2 1 y 2 5 10, where the circle meets
x 2 1 y 2 2 12x 2 4y 1 30 5 0.

35. x 2 1 y 2 5 2, contains the intersection of lines
x 2 2y 5 1 and x 1 y 5 4.

Exercises 36–39 Distance Between Lines
(a) Determine if lines L and K are parallel. (b) If so, find
the distance between L and K. (c) Find the distance from
the origin to each line.

36. L: 2x 2 3y 5 6, K: 6y 2 4x 1 3 5 0

37. L: 2x 1 4y 5 5, K: x 1 2y 5 4

38. L: 21y 1 20x 5 20, K: 2400x 5 420y 1 725

39. L: x 5 17, K: x 1 24 5 0

Exercises 40–41 Distance from a Point to a Line Find
an equation for (a) the line L containing A and B, and
(b) the line K perpendicular to L and containing P.
(c) Find the intersection Q of lines L and K. (d) Find the
distance from P to Q and compare the result with the dis-
tance as given by Equation (4).

40. A~21, 2!, B~1, 3!; P~4, 2!

41. A~3, 2!, B~6, 1!; P~1, 6!

Exercises 42–43 Explore and Your Choice

42. Sketch the circles C1: x 2 1 y 2 2 14x 2 2y 1 25 5 0
and C2: x 2 1 y 2 2 25 5 0 on the same axes and find
the points of intersection.
(a) Find an equation for line Lc through the centers of

the two circles.
(b) Find an equation for line Li through the intersec-

tions of the two circles. How are lines Lc and Li

related?
(c) If we subtract the equation of C1 from the equation

of C2, we obtain equation E: 14x 1 2y 2 50 5 0.
Add the graph of equation E to your sketch.

43. Repeat Exercise 42 with circles C1: ~x 2 1!2 1 y 2 5 1
and C2: x 2 1 ~y 1 1!2 5 1, or with another pair of
intersecting circles of your choice.

Exercises 44–47 Distance from Point to Line Find the
distance from the point to the line.

44. P~1, 3!; x 2 4y 1 5 5 0

45. P~2, 21!: 3x 1 y 2 2 5 0

46. Origin; line through A~3, 2! and B~6, 24!.

47. Origin; line through A~21, 3! and B~22, 24!.

Exercises 48–51 Finding Altitude and Area (a) For
nABC, find the length of the altitude from the vertex A to
side BC, and (b) find the area of the triangle.

48. A~0, 0!, B~1, 8!, C~6, 22!

49. A~1, 23!, B~2, 23!, C~6, 5!

50. A~22, 24!, B~1, 22!, C~3, 6!

51. A~21, 2!, B~2, 21!, C~6, 3!
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Exercises 52–55 Minimum Distance Let Q~x, f ~x!! be
any point on the line y 5 f ~x!. (a) Find a formula for the
distance D~x! from P to Q. Graph y 5 D~x! and find the
minimum value of D~x! (1 decimal place). (b) Compare
your result with the distance as given by Equation (4).

52. f ~x! 5 2x 2 3, P~2, 23!

53. f ~x! 5 x 1 4, P~1, 23!

54. f ~x! 5 x 2 2, P~21, 4!

55. f ~x! 5 22x 1 3, P~21, 23!

10.2 P A R A M E T R I C E Q U A T I O N S

Our experience hitherto justifies us in believing that nature is the realization
of the simplest conceivable mathematical ideas.

Albert Einstein

We have used parametric equations as a convenient way to represent curves,
particularly graphs of inverse functions (Section 2.7) and circles (Section 6.1).
Such curves illustrate only a fraction of the kinds of behavior parametric graphing
can illuminate, where functions of the form y 5 f ~x! are just too limited. In this
section we explore additional aspects of parametric graphing, but we just scratch
the surface of this vital topic.

The path shown in Figure 11 fails both the horizontal line test and the vertical
line test, so we cannot hope to describe the curve in the form y 5 f ~x! or x 5 g~y!
where f and g are functions. The graph can, however, show the path of a point
moving in the plane in the direction indicated by the arrows. As the point moves,
its location and coordinates are functions of t. These equations describe the motion
for t $ 22:

x 5 t 2 2 t 2 2 and y 5 t 3 2 3t. (1)

Equations (1) are parametric equations for the curve in Figure 11 and the vari-
able t is called a parameter. In parametric mode, with a t -range starting at
t 5 22, you should be able to watch your calculator generate the graph in Fig-
ure 11. Trace, and see that the graph goes through the point ~0, 2! when t 5 21
and again when t 5 2.

So there was one year
spent largely on ordinary
differential equations. I
had a taste of real life and
found that mathematics
could actually be used for
something.

Irving Kaplansky

56. A Set in the Complex Plane The four roots of 1 are
1, 21, i, 2i. These four points in the complex plane
are the corners of a square S.
(a) Sketch the square S and the set F consisting of

all points P outside of S such that P is exactly 1
unit from the nearest point of S.

(b) Find the total area enclosed by the set F.

FIGURE 11
Graph of x 5 t 2 2 t 2 2, for

22 # t # 3, y 5 t 3 2 3t
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Definition: parametric equations for a curve

If f and g are functions defined on an interval @a, b#, then

x 5 f ~t! and y 5 g~t! t [ @a, b# (2)

are parametric equations for the curve C which consists of all points P~t!
where

P~t! 5 ~ f ~t!, g~t!! for t [ @a, b#.

In the above definition the interval for t may be the set of all real numbers, but
if the interval is finite, then P~a! is the initial point and P~b! is the terminal point
of the curve.

Sometimes it is helpful to relate x and y directly by eliminating the parameter
between the equations x 5 f ~t!, y 5 g~t!. It may be possible to eliminate the
parameter by solving one equation for the parameter and substituting into the other
equation, or, perhaps, using trigonometric identities. One advantage of parametric
equations, however, is that they can define a specified portion of a given curve.
Different parametric representations may describe different portions of the same
curve, or portions traversed in different directions, as illustrated in the following
example.

cEXAMPLE 1 Parametric representations of a circle Show that each of
the following parametric equations represents a portion of the circle x 2 1 y 2 5 4.
In each case, draw a graph and identify the portion of the circle and the direction
in which the point P~x, y! traverses the curve as the parameter increases.

(a) x 5 2 cos t, y 5 2 sin t, 0 # t #
p

2
(b) x 5 2 cos pt, y 5 22 sin pt, 0 # t # 1

(c) x 5
2

Ïm2 1 1
, y 5

2m

Ïm2 1 1
2` , m , `

Solution
Follow the strategy.

(a) x 2 1 y 2 5 ~2 cos t!2 1 ~2 sin t!2

5 4 cos2 t 1 4 sin2 t 5 4~cos2 t 1 sin2 t! 5 4 · 1 5 4.

Thus each point P~x, y! whose coordinates are given by

x 5 2 cos t y 5 2 sin t

lies on the circle x 2 1 y 2 5 4. Parts (b) and (c) can be treated in a similar
manner. See Exercises 39 and 40.

To identify the portion of the curve in each case, plot some points and
examine what happens as the parameter changes. In (a) the parameter is
restricted to the interval @0, p

2#, so plot P~t! for values such as t 5 0, p
4 , and p

2 ,
as shown in Figure 12a. It should be clear that as t increases from 0 to p

2 , P~t!
moves counterclockwise around a quarter-circle.

Strategy: To verify that the
given parametric equations
satisfy the equation of the
circle, calculate the quantity
x 2 1 y 2 to verify that
x 2 1 y 2 5 4. For the direc-
tion and portion of the cir-
cle, identify the starting and
ending points (for (a) and
(b)) and plot some points.



P(0)
x

y

P( 2)p
x2 + y2 = 4

(a)

x = 2 cos t, 0 # t # 2
y = 2 sin t

p

P(1) P(0)
x

y

P(1
2) P(1

3)

x2 + y2 = 4

(b)

x = 2 cos t, 0 # t # 1
y = – 2 sin t

p
p

(2, 0)
P(1)

P(– 1)

P(0)
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y

(c)

(2, 0)

x = 2
m2 + 1

y = 2m
m2 + 1
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(b) Again, plot P~t! for several values of t in the interval @0, 1#:

P~0! 5 ~2 cos 0,22 sin 0! 5 ~2, 0!

PS1
3D 5 S2 cos

p

3
, 22 sin

p

3D5~1, 2Ï3!

PS1
2D 5 S2 cos

p

2
, 22 sin

p

2D 5 ~0, 22!

P~1! 5 ~2 cos p , 22 sin p! 5 ~22, 0!

As t varies from 0 to 1, point P~t! moves clockwise around the lower half-circle
shown in Figure 12b.

(c) The parameter m is not restricted, but the x-coordinate, 2

Ïm 2 1 1
, cannot be

negative, so the graph must lie in the portion of the plane where x . 0. Since
the m-range is infinite, we cannot hope to see everything on a calculator graph.
We know that the graph lies on the circle x 2 1 y 2 5 4, so we can experiment
with a reasonably large t-range and see what happens. Most graphing calcula-
tors require that we use t as the variable for parametric graphing, so we graph
X 5 2yÏ(T2 1 1), Y 5 2TÏ(T2 1 1) in a decimal window with a t-range of perhaps @210,
10#. As expected, we see the right half of the circle x 2 1 y 2 5 4, traced out
counterclockwise. To see just how much of the circle is actually included with
this parameterization, we must consider what happens as m (or t) gets very
large. As m2 gets large, x approaches 0, so as m varies over all real numbers
P~m! traces the entire right half of the circle, not including the points (0, 61).
See Figure 12c. b

The sets of parametric equations in Example 1 give no indication of where they
came from or how to interpret parameters. It is easy to think of the pairs of
equations in (a) and (b) as functions of a time variable t. In (a) t could as easily
represent the radian measure of the central angle. The equations in (c) are ex-
pressed in terms of the variable m, which we have often associated with the slope
of a line. As a matter of fact, these equations can be derived in terms of slope. The
point of intersection of line y 5 mx with the right half of circle x 2 1 y 2 5 4 (see
Exercise 40! has coordinates given by

x 5
2

Ïm2 1 1
y 5

2m

Ïm2 1 1
.

FIGURE 12
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cEXAMPLE 2 Eliminating the parameter For each of the curves defined
parametrically, eliminate the parameter to find an equation in rectangular coordi-
nates that represents the curve, then sketch the graph.

(a) x 5 2 1 t, y 5 1 2 3t (b) x 5 sin t, y 5 cos2 t

Solution

(a) Follow the strategy. From x 5 2 1 t, t 5 x 2 2. By substitution, y 5
1 2 3~x 2 2! 5 1 2 3x 1 6, or y 5 23x 1 7. Therefore curve C is all or
part of line 3x 1 y 5 7. Since there is no restriction on t, both x and y take
on all real values as t varies over the set of all real numbers; consequently the
given parametric equations give the entire line (see Figure 13).

(b) Follow the strategy. Since x 5 sin t and y 5 cos2 t,

x 2 1 y 5 sin2 t 1 cos2 t 5 1.

Therefore, the curve contains points P~t! on the parabola y 5 2x 2 1 1. How-
ever, whatever the value of t,

21 # sin t # 1 and 0 # cos2 t # 1.

Thus P~t! is restricted to the portion of the parabola where

21 # x # 1 and 0 # y # 1.

The curve for the parametric equations is the arc of the parabola shown in
Figure 14. Think of P~t! moving in time when t $ 0; visualize the point
starting at A~0, 1! ~t 5 0!, and moving along the parabola to B~1, 0! at time
t 5 p

2 , then back to A at t 5 p , and on to C~21, 0! when t 5 3p
2 , reversing

direction again, and continuing indefinitely. b

cEXAMPLE 3 Representing a line Find two pairs of parametric equations
for the line L that contains point ~3, 1! and has slope 2.

Solution
Using the point-slope formula for a line, an equation for L is y 2 1 5 2~x 2 3!. One
set of parametric equations can be found by setting x 2 3 equal to t, from which
x 5 3 1 t. By substitution, y 2 1 5 2t, or y 5 1 1 2t. Thus one set of parametric
equations for L is

x 5 3 1 t

y 5 1 1 2t.

As in the strategy, let y 5 t, then substituting t for y and solving for x gives x 5 t 1 5
2 .

Another set of equations for L is thus

x 5
t 1 5

2

y 5 t. b

Strategy: (a) Solve one
equation for t and substitute
into the other equation,
checking for limitations in
the parametric form that are
not apparent in rectangular
form.
(b) With sines and cosines,
the Pythagorean identity is
often helpful for eliminating
the parameter. Note that
sines and cosines have lim-
ited ranges, so x and y will
also be limited.

FIGURE 13

FIGURE 14

Strategy: Start with an
equation for L in rectangular
coordinates. Among many
different choices, you could
let either x or y equal t and
then solve for the other
variable.
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HISTORICAL NOTE THE WITCH OF AGNESI

It should be clear from Example 3 that from an equation in rectangular coor-
dinates there are many different substitutions we could make to express one vari-
able in terms of a parameter. Solving for the other variable then yields a pair of
parametric equations. Parametric representations are never unique.

cEXAMPLE 4 Point on moving segment Suppose a line segment AB of
length 4 is moving in such a way that point B is always on the positive y-axis and
A is always on the positive x-axis. Think of a ladder propped against a wall with the
lower end being pulled away from the wall. Use angle a in Figure 15 to find
parametric equations for the midpoint M~x, y! of line segment AB.

Solution
Follow the strategy. In nMCB, cos a 5 x

2 , and in nADM sin a 5 y
2 . Therefore,

the equations

x 5 2 cos a and y 5 2 sin a

express the coordinates of M in terms of the parameter a. In the first quadrant, a
varies from p

2 (when A is at the origin) to 0 (when B is at the origin). Parametric
equations are

x 5 2 cos a, y 5 2 sin a, a decreases from p
2 to 0. b

FIGURE 15

Strategy: To express x and y
as functions of a, note that x
is a side of nMCB and y is a
side of nADM, and both right
triangles have a hypotenuse
of 2.

Women today play an important
part in the growth and development
of mathematics. Throughout much
of history, however, circumstances
and the attitudes of society severely
limited the role of women. One
notable exception to the repression
of women occurred in renaissance
Italy. An atmosphere of
encouragement resulted in many
women making contributions to all
areas of learning, including
mathematics.

One of the most remarkable of
these women was Maria Gaetana
Agnesi, whose name, through an
unfortunate twist, is forever linked
in English with the word witch.

Agnesi began work at the age of 20 on a
comprehensive treatment of calculus. Her
two-volume work, Instituzioni Analitiche (Analytic
Institutions), appeared ten years

later, in 1748. It was the first
major text to pull together the
calculus of both Newton and
Leibnitz. The book was translated
into French and English and it in-
fluenced European mathematicians
for much of the century.

One curve that Agnesi treated
in the analytic geometry portion of
her text is shown in the diagram.
(See also Exercise 46 in this
section.) The curve was called the
versieri, from the Latin word
that means turning. The word
versieri is similar to the Italian
word avversieri (which means wife
of the devil). Whether a pun or
simply a mistranslation, an 1801

translation of Agnesi’s book into English
rendered the name of the curve as witch, and
the curve has become widely known as the
Witch of Agnesi.



y

x

Path of
midpoint

(0, 4)

(4, 0)

[– 5, 5] by [– 3.1, 3.1]
(a)

[– 5, 5] by [– 3.1, 3.1]
(b)
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If we think of Example 4 in terms of a sliding ladder, the conclusion of the
example indicates that the midpoint of the ladder moves in the curve given by

x 5 2 cos a, y 5 2 sin a, 0 # a # p
2 .

In Example 1 the same parametric equations defined a quarter-circle. Thus a spot
by the middle rung of the ladder would move in a quarter-circle path from the wall
to the ground. See Figure 16. Exercises 41–43 ask you to consider other questions
related to the same setting.

Varieties of Parametric Graphs

There is literally no limit to the variety of curves that can be represented paramet-
rically. Any function of the form y 5 f ~x! can be parameterized in at least one way
by setting x 5 t, y 5 f ~t!, so we can obviously write parametric equations for any
nonvertical line. The vertical line x 5 3 could be described by x 5 3, y 5 t,
for example. The Pythagorean identity is another handy tool for parameterizing
many curves. From ~sin t!2 1 ~cos t!2 5 1, we can parameterize the circle
~x 2 h!2 1 ~y 2 k!2 5 r 2 by setting x 2 h 5 r sin t and y 2 k 5 r cos t, or
something similar. Figure 11 shows one example of the kinds of curves obtainable
when we use polynomial functions for x and y.

The next example shows one of a family of closed curves called Bowditch, or
Lissajous, curves.

cEXAMPLE 5 A Bowditch (Lissajous) curve (a) Sketch the curve x 5
4 cos 3t, y 5 3 sin 2t. (b) Find the smallest value p for which the entire curve is
traced out when 0 # t # p and (c) determine what kinds of symmetry the curve
has.

Solution

(a) Graphing the curve parametrically in a decimal window with the t-interval
@0, p# and t-step of 0.1 shows something like Figure 17a, certainly not a closed
curve. If we increase the interval to @0, 2p#, we cannot tell from the calculator
whether the graph closes or not. There appears to be a gap near the x-axis. See
Figure 17b. Increasing the t-range to 6.5 closes the curve.

(b) To determine whether or not the entire graph is traced out on the interval
@0, 2p#, we calculate the point P~2p! 5 ~4 cos 6p , 3 sin 4p! 5 ~4, 0!, and
P~0! 5 ~4, 0!, so P~2p! 5 P~0! and the curve really is closed. See the Tech-
nology Tip that follows this example.

(c) The graph appears to be symmetric about both coordinate axes and the origin.
Following the suggestion given in the Strategy, suppose P~t! 5 ~a, b!; that is,
4 cos t 5 a, 3 sin t 5 b. Then

P~2t! 5 ~4 cos 3~2t!, 3 sin 2~2t!!

5 ~4 cos 3t, 23 sin 2t! 5 ~a, 2b!.

Thus the curve is symmetric about the x-axis. Using reduction formulas,

P~t 1 p! 5 ~4 cos~3t 1 3p!, 3 sin~2t 1 2p!!

5 ~24 cos 3t, 3 sin 2t!,

so if P~t! 5 ~a, b!, then P~t 1 p! 5 ~2a, b!, and we have symmetry about the
y-axis. Together, symmetry about both coordinate axes implies symmetry
about the origin as well. b

FIGURE 16
Midpoint spot on a sliding

ladder.

FIGURE 17
A Bowditch (Lissajous) curve
x 5 4 cos 3t, y 5 3 sin 2t.

(a) 0 # t # p
(b) 0 # t # 2p

Strategy: (b) Try various t-
intervals @0, p# until you get
a closed curve. (c) To check
symmetry compare, say,
P~2t! or P~t 1 p! with P~t!.
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Importance of t-stepTECHNOLOGY TIP r

The fact that the calculator graph in Figure 17b is not closed is an artifact of
the t-step, which determines how many points are graphed in parametric
mode. A large t-step means that the t-interval is divided into only a few
pieces and the graph is likely to consist of relatively few points connected by
segments. A very small t-step may require plotting so many points that the
graph is very slow. We are used to having our calculators plot about a
hundred points, so taking about one hundredth of the t-range will give a
plotting speed comparable to what we normally expect.

Some calculators set a t-step automatically when you set a t-range. If
your calculator allows you to set your own t-step, try graphing the Bowditch
curve of Example 5 with a t-range of @0, 2p# and a t-step of 1. Then try a
t-step of p

50 , and then of 0.11.

Problem Solving with Parametric Graphs

Some problems that involve time are particularly well suited for analysis with
parametric representation, as suggested by the following example. In Example 2 of
Section 1.6 we used analytic tools to find out if Maria would catch her roommate
Inichi on the way to school. By plotting the progress of the girls on parallel lines,
we can look at a parametric representation of their travel and use visual methods
to get the same results we found in Chapter 1.

cEXAMPLE 6 Travel in parametric form Inichi and Maria share an apart-
ment 2 miles from campus, where they have the same 8:45 AM class. Inichi leaves
home at 8:00, walking at her usual 3 mph pace, while Maria is still in the shower.
Maria, who has missed class three days in a row, knows that she can jog all the way
at a 5 mph pace. If she gets out the door by 8:20, will that pace allow Maria to
(a) catch up with Inichi on the way or (b) get to class on time?

Solution

(a) and (b) Let t denote the number of minutes after 8:00. We plot Inichi’s progress
on one horizontal line and Maria’s on another. Minutes are essential here, so we
calculate both speeds in miles per minute:

Inichi: 3
mi
hr

5 3
mi

60 min
5

1
20

mi
min

Maria: 5
mi
hr

5 5
mi

60 min
5

1
12

mi
min

.

To plot Inichi’s travel on the line y 5 1, we can use x 5 1
20 t, y 5 1. Then we must

take into account that Maria doesn’t start until 20 minutes after Inichi, so her time
must be t 2 20. Accordingly we plot another parametric graph on the line y 5 2
with x 5 1

12 ~t 2 20!, y 5 2.
In a @0, 3# 3 @0, 3# window (or any x-range that includes @0, 2#) and a t-range,

say, of @0, 60#, when we graph we see Inichi’s progress while Maria is still at home.
Then Maria leaves (on the upper horizontal line) and begins to catch up. This is a
graph in which the dynamic view is essential. After the graph is complete, all we
see are two horizontal lines. See Figure 18. However, by tracing and jumping from
one line to the other, we can read the time and see how far behind Maria is. Since
the distance to school is 2 miles, where x 5 2, we can read that Inichi reaches
school when t 5 40, when Maria is still a third of a mile away, but Maria gets to

FIGURE 18
Inichi reaches school ~x 5 2!
when Maria is still 1

3 of a mile
away.



( f (t), g(t))
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class (when her x-coordinate equals 2) 44 minutes after Inichi left home, at 1 minute
before 8:45.

We can see some of this more vividly by setting a t-range of @0, 40#, effectively
stopping time when Inichi gets to class, or by extending the t-range to 60 and tracing
to see that if they had further to go, Maria would catch Inichi in 30 minutes of
jogging time, 2.5 miles from their apartment. b

Distance from a Point to a Graph

In Section 10.1 we gave a formula for the distance from a point to a line. With
parametric equations and the aid of technology, we can do lots more. In particular,
we can approximate the distance from a point to any graph that we can represent
parametrically, and we may even be able to see the point on the curve nearest the
given point.

Distance from a point to a graph

Given a point P0~x0, y0! and the graph of a curve given parametrically by
x 5 f ~t!, y 5 g~t!. Then each point on the graph has coordinates ~ f ~t!, g~t!!,
and we can calculate the distance to P0 as a function of t,

d~t! 5 Ï~x0 2 f ~t!!2 1 ~y0 2 g~t!!2.

See Figure 19. By graphing the distance function, we can find its minimum
value, which is what we mean by the distance from the point to the curve.

cEXAMPLE 7 Distance to a parabola Find the distance from the point
P~3, 0! to the parabola y 5 x 2 2 1.

Solution
The diagram in Figure 20 suggests that the closest point on the parabola is probably
somewhere to the right of the x-intercept point ~1, 0!. Following the general strategy
outlined above, we use the parameterization x 5 t, y 5 t 2 2 1. The distance from
a general point ~t, t 2 2 1! to P is given by

d~t! 5 Ï~3 2 t!2 1 ~0 2 ~t 2 2 1!!2 5 Ï~3 2 t!2 1 ~t 2 2 1!2.

We graph the distance function and trace to find the minimum value. Graphing
either in function mode ~y 5 Ï~3 2 x!2 1 ~x 2 2 1!2! or parametric mode
~x 5 t, y 5 Ï~3 2 t!2 1 ~t 2 2 1!2!, we can find the minimum distance. If we
graph the parabola on the same screen, by jumping from one curve to the other, we
can locate the point on the curve nearest the point P (see Figure 21). The point on
the parabola nearest P is about (1.3, 0.7) and distance is just a little more than 1.83
units. b

FIGURE 19

FIGURE 20

FIGURE 21
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EXERCISES 10.2

Check Your Understanding

Exercises 1–4 True or False. Give reasons.

1. The graph of x 5 1 2 t, y 5 3 1 t is a line.

2. The graph of x 5 1 2 cos t, y 5 cos t is a line seg-
ment with endpoints (0, 0) and (2, 21).

3. The graph of x 5 sin t, y 5 cos2 t is a parabola.

4. Point (2, 0) is on the graph of x 5 1 1 t, y 5 1 2 t 2.

Exercises 5–10 Fill in the blank by identifying the graph
so that the resulting statement is true.

5. The graph of x 5 Ït, y 5 Ï1 2 t is .

6. The graph of x 5 sin t, y 5 2cos t is .

7. The graph of x 5 2t, y 5 4t is .

8. The graph of x 5 1 1 t 2, y 5 1 2 t 2 is .

9. The graph of x 5 cos t, y 5 2cos t is .

10. The graph of x 5 et, y 5 2et is .

Develop Mastery

Exercises 1–18 Parametric to Rectangular Sketch the
graph of the curve defined by the parametric equations.
Find an equation in rectangular coordinates for each curve
and give any restrictions on x and y.

1. x 5 t, y 5 4 2 t 2

2. x 5 t, y 5 2 2 Ït

3. x 5 t, y 5 Ï4 2 t 2

4. x 5 Ït, y 5 Ït 2 2

5. x 5 Ït, y 5 Ï4 2 t

6. x 5 t, y 5 Ït 2 2 4

7. x 5 5 2 t, y 5 2 1 t

8. x 5 3t, y 5 2 1
2 t 2 1

9. x 5 1 2 3t, y 5 5t 1 2

10. x 5 3 cos t, y 5 23 sin t

11. x 5 1 1 sin t, y 5 1 2 cos t

12. x 5 2 cos t, y 5 3 sin t

13. x 5 sin t, y 5 2sin t

14. x 5 1 1 cos t, y 5 1 2 cos t

15. x 5 1 1 et, y 5 1 2 et

16. x 5 cos t, y 5 sin2 t

17. x 5 2cos t, y 5 2sin2 t

18. x 5 2t, y 5 22t

Exercises 19–26 Portions of a Curve The parametric
equations in (a) and (b) define portions of the same curve.
Sketch the graph and indicate the portion of the curve

defined and the direction in which the point P~t! moves as t
increases.

19. (a) x 5 sin t, y 5 2sin t
(b) x 5 cos2 t, y 5 2cos2 t

20. (a) x 5 et, y 5 2et

(b) x 5 2et, y 5 et

21. (a) x 5 et, y 5 e2t

(b) x 5 2et, y 5 2e2t

22. (a) x 5 2t, y 5 4t

(b) x 5 22t, y 5 4t

23. (a) x 5 2cos t, y 5 sin t, 0 # t # p

(b) x 5 sin
p

2
t, y 5 cos

p

2
t, 0 # t # 2

24. (a) x 5 Ï1 2 t 2, y 5 2t, 21 # t # 1
(b) x 5 Ït, y 5 Ï1 2 t, 0 # t # 1

25. (a) x 5 1 2 t, y 5 3t 2 2, 0 # t # 2
(b) x 5 t 2 2, y 5 7 2 3t, 1 # t # 3

26. (a) x 5 t, y 5 ln t, t . 1
(b) x 5 et, y 5 t, t . 0

Exercises 27–34 Eliminate Parameter Eliminate the
parameter and give an equation in rectangular coordinates
to describe the curve. Indicate any restrictions if the para-
metric equations define only a portion of the curve.

27. x 5 1 1 cos t, y 5 2 2 sin t

28. x 5 2cos t, y 5 3 sin t

29. x 5 1 1 cos t, y 5 2 2 cos t

30. x 5 2 cos2 t, y 5 1 1 3 sin t

31. x 5 4 sec t, y 5 5 tan t

32. x 5 2 tan t, y 5 sec2 t

33. x 5 1 1 4 sec t, y 5 5 tan t

34. x 5 cos t, y 5 cos 2t

Exercises 35–38 Parameterizing a Curve Find two sets
of parametric equations for the curve. See Example 3. An-
swers are not unique.

35. The line that contains A(22, 4) and is parallel to
3x 2 y 5 4.

36. The line that contains (0, 0) and is perpendicular to
3x 2 y 5 4.

37. The line that is tangent to x 2 1 y 2 5 25 at the point
(23, 4).

38. The line is tangent to x 2 1 y 2 5 25 at the point
(24, 3).
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Exercises 39–40 Parameterizing a Circle

39. Verify (by substitution) that each pair of parametric
equations in Example 1 satisfies the equation
x 2 1 y 2 5 4.

40. Find parametric equations for the right half of the circle
x 2 1 y 2 5 4 by finding the coordinates of the inter-
section of line y 5 mx with the right half of the circle.
Your parametric equations should agree with those in
Example 1.

Exercises 41–43 Point on a Moving Segment

41. Given the line segment AB of Example 4, let P~x, y! be
the point that is always 1 unit from A. Find parametric
equations (using angle a in Figure 15) for the curve
traced out by point P as the segment moves from
vertical to horizontal. Graph the curve traced out by P.

42. Let Q~x, y! be the point that is always 1 unit from B on
the line segment AB of Example 4. Find parametric
equations for the curve traced out by Q and graph. See
Exercise 41.

43. Let T~x, y! be the point at some fixed distance a from
A on line segment AB of Example 4. Find parametric
equations for the curve traced out by T. See
Exercises 41 and 42. For what values of a is the path of
T part of a circle?

Exercises 44–45 Bug on a Ladder

44. A 20-foot ladder is resting against a vertical wall with
a ladybug at the lower end. Suppose the lower end of the
ladder is being pulled horizontally away from the wall
at the rate of 1 foot per minute, while at the same time
the ladybug is crawling upward along the ladder at the
rate of 1 foot per minute until it reaches the other end.
If the bug is located at point B~x, y! at time t minutes
(see the diagram), find formulas that give x and y as
functions of t. Find the position of the bug at time
t 5 2, 5, 10, and 20. For what values of t are your
formulas valid?

45. Suppose the ladder in Exercise 44 is being pulled from
the wall at the rate of 2 feet per minute while the bug

still crawls 1 foot per minute. Answer the same ques-
tions as Exercise 44.

46. The Versieri (Witch of Agnesi) The curve called the
versieri in Maria Agnesi’s 1748 calculus treatise (see
the Historical Note, “The Witch of Agnesi”) can be
most easily described parametrically. Take a circle of
radius a as shown in the diagram, tangent to the y-axis
and to line x 5 2a. A line through the origin intersects
the circle at point A and the vertical line at point B.
Point P has the same x-coordinate as A and the same
y-coordinate as B. The versieri is the set of all such
points P.

(a) Using the line through the origin, y 5 mx, find the
coordinates of point A in terms of parameter m.

(b) Find the coordinates of point B in terms of m.
(c) Give parametric equations for the versieri (that is,

express coordinates of point P in terms of m!.
(d) The usual equation for the versieri is xy 2 5

d 2~d 2 x!, where d is the diameter of the circle.
Show that the values of x and y given by your para-
metric equations satisfy this equation.

(e) If x and y are interchanged and the radius of the
circle is 1

2 , show that the versieri is given by the
equation y 5 1

1 1 x 2 .

Exercises 47–48 Exploring Bowditch Curves Use a
window at least as large as @25, 5# 3 @23, 3# and a t-
range of @24p , 4p#.

47. (a) Graph x 5 5 sin~ty4 1 k!, y 5 3 cos t for k 5
1, 0.5, 0.

(b) Explain why the curve for k 5 0 does not appear to
be closed.

48. (a) Repeat Exercise 47 using x 5 5 sin~ ty3 1 k!, y 5
3 cos t.

(b) Approximate a value of k for which the graph does
not appear to be closed.
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Exercises 49–52 Bowditch Curves (a) Find the size of
the smallest t-interval for which the Bowditch curve is
closed. (b) Describe any symmetries of the curve.

49. x 5 5 sin~3t 1 1!, y 5 3 cos 2t

50. x 5 5 sin 4t, y 5 3 cos 2t

51. x 5 5 sin~2t 1 1!, y 5 3 cos t

52. x 5 5 sin~2t 1 1!, y 5 3 cos~2t 1 1!

Exercises 53–57 Distance from a Point to a Curve Find
the distance (in exact form where possible, to 1 decimal
place otherwise) from the point P to the curve.

53. P~4, 1!; y 5 2x 2 1 2x 54. P~3, 21!; y 5 x 2 2 1

55. P~25, 1!; x 5 t 2 2 t 2 2, y 5 t 3 2 3t (See
Figure 11.)

56. P~0, 0!; x 5 3 1 sin t, y 5 1 2 cos t

57. P~1, 21!; x 5 1 1 4t, y 5 1 2 2t

10.3 C O N I C S E C T I O N S

Let’s take . . . a step up the ladder from the circle. I mean the conic sections,
especially the ellipse. These curves were studied by Apollonius of Perga
(262–200 B.C.) as the “sections” of a right circular cone. This is “pure
mathematics” in the sense that it has no contact with science or technology.
The interesting thing is that nearly 2000 years later, Kepler announced that
the planetary orbits are ellipses.

Reuben Hersh

The conic sections mentioned in the epigraph above have influenced human ideas
about the universe (see the Historical Note, “Conic Sections”). The name comes
from the fact that each of the conic sections is the intersection of a plane with a
cone, as suggested in Figure 22. Thus the conic sections are the circle, ellipse,
parabola, and hyperbola, with some additional special cases.

Analytic geometry was
great. It began with a
description of Descartes’
great victory, the insight
that made algebra out of
geometry and vice versa. It
was all about graphs, and
mainly about conics. I
thought it was all great
stuff and in my letters
home I wrote
enthusiastically about my
mathematics course; it was
a beauty, I said.

Paul Halmos

Exercises 58–59 Exploring Distance

58. (a) Identify the curve in Exercise 56.
(b) Explain how to use geometry to get the same

result.

59. (a) Identify the curve in Exercise 57.
(b) Explain how to get the same result by another

method.

Exercises 60–64 Intercept Points For the graph of the
given parametric equations, find (a) the x-intercept point(s)
and (b) the y-intercept point(s).

60. x 5 4 2 2t, y 5 t 2 2 2t 2 3

61. x 5 1 2 cos2 t, y 5 1 1 sin t

62. x 5 1 2 2 _ cos t _ , y 5 1 2 _ sin t _

63. x 5 t 2 2 t 1 4, y 5 t 3 2 4t

64. x 5 2t 2 8, y 5 t 2 2 6t 1 8

FIGURE 22
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We have had extensive experience with the circle, and we have studied parabo-
las as graphs of quadratic functions. The circle is defined as the set of points
equidistant from a single fixed point. In this section we give definitions for the other
conics as sets of points satisfying distance relations. We derive standard form
equations for each.

Parabolas

Definition: parabola

A parabola is the set of all points equidistant from a given point F and a
line D that does not contain F. Point F is a focus and line D is the directrix
of the parabola.

To get a simple equation for the parabola, we choose to put the origin midway
between F and D, with D parallel to one of the axes. If 2p denotes the distance from
F to D and we put F on the positive y-axis, then we get the diagram shown in
Figure 23, where F has coordinates ~0, p! and D has the equation y 5 2 p. If a
point P~x, y! falls on the parabola, the distances d1 and d2 in the diagram must be
equal:

d1 5 Ï~x 2 0!2 1 ~y 2 p!2 and d2 5 Ï~x 2 x!2 1 ~y 1 p!2.

Setting d1 equal to d2, squaring both sides (according to the Squaring Property in
Section 10.1), and simplifying, gives

x 2 1 y 2 2 2 py 1 p2 5 y 2 1 2 py 1 p2 or

x 2 5 4 py. (1)

Figure 23 clearly shows that the parabola is symmetric about a line through the
focus and perpendicular to the directrix (in this case, the y-axis). This line of
symmetry is the axis of the parabola. The vertex is the point midway between the
focus and the directrix, where the parabola meets its axis.

Standard Form Equations for Parabolas

With the vertex at (0, 0), Equation (1) is one of four standard forms for an equation
of a parabola. Using 2p to denote the distance between the focus and the directrix
(so that p is positive), we keep the vertex at the origin and can locate the focus F
at either ~6 p, 0! or ~0, 6 p!. In each case we have one of the coordinate axes as the
axis of the parabola and an equation of one of the following standard forms:
x 2 5 64 py or y 2 5 64 px.

The number 4p that appears in the standard form for parabolas has geometric
significance. For a given curve we define a chord as any line segment that has both
endpoints on the curve. A focal chord of a parabola is a chord that contains the
focus. The focal chord parallel to the directrix is the latus rectum. The length of
the latus rectum is 4p. (See Figure 24 and Exercise 8.) The length of the latus
rectum is also called the focal width of the parabola because it measures the width
of the parabola opening.

FIGURE 23

FIGURE 24
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Standard form equations for parabolas

Let p be a positive number. The graph of each of the following is a parabola
with vertex at the origin and focal width (length of latus rectum) equal
to 4p.

x 2 5 64 py: vertical axis;

(2)

1sign: opens up, focus F~0, p!, directrix D: y 5 2 p

2sign: opens down, focus F~0, 2 p!, directrix D: y 5 p

y 2 5 64 px: horizontal axis;

(3)

1sign: opens right, focus F~ p, 0!, directrix D: x 5 2 p

2sign: opens left, focus F~2p, 0!, directrix D: x 5 p

Strategy: All specified cEXAMPLE 1 Identifying features of a parabola For each parabola, find
items are defined in terms of the focus, directrix, and focal width, and sketch the graph.
the number p in Equations
(2) and (3). Begin with each (a) y 5 22x 2 (b) y 2 5 22x
equation in standard form
by solving for the squared Solution
term and reading off p,

(a) The equation y 5 22x 2 is a quadratic function of the type we graphed inx 2 5 2 1
2 y; p 5 1

8 , and
Section 2.5. The vertex is at ~0, 0! and the parabola opens downward. Wey 2 5 22x; p 5 1

2 .
locate a point on the parabola, say ~1, 22!, and by symmetry ~21, 22! is also
on the graph ~see Figure 25!. Identify p from a standard form. First express the
equation in standard form ~Equation (2) with a minus sign! by dividing both
sides by 22,

x 2 5 2
1
2

y.

Thus 24 p 5 2 1
2 . Hence p 5 1

8 and the length of the latus rectum, the focal
width, is 4 p, or 1

2 . Since the parabola opens downward, the focus is 1
8 unit

below the vertex, at point F~0,2 1
8!, and an equation for the directrix is D:

y 5 1
8 .

(b) Comparing standard forms, y 2 5 22x is already in the form of Equation (3)
with 4 p 5 2. Thus p 5 1

2 and the focal width is 2. The parabola opens to the
left and has its vertex at the origin. The focus is F~2 1

2 , 0!, and the directrix is
D: x 5 1

2 . See Figure 26. b

In Figures 25 and 26 the latus rectum visually indicates the focal width. For the
parabola y 5 22x 2, the focal width is 1

2 and the parabola is quite narrow. In
contrast, the wider parabola y 2 5 22x has a focal width of 2.

Applications of Parabolas

The name focus comes from one of the properties that makes parabolas important
in physical applications. A basic law of physics states that the angle of reflection of
light or sound is the same as the angle of incidence. It is proved in calculus that all
light rays parallel to the axis of a parabola will be reflected through the focus of the
parabola. See Figure 27. This is the principle on which telescopes work. A
parabolic mirror gathers light waves from a distance at the focus where the eye-
piece is located. The light source of an automobile headlight is located near the
focus of the parabolic reflector to send the light in essentially parallel rays. Using

FIGURE 25

FIGURE 26
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a similar principle, a parabolic antenna picks up sounds from a distance ~as from
a football huddle! or signals from an orbiting satellite.

The path of an object moving near the surface of the earth under the influence
of gravity, such as a kicked ball or a thrown baseball, is very nearly parabolic.

cEXAMPLE 2 Telescope design The diameter of a parabolic mirror of a
telescope is 200 centimeters, and the mirror is 10 centimeters deep at its center.
How far is the focus of the vertex, that is, how far above the vertex should the
eyepiece be located?

Solution
The cross section of the mirror is part of a parabola, as shown schematically in
Figure 28. On the coordinate system, ~100, 10! is a point on the parabola whose
equation in standard form is x2 5 4 py. Substituting the coordinates ~100, 10! into
the equation,

1002 5 4 p · 10 or p 5
10,000
4 · 10

5 250.

The focus is at ~0, 250!, or 250 centimeters above the center of the mirror. b

Ellipse and Hyperbola

Both the ellipse and the hyperbola involve two focus points, called foci. In Figure
29, F1 and F2 are the fixed focus points and P is an arbitrary point. In terms of the
distances shown, we can define the ellipse and hyperbola. By treating them to-
gether, we emphasize both similarities and differences.

Definition: ellipse and hyperbola

Given two points F1 and F2 and a fixed positive number k.
An ellipse is the set of all points P such that the sum of the distances

from P to F1 and from P to F2 is equal to k, that is, if d1 5 _ PF1 _ and
d2 5 _ PF2 _ , then

d1 1 d2 5 k.

A hyperbola is the set of all points P such that the difference of the
distances from P to F1 and from P to F2 is equal to k, that is, if d1 5 _ PF1 _
and d2 5 _ PF2 _ , then either

d1 2 d2 5 k or d2 2 d1 5 k.

Together, _ d1 2 d2 _ 5 k.

FIGURE 27

FIGURE 28

FIGURE 29
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To get equations for the ellipse and hyperbola, we need a coordinate system.
The standard equations assume both foci are on one of the coordinate axes. Take
the focus points on the x-axis, symmetric to the origin, say at F1~2c, 0! and F2~c, 0!.
For convenience, take the constant k as 2a. (See Figure 30.) Then we want equa-
tions that must be satisfied for a point P~x, y! to lie on an ellipse or a hyperbola.
We organize the derivations in parallel columns to make them easier to compare.

Standard Form Equations for Ellipse and Hyperbola

Note that we introduced no extraneous points squaring both sides ~see the Squaring
Property discussed in Section 10.1!. Having derived an equation for the ellipse and
the hyperbola, we look at each separately.

Ellipse (a . c)

d1 1 d2 5 2a

Ï~x 1 c!2 1 y 2 1 Ï~x 2 c!2 1 y 2 5 2a

First separate the radicals

Ï~x 1 c!2 1 y 2 5 2a 2 Ï~x 2 c!2 1 y 2

Square both sides and simplify; isolate the radical

aÏ~x 2 c!2 1 y 2 5 a2 2 cx

Square both sides, simplify, and rearrange

~a2 2 c 2!x 2 1 a2y 2 5 a2~a2 2 c 2!

Substitute b 2 for a2 2 c 2

b 2x 2 1 a2y 2 5 a2b 2

Divide through by a2b 2

x 2

a2 1
y 2

b 2 5 1 (4)

Hyperbola (a , c)

d1 2 d2 5 62a

Ï~x 1 c!2 1 y 2 2 Ï~x 2 c!2 1 y 2 5 62a

First separate the radicals

Ï~x 1 c!2 1 y 2 5 62a 1 Ï~x 2 c!2 1 y 2

Square both sides and simplify; isolate the radical

6aÏ~x 2 c!2 1 y 2 5 cx 2 a2

Square both sides, simplify, and rearrange

~c 2 2 a2!x 2 2 a2y 2 5 a2~c 2 2 a2!

Substitute b 2 for c 2 2 a2

b 2x 2 2 a2y 2 5 a2b 2

Divide through by a2b 2

x 2

a2 2
y 2

b 2 5 1 (5)

FIGURE 30
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The Ellipse

The definition suggests a simple way to draw a very good ellipse. Stick two tacks
into a drawing board and tie an end of a piece of string to each tack. Moving a pencil
around so as to keep the string taut defines a set of points such that the sum of the
distances to the two foci ~the tacks! equals the constant string-length. See
Figure 31. If the foci are located at ~6c, 0!, the graph of Equation (4) is
clearly symmetric with respect to both axes and the origin.

Choosing our coordinate system so that the foci are at F1~2c, 0! and F2~c, 0!
reveals the significance of the constants in the equation. When y 5 0, x2

a 2 5 1 or
x 5 6a and the x-intercept points are ~2a, 0! and ~a, 0!. Setting x 5 0, we find
that the y-intercept points are ~0, 2b! and ~0, b!. Since b was defined by
b 2 5 a2 2 c 2, we always have b , a.

The chord through the foci is called the major axis (length 2a) and its mid-
point is the center of the ellipse. The endpoints of the major axis are called the
vertices of the ellipse. The chord that runs perpendicular to the major axis through
the center is called the minor axis (length 2b). Because b , a, the minor axis is
always shorter than the major axis. Each focal chord (that is, each chord that passes
through a focus) perpendicular to the major axis is called a latus rectum. These
relations are shown in Figure 32.

Had we chosen the coordinate system with the foci on the y-axis at F1~0, c! and
F2~0, 2c!, then the major axis would fall on the y-axis. The same derivation would
lead to an equation of the form

x 2

b 2 1
y 2

a2 5 1 (6)

and the terminology shown in Figure 33. Ellipses whose equations can be written
in the form of either Equation (4) or Equation (6) are in standard position, and
those equations are in standard form for ellipses.

FIGURE 31

FIGURE 32
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cEXAMPLE 3 Identifying features of an ellipse Identify the vertices and
foci, find the lengths of the major and minor axes, and sketch the graph.

(a)
x 2

16
1

y 2

9
5 1 (b)

x 2

6
1

y 2

16
5 1 (c) x 2 1 9y 2 5 144.

Solution

(a) Since 16 . 9, the given equation is in the form of Equation (4); the foci and
major axis are on the x-axis. Comparing with Equation (4) a2 5 16 and
b 2 5 9, and since b 2 5 a2 2 c 2, c 2 5 a2 2 b 2 5 7. Therefore a 5 4, b 5 3,
and c 5 Ï7. The vertices are at ~64, 0! and the foci are at ~6Ï7, 0!. The
y-intercepts are ~0, 63! as shown in Figure 34. The major and minor axes have
lengths 8 and 6, respectively.

(b) Since 6 , 16, the equation has the form of Equation (6). The major axis is on
the y-axis and a2 5 16. Thus a 5 4, and the vertices are ~0, 64!. Since
b 2 5 6, b 5 Ï6, and c 2 5 a2 2 b 2 5 16 2 6 5 10. The foci are also on the

Strategy: (c) First divide
through by 144 to get an
equation in the form of
Equation (4), from which
we get a and b. From
c 2 5 a2 2 b 2, get c and
the foci.

FIGURE 33

FIGURE 34



x

(0, – 4)

(0, 4)

(0,   10)

(–   6, 0)

(   6, 0)

 x2
6

 y2
16

+       = 1

y

(0, –   10)

x

(0, – 4)

(0, 4)(– 8   2, 0) (8   2, 0)

y

(12, 0)(– 12, 0)

x2 + 9y2 = 144

x

(2, 3)

(4, 0)

(0, 4)

y

3x2 + 4y2 = 48

7x2 + 4y2 = 64

(      , 0)8

  7

(0,   12)
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y-axis, at ~0, 6Ï10!, and the x-intercepts are ~6Ï6, 0!. See Figure 35.
Lengths of major and minor axes are, respectively, 8 and 2Ï6.

(c) The equation x 2 1 9y 2 5 144 does not have the form of either Equation (4) or
(6). Following the strategy,

x 2

144
1

y 2

16
5 1.

This equation has the form of Equation (4) with a2 5 144, b 2 5 16, and

c 2 5 128. Thus a 5 12, b 5 4, and c 5 8Ï2. With x-intercept points
~612, 0! and y-intercept points ~0, 64!, the ellipse is long and thin (see
Figure 36). The foci are ~68Ï2, 0!, near the ends of the major axis. The major
axis is 24 units long, while the minor axis is 8. b

The ellipse is something of a “squashed circle,” the shape we see when looking
at a circular disk from an angle. The three ellipses in Example 3 demonstrate the
considerable variation possible in the amount of distortion from a circle. One
measure of the distortion is the ratio b

a . When a is much larger than b, the ellipse
is long and narrow; when the ratio b

a is near 1, the lengths of the major and minor
axes are more nearly equal and the ellipse more closely resembles a circle. Histor-
ically, however, rather than the ratio b

a , the measure used to indicate the distortion
of an ellipse is called the eccentricity, defined by e 5 c

a .

cEXAMPLE 4 Find an equation for an ellipse Find an equation for the
ellipse in standard position that has a major axis of length 8 and that passes through
point ~2, 3!.

Solution
Following the strategy, we expect two solutions. See Figure 37. For each ellipse,
2a 5 8, or a 5 4. If the major axis is on the x-axis, then use Equation (4) with
a 5 4:

x 2

16
1

y 2

b 2 5 1.

Substitute the coordinates of the given point into the equation,

22

16
1

32

b 2 5 1

and solve for b 2. We get b 2 5 12, b 5 Ï12 5 2Ï3. Therefore an equation for the
ellipse is

x 2

16
1

y 2

12
5 1 or 3x 2 1 4y 2 5 48.

Similarly, if the major axis is on the y-axis, use Equation (6):

x 2

b 2 1
y 2

16
5 1,

22

b 2 1
32

16
5 1, b 2 5

64
7

.

Thus, the desired equation becomes

x 2

64y7
1

y 2

16
5 1 or 7x 2 1 4y 2 5 64. b

Strategy: Drawing dia-
grams of ellipses through
~2, 3! suggests two solutions,
one with a horizontal major
axis and one with a vertical
major axis. Using the form
of Equation (4) with a 5 4
and substituting the coordi-
nates ~2, 3! into the equation
should set up the problem to
solve for b for the horizontal
case. Use Equation (6) for
the vertical case.

FIGURE 35

FIGURE 36

FIGURE 37



x

V2(– a, 0)

F2(– c, 0) F1(c, 0)

V1(a, 0)

y

Focus Focus

Vertices

x

(0, b)

(– c, 0) (c, 0)

(– a, 0) (a, 0)

P(a, b)

y

Auxilliary
rectangle

Asymptotes

x2

a2

y2

b2
–       = 1

b
ay =     x b

ay = –    x

(0, – b)
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Hyperbolas

The derivation of the first standard equation for the hyperbola places the foci at
F1~2c, 0! and F2~c, 0!. Setting y 5 0 in Equation (5),

x 2

a2 2
y 2

b 2 5 1,

we find the x-intercept points at ~2a, 0! and ~a, 0!. Since a , c for the hyperbola,
the intercepts, called the vertices of the hyperbola, are between the foci. See
Figure 38. From the form of Equation (5), the graph has symmetry similar to that
of the ellipse. When we know the graph in one quadrant, the rest of the graph
comes from reflections through the coordinate axes and the origin. The center of
the hyperbola is the midpoint of the segment that joins the vertices.

If we solve Equation (5) for y, we obtain

y 5 6
b
a

Ïx 2 2 a2 (7)

Equation (7) demonstrates that there is no y-value when x is between 2a and a.
Furthermore, we may rewrite Equation (7) in the form

y 5 6
bx
a
Î1 2

a2

x 2

Clearly, as _ x _ becomes larger, the quantity a2

x 2 approaches 0, and y approaches 6bx
a .

This shows that lines y 5 bx
a and y 5 2bx

a are oblique asymptotes for the hyperbola.
The vertices and the asymptotes make graphing the hyperbola simple. Point P~a, b!
in the first quadrant is one corner of what is called the auxiliary rectangle.
The other corners are symmetric to P~a, b!, as shown in Figure 34. The auxiliary
rectangle is not part of the graph of the hyperbola, but it aids graphing. The lines
that contain the diagonals of the rectangle are the asymptotes, and the vertices of
the hyperbola are the midpoints of opposite sides of the rectangle. The hyperbola
is shown in Figure 39.

FIGURE 38
Hyperbola with vertices and

foci

FIGURE 39



x

(0, a)
(0, c)

(0, – a)

(b, 0)(– b, 0)
P(b, a)

y
–       = 1

a
b

y =     x

a
b

y = –    x

(0, – c)

x2

b2

y2

a2

x

yLatus
rectum

y = –    x5
3

y =    x5
3

(0, – 5)

(0, 5)

(3, 5)

(0,   34)

x2

9
–       = 1y2

25

(0, –   34)

x

y

Lactus
rectum

y = –    x5
3

y =    x5
3

x2

9
–       = 1y2

25

(3, 0)

(–   34, 0) (   34, 0)

(– 3, 0)
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If the foci are on the y-axis, at F1~0, 2c! and F2~0, c!, then, by interchanging
the roles of x and y, we obtain the other standard form for a hyperbola,

y 2

a2 2
x 2

b 2 5 1. (8)

Again b 2 5 c 2 2 a2. The vertices are at ~0, a! and ~0, 2a!, and the asymptotes are
y 5 6 ax

b . The same kind of auxiliary rectangle facilitates drawing this graph,
shown in Figure 40.

cEXAMPLE 5 Identifying features of a hyperbola Find the coordinates
of the foci and the vertices, give equations for the asymptotes, and sketch the graph.

(a)
y 2

25
2

x 2

9
5 1 (b)

x 2

9
2

y 2

25
5 1

Solution

(a) The first equation has the form of Equation (8), where a 5 5, b 5 3, and the
foci are on the y-axis. Since b 2 5 c 2 2 a2, c 2 5 a2 1 b 2 5 25 1 9 5 34, or
c 5 Ï34. Thus the foci are at ~0, 6Ï34! and the vertices are at ~0, 65!. The
asymptotes are y 5 6 ax

b 5 6 5x
3 , and the graph is shown in Figure 41.

(b) The given equation has the form of Equation (5), so the foci and vertices are
on the x-axis, even though the denominator of the y 2-term is larger. Since
a 5 3, and b 5 5, c 5 Ïa2 1 b 2 5 Ï34. The asymptotes are y 5 6 bx

a 5
6 5x

3 . The vertices, foci, and graph are shown in Figure 42. b

FIGURE 40

FIGURE 41 FIGURE 42



y

x

(– 5, 0)

(– 4, 0)

(4, 0)

(5, 0)

(5,    )9
4

(5, –    )9
4

x2

16
–       = 1y2

9

y2 =      x81
80
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Note that the hyperbola in Figure 41 has a much narrower opening than the
one in Figure 42. This is conveniently measured by a latus rectum, as for parabolas
and ellipses. A latus rectum is a chord through a focus perpendicular to the line that
contains the foci and vertices. As with parabolas and ellipses, a latus rectum is
easily drawn (see Figures 41 and 42) and indicates the width of the hyperbola at the
focus. We leave it to the reader to show that the length of the latus rectum in
Figure 41 is 18

5 , while that in Figure 42 is 50
3 .

cEXAMPLE 6 Finding equations for conics Find (a) the foci and end-
points of the right latus rectum of the hyperbola x2

16 2
y2

9
5 1, and (b) an equation

for the parabola in standard position (with its vertex at the origin) that passes
through the endpoints of the right latus rectum of the hyperbola.

Solution

(a) For the given hyperbola, a 5 4, b 5 3, from which c 2 5 16 1 9 5 25. Thus
c 5 5 and the foci of the hyperbola are at ~65, 0!. The right latus rectum is the
vertical chord through the right focus, (5, 0). When x 5 5,

25
16

2
y 2

9
5 1 or y 5 6

9
4

.

The ends of the right latus rectum are thus ~5, 6 9
4!, as in Figure 43.

(b) Follow the strategy. Substituting the coordinates ~5, 9
4! into the equation

y 2 5 4px, we find, 4p 5 81
80 . Therefore an equation for the parabola shown in

Figure 43 is y 2 5 81
80 x. b

Applications of Ellipses and Hyperbolas

The fact that the angle of incidence equals the angle of reflection makes parabolic
reflectors useful in many settings. Elliptical reflectors also have applications. An
ellipse reflects sound or light from one focus back to the other focus. Buildings in
the shape of elliptical domes are often called whispering galleries. The Mormon
Tabernacle in Salt Lake City and the Statuary Hall in the capitol building in
Washington, D.C. are both whispering galleries. A whisper or a dropped pin near
one focus can be heard clearly at the other focus. Historical rumor suggests that
John C. Calhoun was aware of this property in Statuary Hall, where the House of
Representatives met in his time, and he used the knowledge to eavesdrop on his
adversaries.

Elliptical paths determine the most efficient changes in the orbits of spacecraft
about the earth. Knowledge of conic sections has been profoundly significant in
understanding orbiting bodies.

Hyperbolas provide the basis for location and navigation instruments. If three
receivers in different places all record the times when a sound is heard from a
common source, then the time differences determine hyperbolas on which the
source must be located. Plotting the intersection of the hyperbolas allows observers
to pinpoint the location. The same principle, in reverse, allows a submarine, say, to
locate itself relative to three known sound beacons, which underlies LORAN
navigation.

A summary of the significant relations and properties for ellipses and hyperbo-
las in standard position may be useful.

Strategy: (b) Standard
form for the equation of
the parabola is y 2 5 4px,
so substitute coordinates of
the endpoints of the latus
rectum into the equation.

FIGURE 43
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x
F

F
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Foci: (± c, 0)
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y

x

x2

b2

y2
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F

F

b

a
c

(b, 0)

(b)

Foci: (0, ± c)
Vertices: (0, ± a)

(0, a)

(0, c)
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y

x

x2

a2

y2

b2–       = 1

(c)

Foci: (± c, 0)
Vertices: (± a, 0)


b c

a

(a, 0) (c, 0)

F

F

b2
a(c,      )

Asymptotes: y = ±    x
b
a

y

x

y2

a2

x2

b2–       = 1

(d)

Foci: (0, ± c)
Vertices: (0, ± a)
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F(0, c)

F
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Asymptotes: y = ±    x
a
b
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Ellipses and hyperbolas in standard position

Ellipse:
x 2

a2 1
y 2

b 2 5 1 or
x 2

b 2 1
y 2

a2 5 1,

a . c, b 2 5 a2 2 c 2

Latus rectum length
2b 2

a
Major axis length 2a
Minor axis length 2b

Graphing Conic Sections with Technology

Since standard equations for all of the conic sections involve at most a y 2-term, we
can always solve for y and, if necessary, graph two functions. In Section 6.1, we
saw that parametric equations often give a more satisfactory graph of a circle. That
is, it may be easier to get a good picture of the circle ~x 2 1!2 1 ~y 1 2!2 5 4 by
graphing x 5 1 1 2 cos t, y 5 22 1 2 sin t, 0 # t # 2p in parametric mode
than by solving for y and graphing

y 5 22 1 Ï4 2 ~x 2 1!2 and y 5 22 2 Ï4 2 ~x 2 1!2.

We urge the reader to try both approaches.

Hyperbola:
x 2

a2 2
y 2

b 2 5 1, or
y 2

a2 2
x 2

b 2 5 1,

c . a, b 2 5 c 2 2 a2

Latus rectum length
2b 2

a



[– 6, 6] by [– 3, 3]

false 
asymptotes

(–   5, 0) (   5, 0)
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Because the circle, ellipse, and hyperbola all involve sums or differences of
squares equal to 1, the basic trigonometric identities (I-4) and (I-5),

cos2 t 1 sin2 t 5 1, and sec2 t 2 tan2 t 5 1,

lend themselves most conveniently to parametric graphing.
For example, to graph an ellipse such as

x 2

4
1

y 2

9
5 1, set Sx

2D
2

5 cos2 t, Sy
3D

2

5 sin2 t.

That is, use (I–4) and graph x 5 2 cos t, y 5 3 sin t in parametric mode. In a
similar fashion, for the hyperbola

x 2

5
2

y 2

8
5 1, set S x

Ï5
D2

5 sec2 t, S y

2Ï2
D2

5 tan2 t,

and use (I–5), graphing x 5 Ï5 sec t 5
Ï5
cos t

, y 5 2Ï2 tan t. For both the ellipse

and the hyperbola, we use for the t-range the interval @0, 2p# even though the secant
and tangent functions are not defined for the whole interval.

An interesting thing often happens when graphing a hyperbola in parametric
mode. The graphing calculator is programmed to connect successive pixels, so we
may see false asymptotes, (see Figure 44) which are really excellent approxima-
tions to the asymptotes of the hyperbola, the lines y 5 6 b

a x. If false asymptotes do
not appear on your graph and you wish to see the asymptotes, it is an easy matter
to add parametric equations x 5 t, y 5 ~b

a!t and x 5 t, y 5 2~b
a!t.

For parabolas that open up or down, there is no need for parametric graphing,
although x 5 t, y 5 ~ 1

4 p!t
2 works. For parabolas opening left or right, we inter-

change the roles of the variables in parametric form, as we did to graph inverses:
x 5 ~ 1

4 p!t
2, y 5 t, and choose a t-range to match the y-range.

Parametric equations for conic sections

Circle: ~x 2 h!2 1 ~y 2 k!2 5 r 2;

x 5 h 1 r cos t, y 5 k 1 r sin t, 0 # t # 2p

Ellipse:
x 2

a2 1
y 2

b 2 5 1; x 5 a cos t, y 5 b sin t, 0 # t # 2p

Hyperbola:
x 2

a2 2
y 2

b 2 5 1; x 5
a

cos t
, y 5 b tan t, 0 # t # 2p

Parabola: y 2 5 64 px; x 5 S6
1

4 pDt 2, y 5 t.

cEXAMPLE 7 Intersections from graphs Find (1 decimal place) all inter-
sections of the ellipse and parabola.

x 2

16
1

y 2

9
5 1, y 5 x 2 2 1

FIGURE 44
Calculator graph of the

hyperbola x 5 Ï5ycos t,
y 5 2Ï2 tan t, showing false

asymptotes.



[– 6, 6] by [– 6, 6]

x2
16

y2
9

+ = 1
(1.9, 2.6)

y = x2 – 1
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Solution
If we were to try to solve this problem algebraically, substitution of x 2 2 1 for y
would lead to a fourth degree polynomial, for which, in general, we would need
technology to find the real zeros. See Exercises 60 and 61. Using parametric
graphing, we use the equations from the box above for the ellipse, x 5 4 cos t,
y 5 3 sin t, 0 # t # 2p . We could also use the parametric equations for the
parabola given in the box, x 5 t, y 5 t 2 2 1, and obtain something like Figure 45,
which shows only half of the parabola. The reason for the half parabola is that we
have a t-range with only non-negative values. It is also difficult to trace along both
curves to check the intersection because the t-values at the intersection are very
different for the two curves.

There are several ways around this difficulty. We can extend the t-range or,
better, we can change the parameterization. To have the intersection at the same
t-value on both curves in this example, we use the same x-equation, x 5 4 cos t,
and since y 5 x 2 2 1, for the parabola we set y 5 ~4 cos t!2 2 1. We will then see
all of the parabola that fits on the screen. We can also use the symmetry of both
the ellipse and parabola, knowing that if we locate the intersection in Figure 45,
there is another intersection with the negative of our x-value. Tracing along either
curve, we find that the intersection is very near (1.9, 2.6). By symmetry, the two
intersections are approximately (1.9, 2.6) and (21.9, 2.6). b

TECHNOLOGY TIP r Finding intersections of parametric graphs

We are used to zooming in to locate intersections graphically. Calculators
zoom differently in parametric mode than we may expect, changing only the
x- and y-ranges, for example, and not altering the t-range or t-step.
Experiment with your own calculator. You may want to zoom in on a point
of interest and then cut down the t-range and refine the t-step to show only
the point of interest. This requires having the same t-value for both curves.
You may also be able to simply read the pixel coordinates for the
intersection.

EXERCISES 10.3

Check Your Understanding

Exercises 1–6 True or False. Give reasons.

1. Point (2, 1) is on the parabola with a focus at (1, 0) and
directrix given by x 5 21.

2. If the directrix of a parabola is a horizontal line and the
focus is below the directrix, then the parabola opens
downward.

3. The graph of x 2 1 2x 1 1 5 y 2 2 8y is a circle.

4. The graph of x 2 5 y 2 1 4 is an ellipse.

5. The graph of x 2 5 5 2 y 2 is a hyperbola.

6. The graph of y 2 5 x 2 1 1 is a hyperbola with foci on
the y-axis.

Exercises 7–10 Fill in the blanks so that the resulting
statement is true.

7. The foci for the graph x 2 5 2y 2 1 6 are the points
.

8. The vertices for the graph of 2x 2 1 y 2 5 4 are the
points .

9. The circle x 2 1 y 2 5 4 meets the ellipse 4x 2 1 9y 2 5
36 in exactly points.

10. The vertices for the graph of 25x 2 2 9y 2 5 225 are
.

FIGURE 45
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Develop Mastery

Exercises 1–2 Identify Parabola Features An equation
for a parabola is given. Give the coordinates of the vertex
and focus, and an equation for the directrix. Sketch the
graph.

1. y 2 2 8x 5 0

2. x 2 1 8y 5 0

Exercises 3–7 Equation for Parabola The given condi-
tions determine one or more parabolas, each with axis par-
allel to one of the coordinate axes. Find an equation in the
form of Equation (2) or (3) for each parabola and sketch a
graph.

3. F~2, 0!; D: x 5 22 4. F~0, 23!; D: y 5 3

5. F~0, 2 1
2!; D: y 5 1

2

6. Vertex (0, 0); contains (3, 22)

7. Contains points (1, 2), ~1
2 , 2Ï2!, and ~2, 2Ï2!

Exercises 8–10 Latus Rectum

8. Show that the latus rectum of the parabola x 2 5 4 py
has length 4 p. (Hint: Draw the parabola with its latus
rectum. Each endpoint of the latus rectum is equidistant
from F and D.)

9. Given parabola 4 py 5 x 2, let Tp be the triangle with
vertices at the origin and at the ends of the latus rectum.
(a) Find the area of triangle Tp for parabola y 5 x 2.
(b) For what focal width does the area of Tp equal 2? 1?

10. Find an equation for the circle that contains the ends of
the latus rectum of the parabola 2x 5 2y 2 and that is
tangent to the directrix of the parabola.

Exercises 11–12 Applications of Parabolas

11. The parabolic mirror for the Mount Palomar telescope
is 200 inches in diameter; the mirror is 3.75 inches deep
at the center. How far from the center of the mirror is
the focal point?

12. A parabolic headlight is 4 inches deep and has a maxi-
mum diameter of 4 inches. How far from the vertex
should the light source be placed to produce a beam of
light parallel to the axis of the parabola?

Exercises 13–14 Reflection Properties of Parabola

13. (a) Write an equation in point-slope form for line Lm

with slope m and containing point (1, 1).
(b) For what positive slope m is the line in part (a)

tangent to the parabola y 5 x 2? (For what value of
m does Lm intersect the parabola in a single point?)
Note that a line parallel to the axis of the parabola
is not a tangent line.

14. (a) Find the coordinates of the right endpoint R of the
latus rectum of the parabola y 5 x 2.

(b) Find the slope of the line tangent to the parabola
y 5 x 2 at point R. See Exercise 13.

Exercises 15–16 Distances to Foci

15. Given points F1~23, 0! and F2~3, 0! and P~x, y!, sup-
pose that the sum of the distances from P to F1 and from
P to F2 is 10. From the equation _ PF1 _ 1 _ PF2 _ 5 10,
show that coordinates of P~x, y! must satisfy the equa-
tion x2

25 1 y2

16 5 1.

16. Given points F1~0, 23! and F2~0, 3! and P~x, y!, sup-
pose that the differences of the distances
_ PF1 _ 2 _ PF2 _ is 64. From the equation _ PF1 _ 2

_ PF2 _ 5 64, show that the coordinates of P~x, y! must
satisfy the equation y2

4 2 x2

5 5 1.

Exercises 17–26 Features of Ellipse, Hyperbola An
equation is given for either an ellipse or a hyperbola in
standard position. (a) Identify the curve, and find the coor-
dinates of the vertices and the foci. (b) For an ellipse give
the lengths of the major and minor axes; for a hyperbola,
find equations for the asymptotes. (c) Sketch the graph.

17.
x 2

9
1

y 2

4
5 1 18.

x 2

4
1

y 2

9
5 1

19.
x 2

9
2

y 2

4
5 1 20.

x 2

4
2

y 2

9
5 1

21. 4x 2 1 5y 2 5 20 22. 4x 2 2 5y 2 5 20

23. 5x 2 2 4y 2 5 20 24. 5x 2 1 4y 2 5 20

25. x 2 5 9y 2 2 144 26. x 2 5 144 2 9y 2

Exercises 27–33 Ellipse Equations Find an equation in
standard form for the ellipse satisfying the given conditions.

27. Foci ~63, 0!, vertices ~65, 0!

28. Foci ~0, 62!, vertices ~0, 64!

29. Foci ~62, 0!, major axis 6

30. Vertices ~65, 0!, minor axis 4

31. Vertices ~65, 0!, contains ~4, 21!

32. Contains ~2, 1! and ~1, 2 Ï7
2 !

33. Minor axis 12, contains ~5, 4! (two solutions)

Exercises 34–40 Hyperbola Equations Find an equa-
tion for the hyperbola in standard position satisfying the
given conditions.

34. Foci ~63, 0!, vertices ~62, 0!

35. Foci ~0, 64!, vertices ~0, 62!



250

75
F
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36. Foci ~63, 0!, asymptote y 5 x

37. Vertices ~61, 0!, asymptote y 5 2x

38. Vertices ~0, 61!, asymptote y 5
3
2

x

39. Contains ~2, 21! and ~Ï10, 5!

40. Vertices ~0, 64!, asymptotes are perpendicular to each
other

Exercises 41–44 Intersections of Conics Find the coor-
dinates of all intersection points of each pair of curves, and
show the solutions graphically.

41. 4x 2 1 3y 2 5 12, with the line containing ~3
2 , 21! and

the upper focus point of the ellipse.

42. x 2 2 y 2 5 8, with the line containing ~23, 1! and the
right focus point of the hyperbola.

43. x 2 1 3y 2 5 1; 3x 2 1 y 2 5 1

44. 4y 2 2 x 2 5 36; 32y 5 x 2 1 96

Exercises 45–48 Applications of Ellipse, Hyperbola

45. Let C be the circle having as diameter the segment with
ends at the foci of the hyperbola 5x 2 2 4y 2 5 9. Show
that C also contains the foci of the conjugate hyperbola
4y 2 2 5x 2 5 9.

46. An elliptical garden is to be laid out in a rectangular
area 16 feet by 20 feet by driving stakes at the foci and
tying an end of a rope to each stake. Where should the
stakes be placed, and how long a rope is needed to make
the largest possible ellipse in the available area?

47. “The Ellipse” in Washington, D.C., is an elliptical
grassy area between the White House and the Washing-
ton Monument. The major axis is approximately 500
yards and the minor axis is approximately 425 yards.
How far are the foci from the vertices of the ellipse?

48. Suppose an auditorium is to be built with cross sections
in the shape of a half-ellipse, as in the diagram. The
building is to be 250 feet long and 75 feet high. If a
speaking platform is located at one focus of the ellipse,
how far from the nearest end of the building should it
be?

Exercises 49–53 Explore: Graphing Pairs of Conics

49. Graph the ellipse x2

16 1 y2

9 5 1 and the hyperbola
x2

16 2 y2

9 5 1 on the same set of axes.

50. Find another pair (an ellipse and a hyperbola with foci
on the x-axis) whose graphs are related to each other as
the pair in Exercise 49.

51. Find another pair with foci on the y-axis whose graphs
are related to each other in the same way as the pair in
Exercise 49.

52. Graph the conjugate hyperbolas x2

16 2 y2

9 5 1 and
x2

9 2 y2

16 5 1 on the same set of axes.

53. Repeat Exercise 52 for the conjugate hyperbolas
x2

144 2 y2

9 5 1 and x2

9 2 y2

144 5 1. (Hint: What kind
of window will you need?)

Exercises 54–57 Intersections of Graphs (a) Graph
parametrically and approximate all intersections (1 deci-
mal place). (b) Eliminate a variable and find the intersec-
tions in exact form.

54.
x 2

9
1

y 2

9
5 1,

x 2

4
2

y 2

9
5 1

55.
x 2

16
1

y 2

4
5 1,

x 2

4
1

y 2

9
5 1

56. y 2 5
x
4

,
x 2

4
2

y 2

2
5 1

57. x 5 t 2 1 t, y 5 t 3 2 t
x 5 t 2 1 t, y 5 2t 4 2 2t 3 1 t 2 1 2t
(Hint: Equate y-values and solve for t.)

58. (a) Explore Show that line 24x
18 1 1y

9 5 1 is tangent
to the ellipse x2

18 1 y2

9 5 1 at the point (24, 1).
(b) Show that line 2x

8 1 5y
50 5 1 is tangent to the

ellipse x2

8 1 x2

50 5 1 at point (2, 5).
(c) Make a guess for an equation of the line tangent

to the ellipse x2

a 2 1 y2

b 2 5 1 at point (m, n). Test
your guess for point (3, 28

5 ) on the ellipse
x2

25 1 y2

4 5 1.
(d) Does your guess also work for hyperbolas?

59. Explore: Modify a Definition Given points F1~1, 0!,
F2~21, 0!, the set of points such that the sum of
the distances to F1 and F2 is 4 is an ellipse. Find an
equation for the set of points such that the sum of the
squares of the distances to F1 and F2 equals 4 (that is,
_ PF1 _2 1 _ PF2 _2 5 4).

Exercises 60–61 Intersection Points Find the intersec-
tion points of the graphs of the two equations by (a) elimi-
nating y and solving a fourth degree equation in x (2 deci-
mal places), and (b) eliminating x and solving a quadratic
in y (4 decimal places).

60.
x 2

16
1

y 2

9
5 1, y 5 x 2 2 1 (See Example 7)

61.
x 2

16
1

y 2

9
5 1, y 5 x 2 2 2
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10.4 T R A N S L A T I O N S A N D C O O R D I N A T E
T R A N S F O R M A T I O N S

. . . @T#his is . . . a mathematical form that has survived several scientific
revolutions! Cartesian coordinates imply continuity, as well as the notion of
space as a backdrop against which objects move.

F. David Peat

We have given considerable attention to basic transformation of graphs of functions
of the form y 5 f ~x!. Of the variety of function transformations, vertical and
horizontal shifts, reflections, dilations, and composition with absolute value func-
tions, only vertical and horizontal shifts play a significant role in the graphing of
conic sections in general.

Because of symmetry, reflections are less important for circles, ellipses and
hyperbolas centered at the origin. Dilations and absolute value compositions
change distances and hence change the very nature of conic section definitions. A
compressed circle becomes an ellipse, for example. A dilated parabola remains a
parabola, but the shape changes; it may well have a different focus, directrix, and
focal width.

The kinds of transformations we consider in this section also apply to more
general kinds of equations than those of the form y 5 f ~x!. To allow us to include
equations of the standard defining forms for conic sections (and many others as
well), we allow any equation that can be written in the form F~x, y! 5 c, or since
we can subtract a constant from both sides, of the form F~x, y! 5 0.

Changing Coordinates and Translating Conics

The model that makes the general situation easy to remember is the circle. The
standard form equation for the circle centered at the origin is

x 2 1 y 2 5 r 2. (1)

The same circle, shifted to the center point C~h, k! is described by the equation

~x 2 h!2 1 ~y 2 k!2 5 r 2. (2)

We can think about this in terms of shifts right or left and up or down if we wish,
but that isn’t usually the way we think about circles. We see Equation (2) and
recognize that the center of the circle is at C~h, k!. That is, replacing x by x 2 h and
y by y 2 k shifts what was the origin (the center of the circle in Equation (1)) to
the new center. The effect is as if we had moved the whole coordinate system to a
new system where the origin is now at the point C~h, k!.

The same reasoning applies to any equation relating x and y that can be written
in the form F~x, y! 5 0. In particular, any equation for one of the conic sections
can be written in such a form.

When we can rewrite an equation completely in terms of x 2 h and y 2 k, we
sometimes replace the expressions ~x 2 h! and ~y 2 k! by new names, X and Y
respectively. Thus, for example, by completing squares, the equation

x 2 1 y 2 2 2x 1 6y 1 6 5 0

can be rewritten in the form

~x 2 1!2 1 ~y 1 3!2 5 4.

Some years ago, after I
had given a talk, somebody
said, “You seem to make
mathematics sound like so
much fun.” I was inspired
to reply, “If it isn’t fun,
why do it?”

Ralph P. Boas
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Replacing ~x 2 1! by X and ~y 1 3! by Y gives

X 2 1 Y 2 5 4.

The advantage of this procedure is that the XY-equation is a standard form for the
circle centered at the origin of the XY-system, that is, at the point ~1, 23!.

Changing coordinates

Given an equation in variables x and y of the form F~x, y! 5 0, we can
rewrite the equation completely in terms of x 2 h and y 2 k, then make the
replacements X 5 x 2 h and Y 5 y 2 k.

The graph of the new equation relative to the XY -coordinate system is
centered at the point C~h, k!.

Identifying the graph of a translated conic may be done by completing
any squared terms and matching one of the standard forms from
Section 10.3.

cEXAMPLE 1 Identify a conic section Complete the squares in x and y and
identify the graph of the equation 4x 2 1 9y 2 1 16x 2 54y 1 61 5 0 as a conic
section by translating axes. Sketch the graph.

Solution
First collect the x-terms and y -terms and factor out the coefficients of x 2 and y 2.

4~x 2 1 4x! 1 9~y 2 2 6y! 5 261

Now complete the squares by adding the same quantities to both sides of the
equation. Note that this implies adding 4 · 4 and 9 · 9, not just 4 and 9.

4~x 2 1 4x 1 4! 1 9~y 2 2 6y 1 9! 5 261 1 4 · 4 1 9 · 9

4~x 1 2!2 1 9~y 2 3!2 5 36.

Translate axes to a new system with center at ~22, 3! and rename the variables.

4X 2 1 9Y 2 5 36.

Dividing through by 36 gives an equation for an ellipse in standard form.

X 2

9
1

Y 2

4
5 1

The origin of the new coordinate system (the XY-system), the center of the
ellipse, is at the point (22, 3). The vertices are 3 units right and left of the center,
at (25, 3) and (1, 3), and the ends of the minor axis are 2 units above and below
the center, at (22, 5) and (22, 1). See Figure 46. b

cEXAMPLE 2 A translated parabola Find the focus, the directrix, and the
ends of the latus rectum for the parabola with equation y 2 1 2y 2 4x 1 9 5 0
and sketch the graph.

Solution
Follow the strategy.

y 2 1 2y 5 4x 2 9

y 2 1 2y 1 1 5 4x 2 8

~y 1 1!2 5 4~x 2 2!, or Y 2 5 4X

Strategy: First complete the
square on the y -terms and
write the equation in the
form of Equation (3) from
Sec. 10.3, from which find p
and the vertex. The focus is
on the axis, p units from the
vertex.

FIGURE 46
Ellipse

(x 1 2)2

9
1

(y 2 3)2

4
5 1.
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HISTORICAL NOTE CONIC SECTIONS

This equation has the form of Equation (3) with a plus sign, so the vertex is at
(2, 21), the parabola opens to the right, and 4 p 5 4, p 5 1. The focus is 1 unit
to the right of the vertex, at F~3, 21!, and the directrix is the vertical line D: x 5 1.
The focal width is 4, so the ends of the latus rectum are at (3, 1) and (3, 23). The
graph is shown in Figure 47. b

cEXAMPLE 3 Verbal to Equation Find an equation for the parabola with
a vertical axis, vertex at (2, 22), and focus on the line x 1 y 5 1.

Solution
Begin with a diagram that shows the vertex and the line x 1 y 5 1. See
Figure 48a. The vertical line x 5 2 intersects line x 1 y 5 1 at point (2, 21), so
that is the focus of the parabola. Since the focus is 1 unit from the vertex, p 5 1,
the vertex is at (2, 22), and the parabola opens upward. As suggested in the
Strategy, an equation for the parabola is ~x 2 2!2 5 4~y 1 2!. The parabola is
shown in Figure 48b. b

Strategy: The vertex lies on
the axis, so the axis is the
vertical line x 5 2. The
focus must be the point
where the line x 1 y 5 1
crosses the axis. The dis-
tance from the vertex to the
focus is p, from which we
can write an equation in the
form of Equation (2) from
Section 10.3.

The name conic section comes from
the idea of sections or slices of a
right, circular cone. If you could take
slices through an ice cream cone at
various angles, each slice would result
in a conic section, as for instance, the
circular section at the top of the cone
where the ice cream rests.

The shadows in the photo are
examples of conic sections. You can
also observe models of conic sections
created by the cone of light coming from the top
of a lamp. The shadow of the lampshade on the
wall forms conic sections. When the top is pointed
directly at the wall the shadow is a circle.
As the lamp is tipped, the shadow becomes a
more and more elongated ellipse, until finally the
shadow is no longer closed and becomes a
parabola. Tipped further, the shadow becomes a
branch of a hyperbola.

At least as far back as Euclid, the Greeks
recognized and studied the conics.
Apollonius wrote a treatise on conics (200 B.C.)
that included our modern definitions in terms of
distances from foci. His work remained

essentially the last word on conics
through the Middle Ages. At age 16
(in 1640), Pascal announced a
remarkable theorem regarding what
he called “mystic hexagons”: Any
six points on a conic section
determine a hexagon with three
pairs of opposite sides. If opposite
sides are extended so that they
intersect, then the three points of
intersection all lie on one line.

Nature seems to like conic sections; we
observe them all about us. Without conics,
Kepler’s discovery that planetary orbits are
elliptical would have been unlikely. It is
impossible to guess what effect that might have
had on Sir Isacc Newton’s physics and
mathematics. The Scientific American reports that
the Levy-Shoemaker comet that crashed into
Jupiter in 1994 had been highly unstable, with
some nearly circular orbits, and some narrow
elliptical paths, one of which took it so close to
Jupiter that it broke apart. Space exploration
would be impossible without an understanding of
conic sections.

Note how the direction of the
light source creates

increasingly elongated
shadows.
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4
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cEXAMPLE 4 A translated hyperbola Find an equation for the hyperbola
shown in Figure 49 with center at ~2, 1!, vertices at ~0, 1!, ~4, 1! and foci at
~21, 1!, ~5, 1!.

Solution
Follow the strategy. With respect to the XY-system centered at ~2, 1!, the equation

has the form
X 2

a2 2
Y 2

b 2 5 1 with vertices at ~0, 1! and ~4, 1! and foci at ~21, 1! and

~5, 1!. With c 5 3, a 5 2, b 2 5 c 2 2 a2 5 32 2 22 5 5. The XY-equation is

X 2

4
2

Y 2

5
5 1.

Replacing X by x 2 2 and Y by y 2 1, the desired equation is

~x 2 2!2

4
2

~y 2 1!2

5
5 1. b

Examples 2, 3, and 4 show a consistent pattern in equations for the entire
family of conic sections.

Strategy: From the figure,
the hyperbola is in standard
position relative to the coor-
dinate system centered at
~2, 1!. Knowing a 5 2 and
c 5 3, find b.

FIGURE 47 FIGURE 48

FIGURE 49
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Conic section standard form equations

Suppose a conic section is in standard position relative to a translated
coordinate system centered at ~h, k!. The conic section has an equation in
one of these standard forms:

~x 2 h!2 1 ~y 2 k!2 5 r 2Circle:

Parabola: ~x 2 h!2 5 64 p~y 2 k!

or ~y 2 k!2 5 64 p~x 2 h!

~x 2 h!2

a2 1
~y 2 k!2

b 2 5 1Ellipse:

or
~x 2 h!2

b 2 1
~y 2 k!2

a2 5 1

Hyperbola:
~x 2 h!2

a2 2
~y 2 k!2

b 2
5 1

or
~y 2 k!2

a2 2
~x 2 h!2

b 2 5 1

Graphing Translated Conic Sections Parametrically

The same ideas that allow us to easily graph standard conic sections in parametric
form work just as well for translated conics. Except for the parabola, all of the
standard form equations in the box above can be graphed by making use of
identities (I–4) and (I–5) in almost the same way as we did in the previous section,
following the same pattern we use for circles. The following box displays only
the forms for ellipse and hyperbolas with horizontal axis through the vertices, but
the adjustment for a vertical major axis should be obvious. For the ellipse, inter-
change a and b; for the hyperbola, interchange x and y in the standard equation, and
hence the roles of sec t, tan t in the parametric equations.

Parametric equations for translated conic sections

Circle: ~x 2 h!2 1 ~y 2 k!2 5 r 2;

x 5 h 1 r cos t, y 5 k 1 r sin t, 0 # t # 2p

Ellipse:
~x 2 h!2

a2 1
~y 2 k!2

b 2 5 1; a . b

x 5 h 1 a cos t, y 5 k 1 b sin t, 0 # t # 2p

~x 2 h!2

a2 2
~y 2 k!2

b 2
5 1;Hyperbola:

x 5 h 1
a

cos t
, y 5 k 1 b tan t, 0 # t # 2p

Parabola:
~y 2 k!2 5 4 p~x 2 h!; x 5 h 1

1
4 p

t 2, y 5 k 1 t.



[– 6, 6] by [– 4.5, 2.5]

a = 13

(2, – 1)
b =

13�
3

[– 6, 6] by [– 4.5, 2.5]

(2, 1)
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cEXAMPLE 5 Identify and graph a conic section

(a) Write the equation in standard form and identify the graph.
(b) Draw a calculator graph.

3x 2 1 y 2 2 12x 1 2y 5 0

Solution

(a) Complete squares on both x and y and divide to get a 1 on the right.

3~x 2 2 4x 1 4! 1 ~y 2 1 2y 1 1! 5 3 · 4 1 1

3~x 2 2!2 1 ~y 1 1!2 5 13

~x 2 2!2

SÎ13

3
D2

1
~y 1 1!2

~Ï13!2
5 1

From the last equation we recognize an ellipse centered at ~2, 21! with
a 5 Ï13, b 5 Ï13y3.

(b) A calculator graph, using the parametric equations

x 5 2 1 Ï13y3 cos t, y 5 21 1 Ï13 sin t, 0 # t # 2p ,
is shown in Figure 50. b

cEXAMPLE 6 Identify and graph a conic section Repeat Example 5 for
the equation

3x 2 2 y 2 2 12x 1 2y 5 0.

Solution

(a) The equation is the same as the one in Example 5 except for the negative sign
on the y 2. We proceed as we did in Example 5.

3~x 2 2 4x 1 4! 2 ~y 2 2 2y 1 1! 5 3 · 4 2 1

3~x 2 2!2 2 ~y 2 1!2 5 11

~x 2 2!2

SÎ11

3
D2

2
~y 2 1!2

~Ï11!2
5 1

From the last equation we recognize a hyperbola opening right and left,
centered at ~2, 1! with a 5 Ï11y3, b 5 Ï11.

(b) A calculator graph, using

x 5 2 1
Ï11y3

cos t
, y 5 1 1 Ï11 tan t, 0 # t # 2p ,

is shown in Figure 51. Note the false asymptotes. Moving the cursor to their
intersection (You cannot trace along the asymptotes; why not?) indicates that
they intersect very near ~2, 1!, the center of the hyperbola. b

FIGURE 50
3x 2 1 y 2 2 12x 1 2y 5 0.

FIGURE 51
3x 2 2 y 2 2 12x 1 2y 5 0.



[– 6, 6] by [– 4.5, 2.5]

(4, 0)(0, 0)
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cEXAMPLE 7 Intersections of conic sections

(a) Graph the equations of both Examples 5 and 6 on the same screen and find the
approximate coordinates of all intersection points.

(b) Confirm algebraically.

Solution

(a) A calculator graph of both equations is shown in Figure 52. The ellipse and the
hyperbola (remember that the asymptotes are not part of the graph of the
hyperbola) appear to intersect near the points ~0, 0! and ~4, 0!, but in paramet-
ric mode tracing is limited to t-values and and it is difficult to tell more than that
both graphs do cross the x-axis very near those two points.

(b) In this case, where it appears that the intersections may have integer coordi-
nates, we can substitute those values and verify that both ~0, 0! and ~4, 0! lie
on both graphs. A more dependable approach in general requires us to try to
solve a system of nonlinear equations.

3x 2 1 y 2 2 12x 1 2y 5 0

3x 2 2 y 2 2 12x 1 2y 5 0

We can eliminate x by subtracting the second from the first, getting

2y 2 5 0, or y 5 0.

Substituting y 5 0 into either of the original two equations and solving, we get
x 5 0, 4, confirming that the intersections are ~0, 0! and ~4, 0!. b

General Second Degree Equation in Two Variables

On the basis of our experience with completing squares, we have come to expect
that the graph of any equation of the form

Ax 2 1 Cy 2 1 Dx 1 Ey 1 F 5 0 (3)

is a conic section. If we allow for what are called degenerate cases such as a line
(when A and C are both zero) and point- or imaginary circles, it is true that any such
equation does represent a conic section. The kind of conic is determined by A and
C. For example, we know that we have a circle if A 5 C and a parabola if there is
only one squared term. Rather than classifying all possibilities of A and C, however,
we suggest that when you have such an equation that you complete the squares and
write the equation in one of the standard forms, from which you can read all the
pertinent information about the graph.

You may observe that there is a missing term in Equation (3). The more general
possibility for a second degree equation in two variables includes a term of the form
Bxy. It remains true that the graph of any equation of the form of Equation (3), even
including a nonzero xy-term, is some kind of conic section. When there is a
nonzero xy-term, the axes of the conic are rotated from the original coordinate
axes.

Rotation Transformations and Graphing

In the graph of general second degree equation of the form

Ax 2 1 Bxy 1 Cy 2 1 Dx 1 Ey 1 F 5 0

FIGURE 52
3x 2 1 y 2 2 12x 1 2y 5 0
3x 2 2 y 2 2 12x 1 2y 5 0
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with B 5/ 0, the axes of the conic section are not horizontal and vertical. By
rotating the axes through an angle u, we get a new set of XY-axes. The new
XY-variables are related to x and y by transformation equations:

Fx
yG 5 Fcos u

sin u

2sin u

cos u
GFX

YG, or FX
YG 5 F cos u

2sin u

sin u

cos u
GFx

yG (4)

If we choose the angle u so that tan 2u 5 B
A 2 C , then the resulting equation in the

new variables will contain no XY-term. The transformation equations require sin
u and cos u, which we can get from identities. Draw a reference triangle showing
2u, find cos 2u, and use the identities

sin u 5 Î1 2 cos 2u

2
, cos u 5 Î1 1 cos 2u

2
.

Once we identify the conic in the new coordinate-system, we can use the transfor-
mation equations for parametric representation of the rotated conic.

cEXAMPLE 8 A rotated conic Use transformation equations (4) to rotate
the axes to eliminate the xy-term and graph

52x 2 2 28xy 1 73y 2 5 720.

Solution

Setting tan 2u 5 B
A 2 C 5 228

52 2 73 5 4
3 , we draw the diagram in Figure 53a, from

which cos 2u 5 3
5 . Then the above identities yield

sin u 5 ! 1 2
3
5

2
5

1

Ï5
and cos u 5 ! 1 1

3
5

2
5

2

Ï5 .

Thus we rotate through an angle given by u 5 Cos21 2

Ï5
< 26.68. Substituting

these values into the transformation equations, we have

Fx
yG 5

1

Ï5
F2

1
21

2GFX
YG 5

1

Ï5
F2X 2 Y

X 1 2YG
so x 5 2X 2 Y

Ï5
and y 5 X 1 2Y

Ï5
. Now we have some messy algebra, which we leave for

you to check. Substituting for x and y, expanding, multiplying through by 5, and
collecting terms, we get

225X 2 1 0 · XY 1 400Y 2 5 3600.

Finally, we can write this last equation in the form X 2

16 1 Y 2

9 5 1, an equation
for an ellipse with major axis of 8 and minor axis of 6.

To see the graph of the original equation, we use the idea that in the new
coordinate system, we would use the parametric equations

X 5 4 cos t, Y 5 3 sin t.

12n 2u 5 4
3

FIGURE 53
52x 2 2 28xy 1 73y 2 5 720
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Since x 5 ~2X 2 Y !yÏ5 and y 5 ~X 1 2Y !yÏ5, we have

x 5
~8 cos t 2 3 sin t!

Ï5
, y 5

~4 cos t 1 6 sin t!

Ï5
.

Graphing these parametric equations with a t-range of @0, 2p# shows some-
thing like Figure 53b, where we have drawn in dashed lines to show the rotated X-
and Y- axes. b

EXERCISES 10.4

Check Your Understanding

Exercises 1–5 True or False. Give reasons

1. If (1, 3) is the focus of a parabola and (1, 21) is its
vertex, then the directrix is the horizontal line y 5 23.

2. The vertex of the parabola ~y 2 2!2 5 4~x 1 1! is a
point in the fourth quadrant.

3. The graph of y 2 5 4~x 2 2! contains points in the first
and fourth quadrants.

4. The graph of y 2 5 2~1 2 x! contains points in all four
quadrants.

5. The ellipse 3~x 2 2!2 1 4~y 2 1!2 5 12 contains no
points in the third or fourth quadrants.

Exercises 6–10 Fill in the blank with the quadrant(s) so
that the resulting statement is true.

6. The vertex of the parabola x 2 1 2x 1 4y 2 7 5 0 is
in .

7. The hyperbola ~x 2 2!2 2 ~y 1 1!2 5 1 has its ver-
tices in .

8. The graph of the parabola y 5 x 2 1 2x 1 1 contains
points in .

9. The graph of the parabola ~y 2 1!2 2 4~x 2 2! 5 0
contains points in .

10. The intersections of ~x 1 3!2 1 4~y 2 1!2 5 4 and
~x 1 3!2 2 4~y 2 1!2 5 4 lie in .

Develop Mastery

Exercises 1–6 Features of a Parabola Find coordinates
of vertex and focus, and an equation for the directrix.

1. 4x 1 y 2 2 2y 1 9 5 0

2. x 2 1 2x 2 8y 1 9 5 0

3. x 2 2 2x 1 2y 2 3 5 0

4. 9y 2 1 24y 2 12x 1 28 5 0

5. x 2 1 2x 2 6y 2 17 5 0

6. x 2 2 6x 2 2y 1 1 5 0

Exercises 7–16 Equation of Parabola Find an equation
for the parabola or parabolas satisfying the conditions.

7. Vertex ~2, 21!; D: x 5 1

8. Vertex ~2, 21!; D: y 5 0

9. Vertex ~21, 22!; contains (1, 3)

10. Vertex (2, 1); focus on the line x 1 y 5 1

11. Vertex (2, 1); focus on the line y 5 2x 1 1

12. D: x 5 2; bottom endpoint of latus rectum at (6, 2)

13. D: x 5 2; upper endpoint of the latus rectum at (6, 2)

14. F~1, 2!; one endpoint of latus rectum at (21, 2)

15. The latus rectum is the common chord of the two circles
x 2 1 y 2 2 4x 1 2 5 0 and x 2 1 y 2 2 4x 2 6y 1
8 5 0.

16. The latus rectum is the vertical diameter of the circle
x 2 1 y 2 2 2x 1 2y 5 2.

Exercises 17–21 Equation of Ellipse Find an equation
in x and y for the ellipse specified by the given conditions.

17. Foci (3, 2), (3, 22); major axis 6

18. Vertices (1, 5), (1, 1); minor axis 2

19. Vertices (3, 21), (21, 21), contains (1, 0)

20. Center (3, 21), vertex (5, 21), focus (9
2 , 21)

21. Center (23, 0), vertex (23, 3), minor axis 4

Exercises 22–26 Equation of Hyperbola Find an equa-
tion in x and y for the hyperbola specified by the given
conditions.

22. Vertices (3, 2), (3, 22), contains (4, 4)

23. Center (22, 1), vertex (22, 3), focus (22, 4)

24. Center (0, 21), vertex (2, 21), focus (3, 21)

25. Foci (4, 2), (24, 2), vertex (2, 2)

26. Vertex (1, 1), asymptotes y 5 x 2 1, y 5 2x 1 3

Exercises 27–40 Identify Translated Conics Identify
and sketch the graph of the conic section that corresponds to
the equation. Give coordinates of center and vertices.

27.
~x 2 1!2

4
2

~y 1 1!2

9
5 1

28.
~x 2 1!2

4
1

~y 1 1!2

16
5 1
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29.
x 2

8
1

~y 2 1!2

9
5 1

30.
~x 1 2!2

4
2

~y 2 2!2

16
5 1

31. Sx 1
1
2D2

1 16Sy 2
3
2D2

5 16

32. 4~x 1 1.25!2 2 ~y 2 2.5!2 5 4

33. x 2 1 6x 2 y 1 4 5 0

34. y 2 1 4y 2 3x 1 1 5 0

35. 9x 2 1 4y 2 2 18x 2 27 5 0

36. 4x 2 1 9y 2 2 8x 1 54y 1 49 5 0

37. x 2 1 y 2 1 6x 2 2y 1 6 5 0

38. x 2 1 4y 2 2 4x 2 8y 2 8 5 0

39. x 2 2 4y 2 1 2x 1 16y 2 19 5 0

40. 8x 2 2 4y 2 1 8x 1 12y 2 23 5 0

Exercises 41–48 Features of Translated Conics
Complete the squares and then write the equation in
standard form for a conic section, and graph.

41. x 2 2 6x 2 y 1 4 5 0

42. x 2 1 4x 2 3y 1 1 5 0

43. 4x 2 1 y 2 2 8x 1 4y 2 8 5 0

44. 4x 2 1 9y 2 2 18y 2 27 5 0

45. x 2 1 y 2 2 6x 1 2y 1 6 5 0

46. x 2 2 4y 2 2 2x 2 16y 2 19 5 0

47. x 2 2 y 2 2 4x 2 6y 2 9 5 0

48. y 2 2 x 2 1 6x 1 4y 2 9 5 0

Exercises 49–51 Parabolas

49. Suppose a golf ball driven off the tee travels 200 meters
down the fairway, and during its flight it reaches a max-
imum height of 50 meters. Taking the tee as the origin
of a coordinate system with positive x-axis along the
ground in the direction of the drive, find an equation
that describes the ball’s parabolic path.

50. Find an equation for the parabola with vertex at the left
focus of the ellipse 9x 2 1 25y 2 5 900 and that con-
tains the endpoints of the right latus rectum of the same
ellipse.

51. Show that the equation y 5 ax 2 1 bx 1 c, where
a 5/ 0, can be written in the form ~y 2 k! 5 a~x 2 h!2,
where h 5 2b

2a and k 5 c 2 b2

4a .

Exercises 52–53 Latus Rectum

52. Show that the length of each latus rectum of an ellipse
is 2b2

a . (Hint: Find the coordinates of the endpoints of
the vertical chord through the focus.)

53. Show that the length of each latus rectum of a hyper-
bola is 2b2

a . (Hint: Find the coordinates of the end points
of the vertical chord through the focus.)

Exercises 54–61 Rotation of Axes Transformation Equa-
tion (4) shows how to change variables when rotating axes
through an angle u. (a) Draw a diagram with an angle u
between 08 and 908 such that tan 2u 5 B

A 2 C and then
find cos 2u. (b) Use the identities sin u 5 Ï1 2 cos 2u

2 ,
cos u 5 Ï1 1 cos 2u

2 to write out transformation equations.
(c) Find a standard form equation for the curve relative to
the XY-coordinate system, identify the conic section, and
draw a graph, using the appropriate parametric equations.
See Example 8.

54. x 2 1 4xy 2 2y 2 2 6 5 0

55. x 2 2 4xy 2 2y 2 2 6 5 0

56. x 2 2 Ï3xy 1 2y 2 2 10 5 0

57. 4x 2 2 3xy 2 18 5 0

58. x 2 1 8xy 1 7y 2 2 1 5 0

59. x 2 1 Ï3xy 1 2y 2 2 5 5 0

60. 9x 2 2 6xy 1 17y 2 2 72 5 0

61. x 2 1 3xy 1 y 2 2 10 5 0

Exercises 62–65 Explore

62. Find an equation for the set of points P that are equidis-
tant from F1~1, 1! and the line D: x 1 y 1 2 5 0.
(Hint: Use Equation (4) from Section 10.1 for the dis-
tance from a point to a line.)

63. Given F1~1, 1! and F2~21, 21!, find an equation for the
set of points P such that the sum of the distances,
_PF1 _ 1 _PF2 _ , equals 4.

64. (a) From the definitions of conic sections, describe the
kinds of curves you should have for the graphs of
your equations in Exercises 62 and 63.

(b) Use the transformation Equations (4) for rotation
of axes and identify the graph of the rotated conic
in Exercise 62.

(c) Repeat part (b) for the conic in Exercise 63.

65. Distance to an Ellipse
(a) Use the techniques of Section 10.2 to find the dis-

tance (1 decimal place) from the point P~4, 2! to the
ellipse x 2 1 25y 2 5 25 and the point on the ellipse
nearest P.

(b) Explain why the point on the ellipse nearest P is not
on the line from P to the center O of the ellipse.
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10.5 P O L A R C O O R D I N A T E S

In such examples as Lobachevsky’s non-Euclidean geometry, or Cayley’s matrix
theory, or Galois’ and Jordan’s group theory, or the algebraic topology of the
mid-twentieth century, pure mathematics seemed to have left far behind any
physical interpretation or utility. And yet, in the cases mentioned here, and
many others, physicists later found in these “useless” mathematical
abstractions just the tools they needed.

Reuben Hersh

In Section 10.4 we considered alternative ways to get equations for given plane
curves by changing coordinate systems from one rectangular system to another.
Now we consider an entirely different way to name points using distances and
angles: polar coordinates.

For polar coordinates, we begin with a single point O, which we call the pole.
From the pole we take an initial ray called the polar axis, as shown in Figure 54.
To each point P in the plane we assign an ordered pair @r, u#, where r is the directed
distance from O to P, and u is a directed angle from the polar axis to OP. We use
the convention for positive and negative angles from Chapter 5 (counterclockwise
is positive, clockwise is negative). We may use either radian- or degree-measure
for u. The ray OP from the pole through P is the u-ray.

Rectangular coordinates allow precisely one ordered pair ~x, y! for every point
in the plane. Polar coordinates for a given point are never unique. For instance, if
P is the point 3 units from O along the 608 ray, then both @3, 608# ~or in radian
measure @3, p

3#! and @3, 23008# are names for P. See Figure 55. In fact, because
infinitely many different angles are coterminal with OP, there are infinitely many
polar coordinate names for P.

Furthermore, in addition to multiple angle names, another option arises.
We said that r is a directed distance, implying that r can assume positive or negative
values. For a negative number r, to reach the point @r, u#, we go r units in
the opposite direction. We can reach the point P@3, 608# by going 23 units along
the 2408 ray, so that @23, 2408# is yet another name for P. See Figure 56. For the
pole, @0, u# names the pole for any angle u.

cEXAMPLE 1 Polar coordinate names for a point Point P is 4 units from
the pole O along the 2308 ray. Describe all possible polar coordinate names (using
degree measure) for P.

Solution
First draw a diagram to show P. See Figure 57. Clearly, one name for P is
@4, 2308#, but an angle name can be any angle coterminal with 2308, so P can be
named by any of the pairs @4, 2308 1 k · 3608# where k is any integer. We can also
reach P by going 4 units in the opposite direction on the 1508 ray. Hence P can be
named as well by @24, 1508 1 k · 3608# for any integer k. b

Relating Polar Coordinates and Rectangular Coordinates

If we want the option of choosing either polar or rectangular coordinate equations
for a given curve, we must be able to relate the two systems. Take the pole O at the
origin of the xy system and the positive x axis as the polar axis. With the diagram

FIGURE 54

FIGURE 55
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in Figure 58, we can read off the relations between polar and rectangular coordi-
nates for a given point P.

Polar–rectangular coordinate transformation equations

x 5 r cos u and y 5 r sin u (1)

r 2 5 x 2 1 y 2 and tan u 5
y
x

(2)

cEXAMPLE 2 Polar BA rectangular Use the polar–rectangular coordinate
transformation equations to

(a) express P@4, p
6# and Q@22, 908# in rectangular coordinates, and

(b) express A~22, 2! and B~21, 0! in polar coordinates.

Solution

(a) Follow the strategy. See Figure 59a. From transformation Equations (1), for P

x 5 4 cosSp

6D 5 4 ·
Ï3

2
5 2Ï3 y 5 4 sinSp

6D 5 4 ·
1
2

5 2.

FIGURE 59

Strategy: Begin with a dia-
gram that shows P and Q,
and one for A and B, and
use Equations (1) and (2).

At that time [in high
school] I became interested
in chemistry. When I
discovered that I could
integrate things such as
~1 1 ax 1 bx2!21y2, a
specialist . . . recommended
that I read some calculus
books. However, books of
all kinds were unavailable
locally.

Lucien Le Cam

FIGURE 56 FIGURE 57 FIGURE 58
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Similarly, for Q,

x 5 22 cos 908 5 22~0! 5 0 y 5 22 sin 908 5 22~1! 5 22.

Thus both @4, p
6 # and ~2Ï3, 2! are names for point P, while @22, 908# and

~0, 22! both represent point Q.

(b) From transformation Equations (2), for A choose r and u to satisfy

r 2 5 ~22!2 1 22 5 8 and tan u 5 ~22!y2 5 21.

One such pair is r 5 2Ï2 and u 5 1358, so point A has names ~22, 2! and
@2Ï2, 1358#. For B,

r 2 5 ~21!2 1 02 5 1 and tan u 5 0y~21! 5 0.

We can take r 5 1 and u 5 1808, or take r to be 21 and any value of u that
is coterminal with 08, so ~21, 0!, @1, 1808#, and @21, 08# are all names for B.
See Figure 58b. b

cEXAMPLE 3 Rectangular to polar equation Express the equation
x 2 1 y 2 2 2y 5 0 in polar coordinates.

Solution
Follow the strategy. Using the identity cos2 u 1 sin2 u 5 1,

~r cos u!2 1 ~r sin u!2 2 2~r sin u! 5 0,

r 2~cos2 u 1 sin2 u! 2 2r sin u 5 0, r 2 2 2r sin u 5 0.

Simplifying and dividing by r,

r 5 2 sin u.

Since we cannot divide by 0, we must check to see that we do not lose the point
where r 5 0 (the pole) when we divide by r. The pole (r 5 0) satisfies
r 2 2 2r sin u 5 0, so we want to see if there is still a value of u for which the pole
is on the graph. When u 5 0, then r 5 2 sin 0 5 0, so @0, 0# is still on the
graph. b

cEXAMPLE 4 Polar to rectangular equation Express the polar equation
r 5 4

2 sin u 2 cos u in terms of rectangular coordinates.

Solution
Write the given equation as r~2 sin u 2 cos u! 5 4, or as 2~r sin u! 2
~r cos u! 5 4. Using transformation Equations (1), replace r sin u by y and r cos u
by x to get

2y 2 x 5 4.

Since the graph of 2y 2 x 5 4 is a line, the graph of r 5 4
2 sin u 2 cos u is the same

line. b

Strategy: Use x 5 r cos u
and y 5 r sin u. Simplify.
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r
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31O
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Polar Functions, Graphs, and Technology

So far in this course we have devoted considerable attention to drawing graphs of
functions in rectangular coordinates. The analogous situation in polar coordinates
is graphing functions expressible as r 5 f ~u!. In many cases we can express the
polar equation in rectangular form and draw the graph using familiar techniques.
For many polar functions, though, the equation in x and y is difficult to handle and
it is easier to draw the graph directly from the polar equation. We will look at
examples of both kinds of equations, those that are fairly easy to translate into
recognizable rectangular equivalents, and those for which it is easier to draw the
graph directly in polar form.

Your graphing calculator graphs beautifully and efficiently in polar coordi-
nates, as it does in rectangular coordinates. For most calculators there is a POLAR

mode, chosen in much the same way as you choose the FUNCTION or PARAMETRIC mode.
Once you have set POLAR mode, you simply enter the function in the form

r 5 f ~u!, choose an appropriate u-range, and graph. The exceptions are the TI-81
and the HP-48, as described in the Technology Tip that follows.

TECHNOLOGY TIP r Polar graphing on the HP-48 and TI-81

HP-48 There is a u-character available, but most of us find it easier to use x
as the independent variable. Choose POLAR as the plot type and enter the
function to be graphed in tick marks, as usual.
TI-81 There is no separate polar graphing mode, so polar equations are
entered in parametric mode with the variable t, using the transformation
equations x 5 r cos t, y 5 r sin t. For a function r 5 f ~u!, enter
x 5 f (t) cos t , y 5 f (t) sin t . Thus, to graph r 5 sin 2u, use

x 5 ~sin 2t! cos t, y 5 ~sin 2t! sin t.

cEXAMPLE 5 Polar graphing Draw a graph of the equation r 5 2.

Solution
Since the r-coordinate of a point measures the distance from the pole, the equation
r 5 2 is satisfied by all points that are 2 units from the pole, precisely the condition
for the circle centered at the origin with radius 2. See Figure 60. In this case, we
can also translate to rectangular coordinates. Squaring both sides of the equation
and using transformation Equations (2),

r 2 5 4 or x 2 1 y 2 5 4,

the familiar form for the equation of the circle. We must be careful about introduc-
ing extraneous points when squaring both sides, but in this instance we already saw
that all points of the circle satisfy the original equation.

With a graphing calculator we can graph the equation r 5 2 directly. Make
sure that the u-range includes a full revolution (for example, @0, 2p# or @2p , p#).
You should check to see that graphing with a smaller u -range produces only a part
of the circle. b

FIGURE 60
Graph of r 5 2.
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cEXAMPLE 6 Polar graphing Draw a graph of the function r 5 2 sec u.Strategy: Try some
equivalent forms, looking for
r cos u, r sin u, or r 2. Solution

The transformation equations involve certain expressions listed in the Strategy.
Since sec u 5 1

cos u , multiply through by cos u:

r~cos u! 5 ~2 sec u!~cos u! or r cos u 5 2.

For this equation, the transformation Equations (1) yield

x 5 2,

an equation that describes the vertical line in Figure 61.
Again, the calculator draws the graph without our identification of the graph in

rectangular coordinates. If you use the u -range of @0, 2p#, observe where the graph
begins and ends. b

Dynamic graphing. One of the great benefits of graphing technology is being
able to watch the graph being drawn, rather than simply looking at a set of points
after the graph is finished. This is particularly important in the case of polar
coordinate graphing because we want to see how r varies with u. We are used to
thinking about the independent variable, the x-coordinate, increasing from left to
right, as we see a graph drawn in rectangular coordinates. In contrast, when
graphing a function of the form r 5 f ~u!, the independent variable is u, so the
graph is traced out in a path moving counterclockwise about the pole.

In many examples of polar coordinate graphing, it is helpful to have a second
graph to show the way the u -variable changes, as illustrated in the next couple of
examples.

cEXAMPLE 7 Another circle For the function r 5 2 sin u,

(a) change to rectangular coordinates and identify the graph, and
(b) draw a calculator graph of r 5 2 sin u and of r 5 2 simultaneously on the

same screen, first using a u -range of @0, p# and then with a u -range of @0, 2p#.
Explain the differences you observe.

Solution

(a) We saw in Example 3 that the equation r 5 2 sin u is equivalent to x 2 1 y 2 2
2y 5 0. Without having just seen that example, how would we go about chang-
ing to rectangular coordinates? As we observed in Example 6, the most conve-
nient expressions involve r cos u, r sin u, or r 2. In this case, multiplying both
sides by r gives two such expressions:

r 2 5 2r sin u

from which

x 2 1 y 2 5 2y.

Completing the square yields x 2 1 ~y 2 1!2 5 1, whose graph is a circle of
radius 1.

(b) Entering r 5 2 sin u and r 5 2 and graphing with a u -range of @0, p#, we see
a small circle tangent to a semicircle, as in Figure 62a. Using @0, 2p# for the
u -range, we get the two circles in Figure 62b.

FIGURE 61
Graph of r 5 2 sec u.

r 5 2 sin u, r 5 2,
0 # u # p .

FIGURE 62

r 5 2 sin u, r 5 2,
0 # u # p .

r 5 2 sin u, r 5 2,
0 # u # 2p .
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The inner, smaller circle is completed as u increases from 0 to p , but the larger
circle, r 5 2, requires a full revolution, @0, 2p#. What happens with the smaller
circle as u varies from p to 2p? We can see the answer as we trace around the
smaller circle. As we noted in Figure 62a, we complete the circle as u goes from
0 to p . Then, as u increases around to 2p , the circle is traced out again. It is
instructive to jump back and forth between the two circles, noticing that we always
remain on the same line through the origin, on the same or opposite sides of the
same u -ray.

Compare the sine curve y 5 2 sin x in Figure 63. The polar graph plots the
y-value as the r-distance out along the u -ray. In the first two quadrants, where y, and
hence r, is positive, we get the entire circle r 5 2 sin u in Figure 62a. Then, in the
third and fourth quadrants, r is negative, so the smaller circle is tranced out again
with negative values of r. As a specific example, we show a point A on the graph
of r 5 2 sin u and the corresponding points on the graph r 5 2 (Figure 62b) and
on the graph of y 5 2 sin x. b

The dynamic view is even more important in the next example. There is no
equivalent rectangular equation that is any easier to graph than the relatively
simple polar equation r 5 sin 2u. You may check this by using the identity sin 2u 5
2 sin u cos u and multiplying through by r 2. This yields

r 3 5 2~r cos u!~r sin u!,

which is equivalent to

~x 2 1 y 2!3y2 5 2xy,

certainly not much of an improvement in terms of graphing.

cEXAMPLE 8 A “rose” Graph the function r 5 sin 2u, indicating the por-
tions of the graph where r is positive and where r is negative. After graphing
r 5 sin 2u, add the graph r 5 1 for reference.

Solution
The calculator shows a graph like Figure 64. This graph is sometimes called a
“4-leafed Rose”. We have labeled the leaves of the rose in the order in which they
are traced out. When we add the graph r 5 1, we can see that a leaf (or petal) is
traced out as the variable u goes through each quadrant in turn, giving an additional
meaning to the label numbers in Figure 64.

By comparing the polar graph to the sine curve y 5 sin 2x in Figure 65, we can
see that as x increases from 0 to p

2 , y increases from 0 to 1 and then back to 0. The
corresponding portion of the polar graph is the first leaf, where r goes from 0 (at
the pole), out to 1, and back to the pole. Then in the next quadrant, y (and hence r)
is negative; r decreases from 0 to 21 (1 unit away from the pole in the negative
direction), and then back to the pole at p . Tracing along the rose or the enclosing
circle r 5 1 and jumping back and forth makes it clear that r is positive in the first
and third quadrants, negative in the second and fourth. b

Other Polar Graphs

No brief introduction can do more than touch on the tremendous variety of useful
polar graphs. The kinds of polar curves you are most likely to encounter in calculus
are illustrated in the Brief Catalog. All of the graphs in the catalog can be sketched
as illustrated in this section.

FIGURE 63

FIGURE 64
Graph of r 5 sin 2u.

FIGURE 65
Rectangular coordinate graph

of y 5 sin 2x.
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Brief catalog of curves and graphs in polar coordinates

Assume that a, b, d, and a are given constants.

Line: r cos~u 2 a! 5 d

u 5 a

Circle: r 5 6a

r 5 6a sin u

r 5 6a cos u

Rose: r 5 a sin nu

r 5 a cos nu

For 0 # u # 2p , there are n petals if n is odd (each traced twice); 2n petals
if n is even (each traced once).

Limaçon and cardioid: r 5 a 6 b sin u

r 5 a 6 b cos u

There is an inside loop if a , b, just an indentation if a . b, and if a 5 b,
the curve is a cardioid (heart-shaped).

Lemniscate: r 2 5 6a2 sin 2u

r 2 5 6a2 cos 2u



r =  uu, u > 0

A
B

H
G

D

E
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r = 1
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Spiral: r 5 6au

Looking Ahead to Calculus: Intersections of Polar Curves

A frequent source of difficulty in calculus is the problem of finding intersections of
polar curves and of describing regions for computing area. The proper use of
technology can make both ideas much more tractable. We illustrate in the next
example.

cEXAMPLE 9 Intersections and inequalities Consider the circle and the
rose with respective equations

r 5 1 and r 5 2 cos 2u.

(a) Find coordinates of all points of intersection of the two curves.
(b) Write a system of inequalities to describe the set of points that are outside the

circle but inside the right-most leaf of the rose.

Solution

(a) We begin by drawing the two functions on the same screen. See Figure 66.
There are clearly eight intersection points. To solve the two equations, we can
eliminate the variable r by setting the two equal, obtaining 2 cos 2u 5 1. We
use techniques from Chapter 6 to find that the solutions in the interval @0, 2p#
are given by u 5 p

6 , 5p
6 , 7p

6 , and 11p
6 . These four solutions lie on the two

horizontal leaves of the rose. Where are the intersection points on the vertical
leaves?

If we trace along the curves, jumping back and forth from one to the other,
the answer becomes apparent. As we approach the point marked A, the rectan-
gular coordinates on both curves approach ~Ï3

2 , 1
2!, which is equivalent to

@1, p
6 #. Continuing along the circle toward point B, the coordinates near ~1

2 , Ï3
2 !,

but when we jump to the rose, the cursor nears the point F~2 1
2 , 2 Ï3

2 !. If we
stay on the rose, we don’t reach B until u nears 4.19, about 4p

3 . The rectangular
coordinates are again near ~1

2 , Ï3
2 !, but the point B has different polar coordi-

nates on the rose than it does on the circle, a common occurrence with polar
graphs. Polar coordinates for B on the circle are @1, p

3 #, and the same point on
the rose has polar coordinates @21, 4p

3 #.
Putting all of this together (and using the obvious symmetries), the eight

intersection points in rectangular coordinates are ~6 Ï3
2 , 1

2!, ~6 1
2 , Ï3

2 !,
~6 Ï3

2 , 2 1
2!, ~6 1

2 , 2 Ï3
2 !.

(b) With the intersection points identified, it is fairly straightforward to write
inequalities for the desired region, which we have shaded in Figure 66. We
want r-values that are greater than the r-values of the circle and less than the

FIGURE 66

BS1
2

,
Ï3

2 D has polar

coordinates F1,
p

3G on the

circle and F21,
4p

3 G on the

rose.
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r-values of the rose, between the u-values of 2 p
6 and p

6 , suggesting the inequalities

1 , r , 2 cos 2u, 2
p

6
# u #

p

6
.

Thus the region is the set

H@r, u# _ 1 , r , 2 cos 2u, 2
p

6
# u #

p

6J. b

EXERCISES 10.5

Check Your Understanding

Exercises 1–5 True or False. Give reasons. Throughout,
the notation is the same as in the text: ~x, y! is the name of
a point relative to the rectangular coordinate system and
@r, u# names a point in polar coordinates.

1. Another name for ~1
2 , Ï3

2 ! is @1, p
3 #.

2. Another name for @22, 5p
4 # is ~2Ï2, Ï2!.

3. Point @1, 2 p
3 # belongs to the graphs of both r 5 1 and

r 2 2 4r cos u 1 1 5 0.

4. The graph of r 2 2 4r cos u 5 0 is a circle.

5. The graph of r 5 2 sin u contains points in all four
quadrants of the rectangular coordinate system.

Exercises 6–10 Fill in the blank so that the resulting
statement is true.

6. Another name for point @2, p# is .

7. Another name for point ~2, 22! is .

8. The center of the circle r 5 24 cos u is .

9. The graph of r~cos u 2 sin u! 5 4 is a line that con-
tains no points in Quadrant .

10. The graph of u 5
p

4
is a line that passes through

Quadrants .

Develop Mastery

Exercises 1–4 Rectangular/Polar Coordinates Draw a
diagram that shows the given points. Give both rectangular
coordinates and two different sets of polar coordinates for
each point.

1. AF2,
p

3G; BF22,
p

3G 2. A~0, 22!; B~22, 0!

3. A~Ï3, 21!; BF2, 2
p

4G 4. A~1, 1!; B@1, 1#

Exercises 5–8 Verbal to Coordinates Draw a diagram
that shows the points described. Give both rectangular
coordinates and two different sets of polar coordinates.
O denotes the pole.

5. P is 2 units from O on the 5p
6 line; Q is the reflection of

P through O.

6. P is 24 units from O on the p-line; Q is the reflection
of P through the p

4 line.

7. A, B, and C are the vertices of the equilateral triangle
with sides of length 2, A on the positive y-axis, and the
side opposite A is on the x-axis.

8. P and Q are the points of intersection of the circles
x 2 1 y 2 5 1 and ~x 2 2!2 1 y 2 5 3.

Exercises 9–15 Rectangular to Polar Equations
Express the equation in polar coordinates. If the pole is on
the graph, find the smallest nonnegative value of u for which
@0, u# satisfies the equation, then sketch the graph.

9. x 2 1 y 2 5 4 10. x 2 1 y 2 2 4x 5 0

11. x 5 3 12. Ïx 2 1 y 2 2 2 5 0

13. y 5 3x
14. x 2 1 y 2 2 Ïx 2 1 y 2 5 y

15. x 2 1 y 2 2 2x 1 2y 5 0

Exercises 16–25 Polar to Rectangular Equations Ex-
press the equation in rectangular coordinates and sketch the
graph.

16. r 5 3 17. r 5 22

18. r 5 3 cos u ~Hint: Multiply by r.!

19. r sec u 5 24 20. u 5
2p

4

21. u 5
3p

4
22. r~cos u 2 sin u! 5 1



r = 1

r = 2 sin 2 uu

r = 1

r = 2 sin 2 uu

r = 1

r = 1 + cos  uu

r = 1 – cos  uu r = 1 + cos  uu
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23. r 5 sin2 u 1 cos2 u

24. r 5 2Ï2 sin Su 1
p

4 D
25. r 2 2 2Ï3 r cos u 2 2r sin u 5 12

Exercises 26–32 Graph Polar Equations Graph the
equation. Use your calculator and the Catalog of Polar
Curves. Identify any portion of the curve where r is nega-
tive.

26. r 5 3 cos u (circle)

27. r 5 cos 3u ~rose!

28. r 5 2 2 cos u ~limaçon!

29. r 5 2 1 2 cos u ~cardioid!

30. r 2 5 sin 2u ~lemniscate!

31. r 5 cos2 u 2 sin2 u ~rose!

32. r 1 u 5 0 (spiral)

Exercises 33–39 Compare Polar Graphs Compare the
graphs of the pair of equations and write a brief paragraph
describing your observations, including the dynamic as-
pects of the graph.

33. r 5 2 34. r 5 3 cos u
r 5 22 r 5 cos 3u

35. r 5 sin u 36. r 5 1 1 cos u
r 5 sin u 1 1 r 5 1 2 cos u

37. r 5 2 1 2 cos u 38. r 5 1 1 2 sin u
r 5 3 1 2 cos u r 5 2 1 1 sin u

39. r 5 u
r 5 2u

Exercises 40–45 Intersections of Polar Curves First
sketch the graphs of the pair of equations and observe that
the graphs intersect. Find points of intersection.

40. r 5 cos u 41. r 5 1 1 cos u
r 5 2sin u r 5 1 2 cos u

42. r 5 2 sin 2u 43. r 5 2 1 4 cos u
r 5 1 r 5 3

44. r 5 2 1 4 cos u 45. r 2 5 24 sin 2u
r 5 2 cos u r 5 1

Exercises 46–50 Intersecting Polar Graphs Give the
quadrants in which the graphs of the two equations inter-
sect.

46. r 5 3, r 5
2

cos u 2 sin u

47. r 5 1 1 cos u, r 5
3

3 cos u 2 2 sin u

48. r 5 2sec u, r 5 2 1 sin u

49. r 5 2 cos u, r 5
2

1 1 cos u

50. r 5
4

1 2 cos u
, r 5

3
1 1 0.5 cos u

Exercises 51–56 Inequalities for Regions Write a set of
inequalities to describe the shaded region. It may be neces-
sary to use two separate inequalities for different u-ranges.

51.

52.

53.

54.



r = 1 + 2 cos  uu

r = 1

r = 1 + sin  uu
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55.

56.

Exercises 57–58 Explore: Conic Sections in Polar Coor-
dinates.

57. (a) Convert each equation to rectangular coordinates
and identify the conic section:

r 5
2

1 2 cos u
r 5

2
1 1 cos u

CHAPTER 10 REVIEW

Test Your Understanding

Exercises 1–30 True or False. Give reasons.

1. The graph of x 2 1 y 2 2 4 5 0 is a circle.

2. The graph of y 2 5 x 2 2 1 is a hyperbola.

3. The graph of y 2 5 9 1 4x 2 is an ellipse.

4. The graph of x 2 1 y 1 4 5 0 is a parabola.

5. The graph of x 2 1 y 2 5 21 is a circle.

6. The graph of x 2 2 y 2 5 0 is a hyperbola.

7. The graph of 9x 2 2 y 2 5 0 consists of two intersecting
lines.

8. The graph of y 5 Ï4 2 x 2 is a semicircle.

9. The graph of y 5 Ï1 1 4x 2 is half of an ellipse.

10. The graph of y 5 2Ï1 2 4x 2 is half of an ellipse.

11. The graph of x 2 1 y 2 2 2x 1 4y 1 6 5 0 is a circle.

12. The graph of 0.5x 2 1 0.5y 2 5 2 is a circle of radius 2.

(b) Do the same for

r 5
2

1 1 ~1
2! cos u

r 5
2

1 1 2 cos u

58. What conic section is represented by the equation

r 5
2

1 1 b cos u

for various values of b? Write a brief paragraph to give
your guess and describe your reasons. What is the effect
of using a different numerator, say 1 or 22? What
would happen if sin u replaced cos u?

Exercises 59–61 Explore New Forms

59. Use an identity to convert the polar equation
r cos~u 1 p

6 ! 5 2 to rectangular coordinates in the
form ax 1 by 5 c. Sketch the graph.

60. Use an identity to convert the polar equation
r cos ~u 2 a! 5 d into rectangular coordinates. The
result is an equation for a line called normal form.

61. By converting to rectangular coordinates, show that
r 5 a cos u 1 b sin u is an equation for a circle. Find
the center and the radius.

13. The graph of xy 5 4 is a hyperbola.

14. The graph of x 2 1 2y 2 2 2x 1 4y 2 8 5 0 is an el-
lipse.

15. Every hyperbola has two asymptotes that intersect at
the point midway between the foci of the hyperbola.

16. The line y 5 x is an asymptote for the hyperbola
~x 2 1!2 2 ~y 2 1!2 5 1.

17. Every point inside the circle x 2 1 y 2 5 4 is also inside
the ellipse x 2 1 2y 2 5 2.

18. Every point inside the ellipse x 2 1 4y 2 5 4 is also in-
side the circle x 2 1 y 2 5 4.

19. The graphs of x 2 1 4y 2 5 4 and 4x 2 1 y 2 5 4 inter-
sect in four points.

20. Point ~1, 2! is inside the graph of 3x 2 1 4y 2 5 12.

21. The graph of r 5 cos u is a circle of radius 0.5.

22. The graph of r 5 _ cos u _ is a semicircle.
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23. The graph of r 5
1

sin u 1 cos u
is a line.

24. The polar coordinates @21, p
4 # and @1, 2 3p

4 # represent
the same point.

25. Point @21, p# is inside the circle r 5 2 cos u.

26. The graph of Hx 5 sin t
y 5 cos2 t is part of a parabola.

27. The graph of Hx 5 sin t
y 5 _ cos t _ is a circle with its center at

the origin.

28. The graph of Hx 5 _ sin t _

y 5 _ cos t _ is a quarter-circle.

29. The graph of Hx 5 2t
y 5 t 2 is a parabola with its focus at

~21, 0!.

30. The graph of Hx 5 2 1 sin t
y 5 1 1 2 cos t is an ellipse with its

center at ~2, 1!.

Review for Mastery

Exercises 1–6 Foci and Vertices Find the vertices and
foci for the conic section.

1.
x 2

9
1

y 2

25
5 1 2.

x 2

25
1

y 2

9
5 1

3.
x 2

9
2

y 2

25
5 1 4.

y 2

9
2

x 2

25
5 1

5.
~x 2 1!2

9
1

~y 1 2!2

25
5 1

6.
x 2

9
2

~y 1 1!2

16
5 1

Exercises 7–17 Verbal to Equation For the conic sec-
tion specified by the given information, write an equation in
standard form. Some may have more than one solution.

7. Circle: center ~22, 1!, radius 3

8. Circle: center (0, 23), radius Ï5

9. Parabola: focus (3, 0), vertex ~0, 0!

10. Parabola: directrix x 5 5, axis y 5 1, contains ~0, 4!

11. Ellipse: center ~1, 4!, focus ~1, 2!, vertex ~1, 0!

12. Ellipse: foci ~4, 21! and ~0, 21! vertex ~5, 21!

13. Hyperbola: center ~1, 21!, focus ~4, 21!, vertex
~3, 21!

14. Hyperbola: vertices ~1, 3! and ~1, 21!, focus ~1, 22!

15. Parabola: focus ~3, 1!, directrix x 5 2

16. Parabola: focus ~3, 1!, directrix y 5 2

17. Parabola: vertex ~3, 21!, contains the ends of a diame-
ter of the circle x 2 1 y 2 2 6x 2 4y 1 9 5 0

Exercises 18–23 Identify Conic Sections Identify the
type of conic section defined by the equation and sketch the
graph. For a circle, give the center and radius; for a
parabola, give the focus and vertex; for an ellipse, give the
center and the lengths of the major and minor axes; for a
hyperbola, give the center, vertices, and asymptotes.

18. x 2 1 y 2 1 2x 2 4y 1 1 5 0

19. x 2 2 2x 1 2y 5 5

20. 9x 2 1 4y 2 2 8y 2 32 5 0

21. x 2 1 y 2 5 2y 1 2

22. x 2 2 9y 2 2 4x 2 5 5 0

23. x 2 5 2x 1 y

24. Explore: Derive Equations Find an equation for the
set of points P (x, y) such that the distance _ PF _ 5 kd,
where F is point (1, 2) and d is the distance from P to
the x-axis, for the values of k: (a) k 5 1, (b) k 5 2,
(c) k 5 2

3 . Make a guess about the kind of curve
defined.

Exercises 25–30 Graphing Parametrically Sketch the
graph of the curve determined by the parametric equations.
Identify the kind of curve defined.

25. x 5 2t, y 5 Ï4 2 4t 2

26. x 5 2t 2 1, y 5 3 2 6t

27. x 5 Ït 2 1 2 1, y 5 2Ït 2 1 1 3

28. x 5 cos t, y 5 2cos t

29. x 5 4t, y 5 2t

30. x 5 1 1 sin t, y 5 1 2 sin t

Exercises 31–40 Your Choice Find a standard form
equation for a conic section satisfying the conditions.

31. Ellipse; foci are in the first and fourth quadrants.

32. Ellipse; foci are in the third and fourth quadrants.

33. Ellipse; foci are both in the second quadrant.

34. Parabola; vertex in the fourth quadrant, graph contains
points in all quadrants.

35. Parabola; vertex in the third quadrant, graph contains
no points in the first quadrant.

36. Parabola; vertex in the third quadrant, graph contains
no points in the second quadrant.

37. Hyperbola; vertices are in the first and second quad-
rants, graph is symmetric about the line x 5 1.

38. Hyperbola; vertices are in the third quadrant, graph
does not meet line y 5 22.

39. Circle; center in the second quadrant, tangent to both
axes.

40. Circle; center in fourth quadrant, interior contains
points in just three quadrants.
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Exercises 41–44 Equations for Lines Find an equation
for the set of points equidistant from the given lines. (Hint:
Draw a picture, and use the formula for the distance from
an arbitrary point P (x, y) to each line.)

41. x 1 2y 5 4 42. y 5 2x
2x 1 4y 5 15

y 5
x
2

43. y 5 x 44. y 5 2x
y 5 0 4x 2 2y 5 6

Exercises 45–48 Distance from Point to a Conic Find
the distance from the point to the given conic, and find the
point on the conic nearest the given point.

45. P~4, 0!; circle ~x 2 1!2 1 ~y 2 1!2 5 1

46. P~22, 5!; parabola x 5 t 2 2 1, y 5 t

47. P~24, 21!; parabola y 1 4 5 ~x 2 2!2

48. P~1, 27
2!; rotated hyperbola y 5

1
x

49. Property of an Ellipse Given the ellipse
x 2

a2 1
y 2

b 2 5 1 labeled as shown in the diagram, show

that
_ AB _

_ CF _
5

_ CF _

_ BE _
.

Exercises 50–54 Polar Coordinate Graphs Sketch the
graph of the curve defined by the polar coordinate equation
and indicate the portion where r is positive.

50. r 2 5 4 cos 2u 51. r 5 2 2 Ï3 cos u

52. r 5 Ï3 2 2 cos u 53. r 5 Ï3 1 Ï3 sin u

54. r 5 Ï3 2 Ï3 sin u

Exercises 55–56 Intersections of Polar Curves Sketch
the two curves and find their points of intersection.

55. r 5 2 cos u; r 5 sin u 1 cos u

56. r 2 5 2 sin 2u; r5 1

Exercises 57–60 Intersection Points Find the intersec-
tion point(s) of the curves C1 and C2 given by parametric
equations.

57. C1 : x 5 1 1 2t, y 5 3 2 4t, C2 : x 5 2 2 3t,
y 5 1 1 t

58. C1 : x 5 2 1 5 cos t, y 5 1 2 5 sin t, C2 : x 5 5t,
y 5 23t

59. C1 : x 5 sin t, y 5 cos2 t, C2 : x 5 t, y 5 2t

60. C1 : x 5 2 1 sin t, y 5 24 1 cos2 t, C2 : x 5 t,
y 5 24t

Exercises 61–62 Deriving Parametric Equations

61. Given the two concentric circles in the diagram, a line
at angle u from the positive x-axis intersects the circles
in points A and B. Point P~x, y! has the same y -
coordinate as A and the same x- coordinate as B. Using
the right triangles, find parametric equations in terms of
u for the curve traced out by P.

62. Let Q be the point shown in the diagram for Exercise
46. Find parametric equations in terms of u for the
curve traced out by Q.
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APPENDIX

How They Came to Mathematics

The quotations included in the margins throughout the book are all from prominent
contemporary mathematicians, most of them still active professionally. Too often
we get the impression that mathematics somewhow sprang full-blown from the
brow of Zeus, without human intervention or participation. Quite to the contrary—
mathematics is an intensely human creation, requiring the passionate involvement
of people who find satisfaction (and fun) in thinking about its puzzles. The field is
growing today faster than at any time in the past. The people who contribute to the
creation of mathematics vary as much as those engaged in any other human
endeavor. No one has succeeded very well in defining mathematical talent, but it
is clear that talent is not limited to individuals of any particular gender or race, and
mathematical discoveries have been made by high school students as well as by
mature professionals.

The statements we quote are all taken from larger contexts, from interviews or
from writings. They are intended to give just a flavor of the variety of backgrounds
and interests of those who decided to spend much of their lives with mathematics.
Each person came to mathematics differently; some got caught almost accidentally,
others found the subject fascinating from the beginning. The capsule biographies
that follow cannot do justice to the rich and complex lives of the individuals quoted,
but they may give an idea of the stature of people who began significant careers in
ordinary ways. Many of our quotations were taken from a series of interviews
conducted by Donald J. Albers and Gerald L. Alexanderson, now available in two
books: Mathematical People (published by Birkaüser Boston) and More Mathemat-
ical People (Harcourt, Brace, Jovanovich, with Constance Reid as coeditor).

Lipman Bers was born in what is now Latvia. He fled fascism several times in his
life, first to study mathematics in Germany and then in Czechoslovakia, and
ultimately to the United States. He taught for years at Columbia University and
wrote technical books (Partial Differential Equations, Mathematical Aspects of
Subsonic and Transonic Gas Dynamics) as well as Calculus. He was president
of the American Mathematical Society and was a member of the American
Academy of Arts and Sciences.

Garrett Birkhoff is the son of one of the first American mathematicians to achieve
international recognition. The younger Dr. Birkhoff became a world-renowned
mathematician in his own right and taught at Harvard for 45 years. His book, A

603
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Survey of Modern Algebra, co-authored with Saunders MacLane, placed an
indelible stamp on mathematics curricula and affected the training offered by
colleges and universities throughout the nation.

David Blackwell planned originally to be an elementary school teacher but earned
instead a Ph.D. in mathematics. After a dozen years at Howard University, he
was invited to teach mathematical statistics at the University of California at
Berkeley. He is deeply interested in understanding ideas thoroughly enough to
communicate them to his students, who have responded by making Dr. Black-
well one of the most honored teachers at Berkeley.

Ralph P. Boas, Jr. was born in Walla Walla, Washington. He “drifted” into math-
ematics because, he claimed, he “was too clumsy to be a chemist.” He did his
doctoral work at Harvard, with postdoctoral study at Princeton. In addition to
chairing the Mathematics Department at Northwestern University in Chicago
for many years, he edited both Math Reviews and the American Mathematical
Monthly and served as president of the Mathematical Association of America.

Paul Cohen grew up in Brooklyn. He was one of four national Westinghouse
Science Talent Search winners from his high school graduating class. Now at
Stanford, Dr. Cohen has won two of the most prestigious awards available to
mathematicians: the Bôcher Prize and the Fields Medal (the mathematical
equivalent of the Nobel Prize). Much of his international reputation comes from
his proof of the independence of the continuum hypothesis, one of the most
fundamental problems in set theory, where he showed that we can neither prove
nor disprove Cantor’s conjecture.

John Horton Conway is at home on two continents (at Cambridge and Princeton
universities). His delight in mathematics as a glorious game infects almost
everyone who works with him. An accomplished Rubik’s cubologist, he analyzes
the mathematical games of others as well as inventing his own. He loves to sit
in the Commons Room and lock horns with all comers. Much of his serious
mathematics grows out of his interest in recreational mathematics, where his
contributions are, according to Martin Gardner, “unique in their combination of
depth, elegance, and humor.”

George B. Dantzig is best known as the inventor of the simplex method, which
makes linear programming such an incredibly powerful tool for management
and production. While the simplex method and linear programming are among
the most important of all applied mathematics, Dr. Dantzig doesn’t believe there
is any real difference between applied and pure mathematics. He was just 33
when he developed the simplex algorithm, but his fame as the “Father of Linear
Programming” led people to expect a much older man. He was given the Presi-
dential Medal of Science by former President Gerald Ford.

Freeman Dyson has one of the widest ranging imaginations among current physi-
cists and mathematicians. Growing up in Britain, he worked for its War Office
during World War II doing statistical analysis of the effectiveness of bombing.
(He learned that aerial bombing is very inefficient.) One of his earliest mathe-
matical memories is of adding up the infinite geometric series 1 1 1

2 1
1
4 1 1

8 . . . (and getting a sum of 2). He writes widely on public policy and
disarmament issues (Disturbing the Universe), has spent considerable time at the
Institute for Advanced Study (Princeton), and has made fundamental contribu-
tions to both physics and mathematics.
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Richard Feynman has been called “perhaps the most original genius produced in
theoretical physics @in# his generation.” He worked on the Manhattan Project in
the development of the atomic bomb and won the Nobel Prize for physics in 1965
for his work in the fundamental nature of matter. He was deeply concerned with
how we learn physics and developed a radically new approach to teach introduc-
tory physics during his years at Cal Tech. A delightful and very personal book is
“Surely You’re Joking, Mr. Feynmann!”

Andrew Gleason finished his master’s degree at Yale and immediately went into the
Navy to work on cryptanalysis. After the war ended, he was appointed as a Junior
Fellow at Harvard. He remained at Harvard for the next forty years, without a
Ph.D., while directing a number of doctoral students of his own. Some of his early
reputation was established by his part in the solution of Hilbert’s Fifth Problem,
one of a famous list of twenty challenges posed by David Hilbert at the beginning
of the twentieth century.

Bill Gosper was one of the original MIT “hackers”, who were fascinated by comput-
ers and convinced that they should have access to any and all information about
the way the world works. His approach to computing millions of decimals of the
number p used new techniques of continued fractions. He continues to be fasci-
nated by all kinds of “toys,” from the Aerobie to supercomputers, which he says
will never be “big enough or fast enough.”

Paul Halmos grew up in Hungary but received most of his schooling in America.
A gifted research mathematician and expositor, he taught for many years in the
midwest (at the universities of Chicago, Indiana, Illinois, Michigan, and Syracuse)
as well as in California and Hawaii. As editor of the American Mathematical
Monthly and in his own writing (he calls his life story, I Want to Be A Mathemati-
cian, an “Automathography”), he has worked tirelessly to improve the quality of
writing both of and about mathematics.

Mark Kac went to high school in Poland but became “profoundly American.” Less
than a year after he came to America, “the world exploded and much of my part
of it was consumed by flames. Millions, including my parents and my brother,
were murdered by the Germans and many disappeared without a trace. . . .” Dr.
Kac made basic and profound contributions to probability theory and inspired
hundreds of students during his years of teaching at Cornell and Rockefeller
University. Many thousands more have seen his Mathematical Association of
America film, “Can One Hear the Shape of a Drum?”

Irving Kaplansky grew up and went to college in Toronto, Canada, before going
to Harvard for his Ph.D. in algebra. Complementing his years of research at the
University of Chicago are many books, including the very readable Matters
Mathematical. More recently he moved to Berkeley to direct the Mathematical
Sciences Research Institute. He is a member of the National Academy of Sci-
ences and served as president of the American Mathematical Society.

Peter Lax was born in Hungary. He emigrated to New York when he was fifteen.
While he was still a student in high school, Paul Erdös introduced him to Albert
Einstein. Dr. Lax has also been president of the American Mathematical Society
and was the director of the Courant Institute at New York University, where he
still teaches. His wife Anneli is also a professor of mathematics (they met in a
graduate course in complex variables), and they work together to improve math-
ematics education.
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Lucien Le Cam grew up in rural France before World War II. He interrupted his
schooling to join the French underground in resisting the Nazis. After the war he
worked with the organization that set up the modern electric system of France. He
came to Berkeley to work with the statistician Jerzy Neyman, completed his
doctorate in less than two years, and has remained at Berkeley ever since. Called
“brilliant” by colleagues, he sometimes refuses to share his discoveries. When he
claimed in a colloquium that he had proved the speaker’s result years earlier, the
speaker said, “Ah, but you didn’t publish it!”

Saunders MacLane has been a “towering figure in American mathematics for over
half a century.” The University of Gottingen in Germany attracted students from
all over the world, from the latter part of the nineteenth century until the rise of
the Nazis before World War II. Saunders MacLane was one of the last Americans
to study at Gottingen before the war. Some of his best-known work has been done
in collaboration with others, including Garrett Birkhoff. A long-time professor at
the University of Chicago, MacLane is one of only five people who have served
as president of both the American Mathematical Society and the Mathematical
Association of America.

Cathleen S. Morawetz is of Irish parentage and is a grand-niece of the Irish
playwright J. M. Synge. She grew up in Toronto before leaving for her graduate
study at the Massachusetts Institute of Technology. She got her Ph.D. in partial
differential equations at New York University, where she has taught for many
years and where she also directed the Courant Institute of Mathematical Sciences.
She is the only woman to have been invited to give the Gibbs Lecture to the
American Mathematical Society and is a member of the National Academy of
Sciences.

Frederick Mosteller was trained as a mathematician and statistician with a Ph.D.
from Princeton, but he considers himself a “scientific generalist.” Reflecting his
concern for public education, he designed and taught a statistics course for the
Continential Classroom, a long-running and popular program on public television.
He also co-authored the popular text that has also been used in hundreds of
college classes, Probability, A First Course. He has been president of both the
American Statistical Association and the American Association for the Advance-
ment of Science.

Ivan Niven grew up in the northwest, going to high school and college in British
Columbia. He went on to his Ph.D. in number theory at the University of Chicago,
but after a few years in the midwest he returned to Oregon for the rest of his
professional career. He received considerable attention early for his one-page
Simple Proof that p Is Irrational—simple in that it only uses calculus. He wrote
Mathematics of Choice for the Mathematical Association of America’s New
Mathematical Library series. Dr. Niven has been president of the Mathematical
Association of America and was recognized by the association for Distinguished
Service to Mathematics.

Roger Penrose claims to be unable to decide whether he is a mathematician or a
physicist, but he makes important contributions to both fields. He and Stephen
Hawking together showed that black holes are an inevitable part of our universe.
His fascination with patterns led to his discovery of two shapes of tiles that
together can cover the plane without any repetition. Long an Oxford don, he has
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given much thought to computers and the human mind. In his book The Em-
peror’s New Mind, he asserts that the mind is forever beyond the capabilities of
any computer.

I. I. Rabi grew up on the Lower East Side of New York and went to Cornell to study
chemistry and physics. He earned a doctorate in physics from Columbia but had
to go to Europe to learn about quantum mechanics. He returned to teach at
Columbia, where he earned the prestigious rank of University Professor. He won
the Nobel Prize in 1944 and during World War II was a key player at the
Massachusetts Institute of Technology Radiation Laboratory in the development
of radar. A recent biography is titled Rabi, Scientist and Citizen.

Julia Robinson’s life was a series of “only” or “first” accomplishments. She was
the only girl taking mathematics, the only one taking physics in her high school
(San Diego), the only woman taking a number theory course at Berkeley (from
Rafael Robinson, who later became her husband). She was one of the three
people who collectively solved Hilbert’s Tenth Problem. She was elected to the
National Academy of Sciences and served as president of the American Math-
ematical Society (the first woman mathematician in both instances). She died of
leukemia in 1985.

Mary Ellen Rudin is another mathematician who married a mathematician. She
was recruited in college by the famous “Texas topologist,” R. L. Moore. Like
many Moore students, she went on to a remarkably productive career. She lives
in a house designed by Frank Lloyd Wright. While her husband Walter does some
of his mathematics in his well-appointed study, she works on hers in the living
room where, over the years, she has simultaneously been able to watch over their
children. After years of doing mathematics without formal academic affiliation,
she was recognized with an endowed chair at the University of Wisconsin.

Claude Shannon is known as the father of information theory, the mathematical
theory of communication. Widely respected as a creative engineer of daring
imagination for his work at Bell Laboratories, Dr. Shannon laid the groundwork
for the improvement of signal transmission, especially telephone and television
communication. He pioneered the programming of machines for complicated
tasks (including chess playing and juggling). His love of toys (e.g., a two-seated
unicycle) and games of imagination is reflected in his work, keeping him young
at heart while he continues to do serious mathematics and engineering.

William Thurston is a Princeton topologist who deals with high-level geometry.
He is known around Princeton for his “uniform” of jeans and plaid shirts, and
his friends wondered if he would conform to formal dress standards when he
received an international award in Finland. Bill did appear formal (for him); he
had pressed his plaid shirt. Many people are surprised by how much use he
makes of the computer in very abstract mathematics. The quality of his research
is reflected in the number of awards he has won, including the Fields Medal and
the Veblen Prize.

Stanislaw (Stan) Ulam is internationally known for his work with the Manhattan
Project in World War II and for his contributions to the design of the “super,” as
the fusion H-bomb was known. He grew up in Poland but spent his professional
life in America, teaching for many years at Colorado, Florida, and California.
Before he received his doctorate, he studied number theory, topology, and set
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theory. He later broadened the scope of his studies to contribute to the fields of
probability, computers, biology, and coding theory. According to Gian-Carlos
Rota, “to generations of mathematicians, Ulam’s problems were the door that
led them into the new, to the first sweet taste of discovery.”

Robin Wilson is the son of a two-time Prime Minister of England. He spends much
of his time as a mathematician at the Open University. This national university
serves thousands of adults all over Britain who have never done university work
or who have been away from it for many years. Much of his teaching is done on
camera or over the air, and he writes supporting materials for his students. He
also devotes time to his love of music, both as a performer and as an author of
books as diverse as Graph Theory and Gilbert and Sullivan.
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ANSWERS TO SELECTED EXERCISES

CHAPTER 1

EXERCISES 1.1 (page 7)
Check Your Understanding 1. F 3. F 5. T 7. (a) 3, (b) 2, (c) 2 9. 355

113

Develop Mastery 17. (a) 8.07 3 102, (b) 8.07 3 103, (c) 8.070 3 102, (d) 8.070 3 1023 19. (a) 6400,
(b) 0.00706, (c) 0.03470, (d) 56000 21. (a) 81, (b) 0.36, (c) 0.036, (d) 250000 23. (a) 11.6 da, (b) 31.7 yr,
(c) 31,700 yr 25. (a) 1.73, (b) 0.628, (c) 8.86, (d) 4.88 27. (a) 95.7, (b) 44.3, (c) 4.64 29. (a) 22.9 ft.,
(b) 41.6 sq. ft. 31. 1.30 3 105in3 33. (a) 9.33 ft./sec., (b) 560 ft./min., (c) 6.36 mi./hr. 35. 1,040 mi./hr.
37. 15,600 mi./hr. 39. 4.7 miles 41. 89 miles 43. 8 miles compared to 9.8 miles 45. (a) 8.19 min, 8.46 min,
(b) 16 sec 47. 41 oz; 48 oz; yes 49. (a) 2.2 qt, (b) 2.7 qt; yes 51. 39 percent

EXERCISES 1.2 (page 15)
Check Your Understanding 1. F 3. T 5. F 7. 1 9. 0.564

Develop Mastery 1. (a) F, (b) F 3. (a) T, (b) F 5. (a) T, (b) T 7. (a) F, (b) F
9. (a) Q, (b) N, I, E, Q, (c) H, (d) N, I, E, Q 11. (a) 0.625, (b) 0.416 13. (a) 0.82, (b) 0.769230
15. (a) 63

100, (b) 7
11 17. (a) 5

6, (b) 83
99 19. (a) 0.344, (b) 0.344 21. (a) 3.118, (b) 3.118 23. 6.928203

25. 1.366025 27. 3.162278 29. 3.968119 31. 169 33. (a) F, (b) T, (c) T

35. (a) Ï2 1 Ï3, (b) ~3 1 Ï2! 1 ~1 2 Ï2!, (c) ~2 1 Ï2!~2 2 Ï2!, (d)
Ï3

Ï3
37. x 5 Ï6; irrational

39. (a) 3.142857143, (b) 3.141509434, (c) 3.141592920 41. 80 characters per line of length 4 inches; 1,783 miles

EXERCISES 1.3 (page 24)
Check Your Understanding 1. T 3. F 5. F 7. 21 9. 19

Develop Mastery 1. 3. 5.

7. (a) 5
4 5 1.25, (b) 3

2 5 1.5 9. (a) p 2 3 < 0.1416, (b) 22
7 2 p < 0.0013 11. (a) ., (b) , 13. (a) 5, (b) .

15. y , z , x 17. y , x , z 19. (a) T, (b) F 21.

23. 25. 27.

29. 31.

33. 5 35. 16 37. 8 2 4i 39. 3 1 3i 41. 7 1 i 43. 10 45. 3 2 i 47. 22 1 2Ï3i 49. (a) 21,
(b) 21, (c) 1, (d) 21 51. 25 1 2i 53. 21 2 3i 55. 21.2 2 0.6i 57. (a) ~23, 2!, (b) ~22, 21!,
(c) ~23, 22!, (d) ~25, 1!, (e) ~8, 21! 59. (a) ~5, 21!, (b) ~21, 1!, (c) ~5, 1!, (d) ~4, 0!, (e) ~24, 6!
61. All points are on the circle of radius 1 and center at (0, 0). 63. All points are on the circle with center at the origin and
radius 1.

EXERCISES 1.4 (page 35)
Check Your Understanding 1. T 3. T 5. F 7. T 9. QIV

A-1
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A-2 Answers to Selected Exercises

Develop Mastery 1. (a) Ï10, (b) ~2 1
2 , 7

2! 3. (a) Ï277
6 , (b) ~1

4, 5
6! 5. (a) 8, (b) ~0, 2Ï2 ! 7. Right triangle

9. Isosceles triangle 11. Right triangle 13. x 2 1 y 2 2 2x 2 2y 2 1 5 0 15. 4x 2 1 4y 2 1 8x 2 40y 1 103 5 0
17. x 2 1 y 2 1 4x 1 2y 1 1 5 0 19. x 2 1 y 2 2 8x 2 2y 1 7 5 0 21. x 2 1 y 2 2 8x 2 5y 1 16 5 0
23. (a) ~3, 4!, ~3, 22!, (b) ~6, 1!, ~0, 1! 25. (a) ~3 6 2Ï2, 0!, ~0, 1!, (b) 4Ï2 (c) 0
27. (a) ~24, 0!, ~0, 3!, (b) 5, (c) 3

4 29. (a) ~2, 0!, ~0, 21.5!, (b) 2.5, (c) 3
4 31. x 5 3 6 Ï39 33. y 5 21 6 Ï5

35. (a) Line, (b) ~4, 0!; ~0, 4! 37. (a) Line, (b) ~2
3 , 0!, ~0, 22! 39. (a) Circle, (b) ~0, 0!, Ï7

41. (a) Circle, (b) ~21, 0!, 1 43. (a) Circle, (b) ~2, 21!, 2 57. ~3.2, 1.8! 59. ~1.6, 22.2! 61. iii 63. iii
65. iii 67. QIII 69. QII 73. ~1,4!, ~2,2! 75. ~3, 2! 79. ~6, 6.5! 81. ~4, 27!, ~25, 22!; Ï106
83. (a) ~0, 24!, (b) ~3, 0!, (c) ~24, 3!, (d) ~4, 23! 85. 1

2

EXERCISES 1.5 (page 47)
Check Your Understanding 1. F 3. T 5. F 7. 23 9. 3

Develop Mastery 1. 2 1
2 3. 3

2 5. 21, 1
3 7. 2 2

3 , 4
3 9. 2 5

2 , 3
2 11. x . 2 13. 20.55 # x # 20.45

15. 21 # x # 2 17. x , 23 or 22 # x # 2 19. 1 # x # 3 21. x , 0 23. x . 4 or x , 21

25. x # 2 27. ~2`, 22! 29. ~23, 22! < ~3, `! 31. ~21, 3! 33. ~1 2 Ï2, Ï2 2 1! 35. Two real roots

37. 6Ï2 39. 23, 13 41. 63 43. No solution 45. 63 47. $0, 1, 2% 49. $0, 61, 62%

51. 23 # x # 21 53. x , 23 or x . 22 55. $22, 3% 57. $x _ 25 , x , 1% 59. x 2 1 6x 1 8 5 0
61. x 2 2 2x 2 1 5 0 63. (a) 8, (b) 12 65. $23, 2, 3% 67. 6; 13 69. 26 71. 4 73. 17 75. 5 1Ï69
77. 418 , F , 688 79. 16.2 minutes 81. A 5 100x 2 x 2; 0 , x , 100 83. (b) 0 , x , 4, (c) 1.6; 67.6

EXERCISES 1.6 (page 54)
Check Your Understanding 1. T 3. T 5. T 7. greater than 9. equal to

Develop Mastery 1. 1
12 3. 64 5. 2.4 hours 7. (a) Runs 6 miles, walks 14 miles, (b) Runs 1 hour, walks 3.5 hours

9. 1.5 sq. mi. 11.
21 6 Ï5

2
13. Yes 15. 4Ï3 19. 2 21. 37.5 mph 23. 200 mph 25. 4p

3

27. (b) y 5 2 6 Ï25 2 ~x 1 3!2 29. (b) y 5 4 6 Ï64 2 ~x 2 2!2 31. (b) y 5 2 6 Ï25 2 ~x 1 3!2, y 5 6Ï25 2 x 2

33. 32 35. Any point ~u, 1! where u is a positive integer 37. 6 ft. 39. A 5 36p for any value of r.

41. (a) 2Ï2, 2Ï3, 2Ï4, 2Ï5, (b) h 43. Two

CHAPTER 1 REVIEW (page 57)
Test Your Understanding 1. F 3. T 5. T 7. F 9. F 11. F 13. F 15. F 17. F 19. T
21. F 23. F 25. T 27. T 29. F 31. T 33. F 35. T 37. F 39. T 41. T
43. (a) F, (b) F, (c) F 45. QIV 47. QIV 49. Two

Review for Mastery 1. No 3. No 5. (a) 1
7 , (b) 3 2 2Ï2, (c) 1

275 7. (a) ., (b) ., (c) 5

9. (a) (b) (c)

11. x # 3 13. $8
3% 15. $0, 22% 17. H2 6 Ï14

2 J 19. $23, 1% 21. $21, 4%. 23. $23, 3% 25. 5i

27. 22Ï6 29. $x _ x , 3% 31. $x _ x , 22 or x . 1
2% 33. $x _ 21 , x , 0 or x . 5

2%
35. $x _ 23 # x # 1% 37. (a) $21%, (b) $x _ x . 21% 39. (a) $x _ x $ 0%, (b) $x _ x , 0% 41. 25 # x # 1
43. x 2 1 y 2 1 6x 2 4y 1 12 5 0 45. (a) Line, (b) ~2, 0!, (c) ~0, 3! 47. (a) Circle, C~3, 21!, r 5 2,

(b) ~3 6 Ï3, 0!, (c) None 49. (a) Line, (b) ~Ï3, 0!, (c) ~0, 3! 51. (b) y1 5 Ï9 2 x 2, y2 5 2x, (c) QI
53. (b) y1 5 23 2 Ï16 2 ~x 2 2!2 , y2 5 2x 2 12, (c) QIV 55. (a) Circle, C~3, 2!, r 5 2,
(b) A is outside, B is inside, C is on the circle 57. (a) 40 percent, (b) 2.5 quarts 59. 3 seconds 61. 64p 2 48Ï3
63. 4Ï7 65. (a) 8Ï3 ft., (b) 12 sq. ft.

CHAPTER 2
EXERCISES 2.1 (page 66)
Check Your Understanding 1. F 3. F 5. T 7. Two 9. 6

Develop Mastery 1. $24, 0, 4% 3. $2
3 , 9

11% 5. (a) 1, (b) R, (c) 2 4
3 7. (a) 5

17 , (b) R, (c) 21
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Answers to Selected Exercises A-3

9. (a) 22, (b) $x _ x # 1 and x 5/ 22%, (c) 1 11. (a) Ï6, (b) $x _ x # 24 or x $ 1%, (c) 24, 1

13.
x 1 2

x 2
15.

2x

Ïx 2 1 4
17. 218.27; 0 19. 3; 4.83 21. 3 23. 2x 1 h 2 2 25.

21

x~x 1 h!

27. Triple x and add 4 to the result. 29. Take square root of x and subtract from 4. 31. 9; 4; Ï5 2 2 33. 1; 21; 21
35. D 5 @22.3, 4.3# 37. D 5 @24

3 , 4# 39. (a) 5, (b) 21, (c) x 4 2 4, (d) x 2 2 2x 2 3

41. (a) 2, (b) 5, (c) 5, (d) 43 43. (a) 2
3 , (b) 5

8 , (c) 12, (d)
1 6 Ï41

4
45. (a) f ~u! 5 2u 2 2 u 2 3, (b) 21, 3

2

47. (a) 7, (b) 3, (c) 3, (d) 2Ï2 1 3; g~x! 5 H1 2 2x

2x 1 3

if x # 2 1
2

if x . 2 1
2

49. P 5 4s 51. A 5
P 2

16

53. (a) Ï99; 25Ï3; 9Ï19, (b) A 5 x Ï100 2 x 2 55. (a) d 5 _ x _ , (b) 1; 3, (c) R

57. (a) $576; $936, (b) W 5 H18x if 0 # x # 40

27x 2 360 if 40 , x # 168
59. (a) L 5 3x

5 , (b) 10 ft.

61. A 5 8x 2
8x 2

15
, 0 , x , 15

EXERCISES 2.2 (page 75)
Check Your Understanding 1. T 3. (a) F, (b) T 5. T 7. One 9. Two

Develop Mastery 1. Graph consists of three points: ~21, 23!, ~2, 3!, ~3, 5!. R 5 $23, 3, 5%
3. Graph consists of five points:~22, 26!, ~21, 0!, ~0, 0!, ~1, 0!, ~2, 6!. R 5 $26, 0, 6%
5. 7. 9. 27 11. 2 13. f is even; g is neither

15. f is neither; g is odd 17. ~22, 0!; ~0, 4! 19. ~22, 0!; ~0, Ï2! 21. ~0, 0!; ~2, 0! 23. ~21 6 Ï2, 0!; ~0, 21!
25. ~22, 0!; ~0, 24! 27. ~62, 0!; ~0, 2! 29. ~iii!
35. 37. 39. 41.

43. f ~3! , f ~4.5! , f ~21! , f ~0.5! 45. ~1, 3!; ~3, 22! 47. (a) 22 # x , 21 or 2 , x , 5,
(b) 21 , x , 2 or 5 , x # 6 49. Only (a) 51. (a) @2200, `!, (c) f ~x! 5 4 and g~x! 5 4 for
2200 # x # 200, (d) Yes, (e) f; @2200, 200# 53. (b) @28, 0# < @6, `!
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A-4 Answers to Selected Exercises

55. (a) 17; 11; 7; 1.5, (b) f ~x! 5 H22x 1 7

x 2 2

if x # 3

if x . 3
57. (a) $0, 61, 62, 63,. . .%, (b) @6, 7!

59. (a) $0, 61, 62, 63, . . .%, (b) @4.5, 5.5! 61. @3, 4! 63. $0, 62, 64, . . .% 65. @0, 1! 67. ~2`, 4!

69. x 5
Ï5 2 d

Ï5
, y 5

2d

Ï5
71. (b) $7.20, (c) 2 # x , 2.25 73. Up to 9 minutes

EXERCISES 2.3 (page 86)
Check Your Understanding 1. T 3. T 5. T 7. QIV 9. QI

Develop Mastery 1. (a) ~21, 4! and ~5, 25!, (b) ~24, 4! and ~2, 25! 3. (a) ~21, 4! and ~2, 25!, (b) ~24, 4! and ~8, 25!
5. (a) ~0, 7! and ~6, 22!, (b) ~22, 0! and ~4, 9! 7. (a) g~x! 5 x 2 1 3x, (c) For g shift the graph of f 2 units left.
9. (a) g~x! 5 x 2 2 7x 1 10, (c) For g shift the graph of f 3 units right. 11. (a) g~x! 5 x 2 1 x, (c) For g reflect the graph
of f about the y axis, then shift up 2 units.
13. (a) Line through ~1, 23! and ~3, 1!, (b) Line though ~3, 23! and ~5, 1!, (c) Line through ~21, 23! and ~23, 1!
15. (a) D 5 @2, 4#, R 5 @22, 2#, (b) D 5 @5, 7#, R 5 @22, 2#, (c) D 5 @2, 4#, R 5 @22, 2#
17. (a) D 5 @25, 1#, R 5 @21, 2#, (b) D 5 @23, 3#, R 5 @21, 2#, (c) D 5 @23, 3#, R 5 @22, 1#
19. Translate 2 units left and 2 units down 21. Reflect about the x-axis, stretch away from the x-axis by a factor of 2, and then
shift up 1 unit. 23. g~x! 5 2x 2 2 2x 25. g~x! 5 2x 2 2 1 27. (a) For g: shift right 2 units. For h: Reflect about the
x-axis and then shift up 3 units. (b) g~x! 5 ~x 2 2!2 1 1; h~x! 5 2x 2 1 2. 29. (a) For g: Reflect about the x-axis, shift left
2 units, then down 1 unit. For h: shift right 2 units and down 1 unit. (b) g~x! 5 2_ x 1 2 _ 2 1, h~x! 5 _ x 2 2 _ 21
31. (a) D 5 @21, 7#, R 5 @4, 8#, (b) D 5 @24, 4#, R 5 @4, 8#
33. (a) D 5 ~2`, 4#, R 5 @26, 4#, (b) D 5 @24, `!, R 5 @24, 6# 35. D 5 @0, 6#, R 5 @23, 5#
37. D 5 @6, 12#, R 5 @21, 4# 39. (a) ~21, 0!; ~4, 0!, (b) ~2, 0!; ~7, 0!, (c) ~0, 14!
41. (a) ~ 6 2, 0!, (b) ~ 6 1, 0!, (c) ~0, 24! 45. ~21, 24!, ~1, 22!, ~2, 0!, ~3, 23!
47. (a) ~25, 3!, ~1.4, 5.6!, (b) ~25, 6!, ~1.4, 8.6!

EXERCISES 2.4 (page 95)
Check Your Understanding 1. F 3. T 5. QII, QIV 7. QIV 9. QI

Develop Mastery 1. 23
2 3. 5

9 5. 0 7. y 5 22x 2 2 9. y 5 2 2x
3 11. y 5 23

2 13. 23
2; ~2, 0!, ~0, 3!

15. 22; ~2, 0!, ~0, 4! 17. 23; ~2, 0!, ~0, 6! 19. (b) y 5
x

2
1

7

2
, (c) y 5 22x 1 1

21. (b) y 5 2 2x
3 2 2, (c) y 5 3x

2 2 2 23. (b) y 5 2, (c) x 5 21 25. Not collinear 27. Collinear
29. I, III, IV 31. II, IV 33. (a) (b) (c)

35. (a) ~0, 4!, (b) y 5 22x 1 4 37. (a) ~0, 2!, (b) y 5 3x
2 1 2 39. y 5 2 x

4 1 3
2 41. y 5 x

3 1 10
3 43. Yes

45. No 47. 2 49. (a) mAC 5 21, mAB 5 1, (b) x 2 1 y 2 2 8x 2 20y 1 96 5 0 51. (a) C 5 60 1 0.20x,
(b) Not more than 200 mi. 53. (a) C 5 1,200 1 10x, (b) R 5 16x, (c) P 5 6x 2 1,200, x . 200 55. 4
57. (a) $64,000, (b) $4,000 59. (a) L 5 0.002T 1 124.91, (b) 124.95 cm, (c) 1308C 61. 6Ï3 63. 2

3 65. p
67. 4 2 2Ï2

EXERCISES 2.5 (page 104)
Check Your Understanding 1. T 3. F 5. F 7. zero 9. one

Develop Mastery 1. ~0, 23!, ~ 6 Ï3, 0!; V~0, 23! 3. ~0, 2!, ~1, 0!, V~1,0! 5. ~0, 22!, ~21 6 Ï3 , 0!; V ~21, 23!

7. ~0, 2!, ~21 6 Ï3 , 0!; V ~21, 3! 9. ~0, 2!,~1, 0!; V~1, 0! 11. ~0, 0!, ~24, 0!; V~22, 22! 13. Graphs all pass through

~0, 21!; two x intercepts, one positive and one negative; vertex in IV. 15. Graphs all pass through ~0, 4!. If b , 4, no zeros; if b 5 4,

two zeros; if b . 4, four zeros. 17. y 5 22x 1 1 19. y 5 24x 1 3 21. I, II, and IV 23. I and II 25. 2Ï7
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27. Ï2 29. $x _ x , 1 or x . 3% 31. $x _ 21 , x , 3
2% 33. V~1,24! 35. (a) @26.25, `! 37. ~2`, 9#

43. f ~x! 5 2x 2 1 4x 1 5 45. f ~x! 5 x 2 1 6x 1 7 47. 15 49. 24 51. (a) Shift right 2 units and up 1 unit.
(b) y 5 x 2 2 4x 1 5 53. (a) Reflect graph of y 5 x 2 about the x-axis, then shift down 2 units. (b) y 5 2x 2 2 2
55. $y _ 4 # y # 8% 57. $y _ 21 , y # 8% 59. Min is 225

4 , no max 61. Min is 21
4 , max is 12

63. Max is 9, no min 65. Shift up 3 units and left 2 units. 67. Max is 2, min is 0 69. Min is Ï2, no max

71. (c) Graph of G is an absolute value graph, y 5 _ x 1 1 _ 73. 1.60 75. (a) A 5 2u 2
u 2

2
, (b) ~2, 2!, (c) 2

77. (a) A 5 x~18 2 x!, (b) 0 , x , 18 79. A 52x 2 1 410x; D 5 $x _ 0 , x , 390% when x 5 205, A is max.

81. T 5 H1,400x

2,600x 2 10x 2

if 0 # x # 120

if 120 , x # 150; T is max when x 5 130.

83. (a) A 5
Ï3

36
x 2 1 S25 2

x

4
D2

, (b) Amin < 272 85. (a) A 5 10x 2 2x 2, D 5 $x _ 0 , x , 5%, (b) 5
2

87. (a) 1.7 miles from P, (b) 2.8 hours

EXERCISES 2.6 (page 114)

Check Your Understanding 1. F 3. F 5. T 7. 9 9. 0, 2.5

Develop Mastery 1. (a) 25, (b) 0 3. (a) 3, (b) 2.25 5. (a) ~ f 1 g!~x! 5 2x 2
1

x
, x 5/ 0,

(b) S f

g
D~x! 5 1 2

1

x 2
, x 5/ 0 7. (a) ~ f 1 g!~x! 5 21, x $ 0, (b) S f

g
D~x! 5

Ïx 2 2

1 2 Ïx
, x $ 0 and x 5/ 1 9. (a) 5,

(b) 15, (c) 8

(b) $23, 21, 1, 3%, (c) $0, 3% 13. ~g 8 f !~x) 5x 2 4, D 5 $x _ x $ 0%11. (a)
x 3 21 0 1 3

~g 8 f !~x! 22 21 u 3 4 15. 0, 21 17. 21, 9
2 19.

2 6 Ï31

3
21. $x _ 2Ï2 # x # Ï2%

23. $x _ x $ 11
7 % 25. R 27. (b) ~0, 0!; ~1, 0!, ~2, 0!

29. ~0, 27!; ~61, 0!, ~6Ï7, 0! 31. (a) T, (b) T 33. (a) Reflect graph of f about y-axis, (b) Reflect graph of g about
x-axis. 35. (a) Shift graph of f right 2 units. (b) Shift graph of g down 2 units. 37. (a) ~ f 8 g!~x! 5 x, ~g 8 f !~x! 5 x,

(b) Yes 39. (a) ~ f 8 g!~x! 5 x for x $ 1; ~g 8 f !~x! 5 _ x _ for x in R, (b) No 41. g~x! 5
x 1 5

2
43. g~x! 5

2x

x 2 2

45. 3.68 47. 1.81 49. f ~x! 5
1

x
, g~x! 5 x 2 1 5 51. f ~x! 5 _ x _ , g~x! 5 5x 1 3 57. (a) Empty set, (b) @22.5, 22!

59. (a) Shift graph of g right 2 units. (b) Compress graph of g towards y -axis. (c) Stretch graph of g horizontally.
61. (a) Shift graph of g right two units. (b) Shift graph of g left 2 units. (c) Reflect graph of g about y -axis.
63. (a) Shift graph of f up 2 units. (b) Keep portion of the graph of g that is above or on x-axis and reflect the portion below
about x-axis. 65. (a) ~1, 4!, (b) ~21, 22! 67. F~x!5~ f 8 k!~x! 69. H~x! 5 ~g 8 h!~x! 71. 5 73. 3
75. (a) 3, 21, 3, 21, (b) 21, 3 77. (a) C 5 80 1 192t 2 16t 2, (b) $592, (c) 6 hrs.

79. (a) V 5 ~ p
48!t

3, (b) 6.74 sec. 81. (a) A 5
p

~t 1 1!2
, (b) p

4 sq. ft.; p
9 sq. ft., (c) 4 min.

83. (a) 3 ft., (b) V 5 ~4p
3 !~0.25t 1 3!3, (c) 697 cu. ft., (d) 6.3 sec.

EXERCISES 2.7 (page 128)

Check Your Understanding 1. T 3. T 5. T 7. QI, QIV 9. ~25, 2!

Develop Mastery 1. (a) $~21, 0!, ~3, 1!, ~5, 2!%, (b) Yes 3. (a) $~4, 23!, ~2, 21!, ~1, 1!, ~2, 3!%, (b) No

5. Yes 7. No 9. (b) ~1.4, 1.4! 11. (b) ~1.6, 1.6! 13. (a) No, (b) Yes 15. f 21~x! 5
x 2 5

2

17. f 21~x! 5
1

x 2 1
19. f 21~x! 5

2

x 1 1
21. f 21~x! 5 x 23. f 21~x! 5 1 1Ïx 25. (b) f is one–one, (c) Yes

27. (b) f is not one–one, (c) No 29. (b) f is one–one, (c) Yes 31. (a) f ~x! 5 0.5x 1 4, (b) f 21~x! 5 2x 2 8

33. (a) f ~x! 5 2x 1 1; @23, 21#, (b) f 21~x! 5 2x 1 1; @2, 4# 35. (a) f 21~x! 520.6 x 1 2.8, (b) f ~x! 5 25
3 x 1 14

3

37. (a) g(x) 5 2 2x 1 7; ~0, 7!, ~3.5, 0!, (b) h~x! 5 22x 1 11; ~0, 11!, ~5.5, 0! 39. (a) f 21~x! 5 x 2 3
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41. (a) f 21~x! 5 Ïx 1 4 43. (a) f ~x! 5 23 1 Ï1 1 4x , x $ 0 45. 2 47. 22 49. (a) Decreasing, (b) Yes

51. (a) Decreasing, (b) Yes 53. (a) Increasing, (b) Yes 57. y 5 2x 59. @219, 36# 61. (b) 2 65. Graph is
the line segment with endpoints (a) ~22, 21!, and ~7, 2!, (b) ~0, 23! and ~3, 6!, (c) ~23, 1! and ~6, 4!,
(d) ~21, 21! and ~2, 8! 67. (a) D 5 @24, 4#, R 5 @25, 2#, (b) D 5 @25, 2#, R 5 @24, 4#, (c) 24; 22; 4

69. 23 71. 4 73. (a) r 5 3Î3V

4p
, (b) 0.94, 1.05, 1.11 75. (a) K 5 Ï2~2x 2 x 2!, (b) D 5 $x _ 0 , x , 2%,

R 5 $y _ 0 , y # Ï2%, (c) f is not one–one, (d) 0.196, 1.804 77. r 5 Î V

3p

EXERCISES 2.8 (page 136)
Check Your Understanding 1. T 3. T 5. T 7. T 9. T

Develop Mastery 1. Ï10 < 3.16 sec. 3. (a) 6.31 sec., (b) 177 ft./sec. 5. (a) 42 ft., (b) 3.12 sec.
7. (a) s~t! 5 128t 2 16t 2, (b) 192 ft., (c) 256 ft. 9. (c) 287 ft. 11. (a) 9.6 sec., (b) 307 ft./sec.
13. 8Ï2.4 < 12.4 ft./sec. 15. (a) 6.62 sec., (b) 212 ft./sec. < 144 mi/hr, (c) Model neglects air resistance.
17. (a) 80 ft./sec., (b) 80 ft./sec. 19. 42.1 sec. 21. 178 ft. 23. 320 ft.
25. (a) R 5 36x 2 0.2x 2, (b) 90 calculators 27. (a) $6,000; $6,300; $6,400, (b) $40 rental rate gives $6,400
29. (a) V 5 2312.5t 1 3,000, (b) 9.6 yrs. 31. 40 by 60 ft.
33. (a) 1,000 cu. in., (b) 38.2 sec., (c) $t _ 0 # t # 38.2%, (d) 17.7 sec.; 20.5 sec.

35. (a) r 5 d
3 ; V 5 ~ p

27!d
3, (b) V 5 ~ p

27!~30 2 5Ït!3, (c)
1,000p

27
< 116 cu. ft., (d) 36 min.

37. (a) C 5 4,000~40 2 2x 1 3Ïx 2 1 36!, (b) 216,498; 213,722; 213,823; 216,000; 219,943; 233,866,
(c) When x is about 5.37 miles, C is about 214 thousand dollars. 39. (b) 2.67 by 2.31; A < 6.16 41. 5.5 by 4.9 feet
43. r < 4.9, h < 6.9, V < 522.4 45. (b) k 5 b~8 1 Ï64 2 b 2!, (c) b < 13.9, h < 12.0, k < 83.1

CHAPTER 2 REVIEW (page 141)
Test Your Understanding 1. F 3. F 5. T 7. F 9. T 11. T 13. T 15. T 17. T 19. F
21. T 23. F 25. T 27. F 29. T 31. F 33. T 35. F 37. F 39. F 41. T 43. T
45. T 47. T 49. F

Review for Mastery 1. Yes 3. R 5. $x _ x # 2% 7. $x _ x 5/ 22, x 5/ 2% 9. 2x 2 3y 1 11 5 0
11. 3x 1 2y 5 1 13. Graph is a line through (2, 0) and (0, 24).
15. Graph is a parabola opening up from lowest point (2, 21) and passing through (1, 0), (3, 0), (0, 3).
17. Graph consists of two half-lines: y 5 x for x $ 1 and y 5 2x 1 2 for x , 1. 19. $x _ x , 3% 21. $x _ x , 0 or x . 2%
23. $x _ 21 # x # 4% 25. $22% 27. 3 29. 27 31. 1 33. 0, 22 35. 0, 1 37. (a) Neither,

(b) Not one–one 39. (a) Increasing, (b) Is one–one 41. f 21~x! 5
x 1 4

2
; D 5 R, R 5 R

43. f 21~x! 5 x 2 1 1; D 5 $x _ x $ 0%, R 5 f $y _ y $ 1% 45. (a)

47. (a) Graph is a parabola opening up with lowest point at (1, 1). (b) Min is 1, no max 49. (a) Translate graph of y 5 Ïx up
1 unit. (b) Min is 1, no max 53. (a) Graph is line segment joining (24, 3) and (0, 23). (b) Graph is line segment joining
(22, 23) and (2, 3). (c) g~x! 5 21.5x 2 3 for 24 # x # 0, h~x! 5 1.5x for 22 # x # 2
55. (b) f 21~x! 5 0.5~x 1 1!, D 5 @23, 3# 57. 4 59. (a) @21, `!, (b) f 21~x! 5 2 2 Ïx 1 1, D 5 @21, `!, R 5 ~2`, 2#
61. 14 feet 63. (a) s 5 160 1 48t 2 16t 2, (b) 5 sec., (c) 196 ft. 65. 32 min. and 44 sec. after 12 o’clock
67. 21 69. 2 71. 24 73. (a) 1,200 cu. in., (b) 1,043.2; 820; 480 cu. in., (c) 36.75 sec. 75. 3.35 sec.

77. 30 min. 79. (a) T 5 H2400x,

3900x 2 15x 2 ,
0 # x # 100

100 , x # 180 ,
(b) $0, 1, 2, 3, . . . , 180%, (c) 130
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CHAPTER 3
EXERCISES 3.1 (page 155)
Check Your Understanding 1. T 3. F 5. F 7. T 9. F

Develop Mastery 1. Yes, 2 3. Yes, 3 5. (a) ~ f 1 g!~x! 5 2x 1 7, (b) deg. 1, l.c. 2, c.t. 7
7. (a) ~ fg!~x! 5 23x 2 1 13x 1 10, (b) deg. 2, l.c. 2 3, c.t. 10 9. (a) ~ f 8 h!~x! 5 6x 2 2 3x 1 2, (b) deg. 2, l.c. 6, c.t. 2
11. (c) 13. (c) 15. (a) p~x! 5 x 3 1 x 2 2 2x, (b) 0, 1, 22, (c) ~2`, 22! < ~0, 1!
17. (a) p~x! 5 2x 3 2 x 2 2 2x 1 1, (b) 21, 0.5, 1, (c) ~2`, 21! < ~0.5, 1! 19. (a) 0, 2 1

3 , (b) E , F

21. (a) 1,
21 6 Ï3i

2
, (b) G, F 23. (b) One zero, two turning points, (c) QIII, QIV 25. (b) Five zeros, four turning

points, (c) QI, QII, QIII, QIV 27. 3.3 29. 2.4 31. (a) (20.8, 5.2), (b) G, F 33. (a) (0.1, 5.0), (b) E , F
35. max(20.8, 5.2) 37. min(22.1, 27.1) 39. f 41. c 43. g 45. g~x! 5 f ~x 1 1! 47. g~x! 5 f ~x 2 2!
49. 22 through 10 51. 2, 3, 4 55. 4.6 by 10.7 57. 2.2 by 7.6 by 10.6 61. (c) 0.7 63. (20.8, 21.4)
65. (2.8, 4.9) 67. G, H 69. E , H 71. E , F 73. (a) 22, 1, (b) max(22, 23), min(1, 24) 75. (a) 1 6 Ï3 i,
(b) no local extrema

EXERCISES 3.2 (page 167)
Check Your Understanding 1. T 3. F 5. F 7. 2 9. 2

Develop Mastery 1. @22, 21.5# 3. @20.5, 0# 5. p~x! 5 ~x 2 1!~2x 2 1 5x 1 4! 1 2; p~1! 5 2
7. p~x! 5 ~x 1 1!~3x 3 2 2x 2 1 1! 2 2; p~21! 5 22 9. 11 11. 2 3

2 13. 2 4
3 15. 2 3

2 17. 2 15
2

19. 6@1, 1
2 , 1

3 , 1
6# 21. 6@1, 2, 1

2# 23. 6@1, 1
2 , 1

3 , 1
6# 25. (a) 4, 6Ï2i, (b) ~2`, 4! 27. (a) 2 3

2 , 2 6 Ï5,

(b) ~2`, 23
2! < ~2 2 Ï5, 2 1 Ï5! 29. (a) 3

2 , 5
3 , 2

1 6 Ï3i

2
, (b) ~3

2 , 5
3! 31. (a) $0, 4%, (b) 0y

33. (a) 6Ï2 2 Ï3, 6 Ï2 1 Ï3, (b) 60.52, 61.93 35. (a) $21, 1
2 , 2%, (b) $0, 3

2 , 3%,
(c) $x _ x # 21 or 1

2 # x # 2% 37. (a) $22, 1%, (b) $21, 2%, (c) $x _ x # 22 or x 5 1%
39. (b) Root of x 2 2 2 5 0 41. (b) Root of x 3 1 3x 2 1 3x 2 1 5 0 43. (a) f ~x! 5 x 3 2 2x 2 2 5x 1 6, (b) Two
45. (a) f ~x! 5 x 4 2 3x 3 1 x 2 1 3x 2 2, (b) three 47. (a) Four, (b) 62, 3, 5, (c) Three; QI, QIII, QIV
49. Yes, f ~x! 5 2x 3 2 x 2 1 4x 1 4 51. E , H , (b) (20.8, 28.2) 53. (a) G, F, (b) (0.1, 210.1) 55. (2.1, 4.1)
57. (23.4, 33.8) 63. @22, 4# 65. @22, 3# 67. @24, 3# 69. For c 5 3, zeros are 1, 1, 22.
71. (a) V 5 p

3 ~16h 2 2 h 3!, (b) h < 10.7, r < 7.5, V < 635.5

EXERCISES 3.3 (page 177)
Check Your Understanding 1. T 3. F 5. T 7. T 9. Four

Develop Mastery 1. (a) @21, 0#, @0, 1#, @3, 4#, (b) 3.1 3. (a) @22, 21#, (b) 21.1 5. (22.1, 23)
7. (1.3, 2.3) 9. f ~x! 5 x 4 2 4x 3 1 5x 2 2 2x 2 2 11. f ~x! 5 x 3 2 6x 1 4 13. 2 and 1 1 Ï2 15. 1

2 and 2 1 Ï5

17. 4, 6Ï2i 19. 2 3
2 , 2 6 Ï5 21. 3

2 , 5
3 ,

21 6 Ï3i

2
23. 1, 3

2 , 21, 21
2 25. 1

3 , 6Ï1.5 27. 21, 21, 1, 2

29. 1, 1, 22 31. 23, 21, 2 2
3 33. (a) @23, 1 2 Ï6# < @1 1 Ï6, `!, (b) @22, 2 2 Ï6# < @2 1 Ï6, `!

35. (b) 1.2 37. (b) 20.5 39. Four 41. (a) c , 0, (b) c # 25 47. (a) k # 24, (b) k $ 22, (c) No
value 49. (a) k # 28, (b) k $ 27, (c) k $ 27 51. (a) When f has no positive zeros. (b) When f has exactly one
positive zero. (c) When f has two distinct positive zeros. (d) When f has three distinct positive zeros. 53. (b) If f ~x! $ 0 for
every x. 55. (a) 2 , c , 6, (b) c 5 2 or c 5 6, (c) c . 6 57. 1.675 130 871 59. 1.926 743 498
61. (a) V 5 4x 3 2 42x 2 1 108x, D 5 ~0, 4.5!, (b) 1.5, 1.902 63. 2.8 65. 8.75
67. u < 19 ft, v < 32.6 ft, d < 23.2 ft. 69. 34.1 # h # 41.9 when 6.7 # x # 11.9

EXERCISES 3.4 (page 187)
Check Your Understanding 1. F 3. F 5. T 7. T 9. F

Develop Mastery 1. (a) f ~0.92! < 122, f ~0.97! < 1,014, (b) f ~1.11! < 113, f ~1.03! < 1,214

3. (a) From above, (d) Yes, at ~1, 1!. 5. y 5 2
1

x 2 1
. Reflect graph of y 5 1

x about the x-axis, then translate to the right 1 unit.

7. y 5 2 2
x 2 3 . Reflect graph of y 5 1

x about the x-axis, translate to the right 3 units, and then stretch vertically away from the x-axis
by a factor of 2. 9. y 5 1 2 1

x . Reflect graph of y 5 1
x about the x-axis, then translate up 1 unit.

11. (a) g~x! 5 f ~x! 2 2, (b) None 13. (a) g~x! 5 f ~x 2 2!, (b) (1, 1)
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15. V.A. x 5 22; H.A. y 5 0 17. V.A. x 5 22; H.A. y 5 2 19. V.A. x 5 62; H.A. y 5 1

21. V.A. x 5 1; H.A. y 5 0 23. (a) None, (b) R, (c) ~0, 2# 25. (a) None, (b) R, (c) ~1, 2#

27. (a) (2, 0!, (b) $x _ x 5y 21, x 5/ 0, x 5/ 4%, (c) R 29. (a) ~2`, 22! and ~22, `!, (b) None
31. (a) None, (b) ~2`, 21!, ~21, 2!, ~2, `! 33. $2

3 , 1% 35. $21, 2 1
2 , 3% 37. $x _ 21 , x , 2 1

2%

39. $x _ 21.5 # x # 1% 41. Graph y 5
1

x 1 2
with point ~0, 1

2! missing 43. Graph y 5
x 2 1

x 1 3
wtih point (1, 0) missing

45. y 5 1; ~3, 1! 47. y 5 1; ~21, 1! 49. y 5 x 1 1; graph does not cross asymptote 51. y 5 2x 1 3, graph does not

cross asymptote 53. Min is 3 when x 5 61 55. f ~x! 5
2~x 2 2!

x 1 1
57. ~1, 25! 59. ~21, 3! 61. d 63. f

65. b 67. c 69. $x _ 21 , x , 3% 71. ~2`, 22! < ~21, 1! 73. (b) above, (c) Yes, ~2, 7!, (d) x $ 98
77. (a) No, (b) Two 79. 12.65 by 12.65 81. r < 2.4, h < 4.8 83. 0.79 85. (a) 8.2 by 24.6 by 12.2,

(b) 10.3 by 30.9 by 7.7 87. (a) C~x! 5 600 1 3x 1
x 2

240000
, (b) 12,000 89. y 5 20.8x 1 8

CHAPTER 3 REVIEW (page 190)
Test Your Understanding 1. F 3. T 5. T 7. T 9. F 11. F 13. T 15. F 17. F 19. T
21. T 23. T 25. T 27. F 29. T 31. T 33. T 35. T 37. T 39. F 41. T 43. T
45. T 47. T 49. F 51. T 53. F 55. T 57. T 59. T 61. F

Review for Mastery 1. q~x! 5 3x 2 2 7x 1 6; r 5 25 3. 12
5. ~22, 0!, ~1, 0!, ~1, 0!, ~0, 2!; x A `, f ~x! A `; x A 2`, f ~x! A 2` 7. (a) 6@1, 2, 3, 5, 6, 10, 15, 30, 0.5, 1.5, 2.5, 7.5#,

(b) Eliminate all but 22.5, 21.5. (c)
25

2
,

3 6 Ï33

2
9. 23, 22, 1

2

11. (a) @23, 22#, @0, 1#, @1, 2#, (b) @22.5, 22.4#, @0.6, 0.7#, @1.8, 1.9#, (c) 1.83

13. (a) 0, 0, 6 Ï3, (b) Graph is tangent to the x-axis at (0, 0) and crosses at ~2Ï3, 0! and ~Ï3, 0!.
15. f ~x! 5 x 4 2 8x 2 1 16 17. y 5 ~x 1 1!~x 2 1!~x 2 3!; ~21, 0!, ~1, 0!, ~3, 0!, ~0, 3! 19. (a) Function is odd; (22, 0),
(0, 0), (2, 0), (b) Translate graph in (a) down 1 unit. (c) Translate graph in (a) to the right 1 unit.
21. (a) (23, 0), (0, 1.5), (b) V.A. x 5 2; H.A. y 5 21 23. (a) (1, 0), (1, 0), no y-intercept, (b) V.A. x 5 0, x 5 4; H.A.
y 5 1 25. $x _ x $ 3% 27. $x _ x # 2 1 or x 5 2 or x . 3% 29. (a) 2, (b) 22 31. (a) $21, 0.5, 3%,
(b) $0, 1.5, 4%, (c) $23, 21.5, 1% 33. (a) $x _ 23 # x # 20.5 or x $ 1%, (b) $x _ 22 # x # 0.5 or x $ 2%
35. (22, 21) 37. x . 1.5 39. x . 22 41. 4 43. (2.54, 0.88) 45. (22, 22) 47. (a) Yes, (b) (22, 6.33)
49. (a) y 5 2x 2 1, (c) Yes, (2, 3) 51. u 5 1.6, v 5 5.3 53. 5.25 in. by 7.62 in. 55. 11.31 in. by 11.31 in.
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Answers to Selected Exercises A-9

CHAPTER 4
EXERCISES 4.1 (page 207)
Check Your Understanding 1. F 3. T 5. F 7. one 9. QIII

Develop Mastery 1. (a) 7
2 , (b) 512

27 3. (a) 2140, (b) 1

Ï3
5. (a) 0.5664, (b) 0.5234 7. (a) 2Ï5 2 1,

(b) Ïx 1 2 9. _ x _ 11. x, x . 0 13. 39x25 15. $1
2 , 1% 17. $2

5% 19. $x _ x 5/ 1, x 5/ 21%

21. $3
2% 23. Yes 25. No 27. (a) 20.37, (b) 5.82 29. 3Ï3 31. (a) $y _ y , 0%, (b) Decreasing

33. (a) $y _ y . 0%, (b) Increasing 35. (a) $y _ y , 1%, (b) Decreasing 37. (a) Reflect graph of f about x-axis
39. (a) Shift graph of f up 2 units. 41. 62 43. R 45. $x _ x , 2 Ï5 or x . Ï5%
47. f ~x! 5 ex12, translate graph of y 5 ex to the left 2 units. 49. f ~x! A e2 as x A ` 51. f ~x! A e2 as x A `
53. b 5 c 55. 34; 309 57. 1 59. (a) R (b) (i) and (iii) 61. (a) @0, `!, (b) R

63. (a) Shift graph of y 5 x 2/3 left 2 units, reflect about x- axis, then shift up 1 unit. (b) 23, 21, (c) ~22, 1!
65. (b) 4, 5, 6, 7, 8, 9 67. (b) 2, 3 69. (b) x , 0, (c) between 71. (a) Yes; about the origin, (c) Yes, increasing
73. ~1, 3!, ~21.87, 0.13! 75. 20.49, 3.32 77. (a) 40 sec., (b) 28 sec., (c) 17 sec.
79. (a) $4.87, (b) $1,869.16 81. (a) 5.7 trillion dollars, (b) between 2001 and 2002 83. About 10,000 years
85. 21.6 # x # 1.6

EXERCISES 4.2 (page 217)
Check Your Understanding 1. T 3. T 5. T 7. QII 9. (0, 1)

Develop Mastery 1. (a) log5125 5 3, (b) log4~
1

16! 5 22, (c) log3 5 5 x 2 1 3. (a) 2, (b) 22 5. (a) 22, (b) 5

7. (a) 0, (b) 1
3 9. (a) Ïe, (b) 1 11. (a) 16, (b) 17 13. (a) x 2 2 for any x, (b) x 2 2 for x . 2

15. (a) x for any x, (b) x for any x 17. (a) 21, 3, (b) 2 6 Ï13 19. 1
3 , 27 23. b 5 ~2

3! c 25. (a) Ï2, (b) 1
49

27. (a) 2 and 3, (b) 3 and 4 29. (a) log5 36, (b) log2 0.4 31. (a) 4, (b) 4 33. (a) Four, (b) Two
35. (a) Shift graph of y 5 log2 x up 2 units. (b) Reflect graph of y 5 log2 x about y-axis. 37. (a) D 5 R, (b) y 5 2x 2

39. (a) D 5 ~2`, 2!, (b) y 5 2 2 x for x , 2 41. (a) D 5 ~2`, 0!, (b) D 5 $ x _ x , 0 or x . 2%
43. (a) Yes, (b) f 21~x! 5 2ln x, (c) 0.14; 21.39 45. (a) Yes, (b) f 21~x! 5 ln~6 2 x!, (c) 21.39; 0.69
47. (a) f 21~x! 5 1 1 e2x, (c) Yes; QI 49. (a) f 21~x! 5 ex21, (c) Yes; QI and QIII 51. (b) (4.84, 0.42)
53. (b) (21.84, 1.61) 55. (a) Reflect about x-axis and shift up 2 units. (b) ~e2, `! 57. (b) 4, 5, 6

61. (a) f ~x! 5 1 2 log2 x, (b) (1,1) 63. (a) D 5 R; R 5 ~0, 1!, (b) f 21~x! 5 log3S x

1 2 xD, D 5 ~0, 1!, R 5 R

65. @6, 7! 67. b 69. d

EXERCISES 4.3 (page 225)
Check Your Understanding 1. F 3. T 5. F 7. 17 9. Four

Develop Mastery 1. (a) 3
2 , (b) 5

3 3. (a) 1, (b) log7 54 5. (a) log10 2, (b) log2 9 2 6

7. (a) log5 x 1 0.5 log5~x 2 1 4!, (b) 2 1 log5 x 1 0.5 log5~x 2 1 1! 9. (a) log3S x 2

x 1 2D, (b) log5~3Ïx! 11. (a) 1 2 u,

(b) u 2 1 13. (a) ~1
3!~u 1 2v!, (b) ~1

2!~3u 1 v! 15. (a) v 2 u, (b) ~1
2!~v 2 u! 17. (a) 2u, (b) ~1

2
!~3v 2 u!

19. 1
2 21. 3

14 23. 2 25. 1 27. (a) $x _ x . 3%, (b) $x _ x , 0 or x . 2% 29. x . 4 31. ~2.62, 1.93!
33. ~1.65, 2.50! 35. 1 1 e0.5 < 2.65 37. (a) 4.41, (b) 1.59, 4.41 39. (a) 2.73, (b) 20.73, 2.73
41. (a) Different domains, (b) $x _ x . 0% 45. log2~ab! 5 7, ~log2 a!~log2 b! 5 12 47. log2 c n 5 6, ~log2 c!n 5 8

49. (a) 0y, (b) R 51. Ï3 1 Ï2 5 1

Ï3 2 Ï2
53. Ïk 1 1 1 Ïk 5

1

Ïk 1 1 2 Ïk
55. f 21~x! 5 ~ 1

2!~32x 2 3x!, D 5 R;

57. (a) 54.7, 140.6, (b) 91.1, 39.5 59. (a) T, (b) F 61. (a) c , 0, (b) c $ 6
65. Not a function; 2x 2 1 2x 2 3 , 0 for every x.

EXERCISES 4.4 (page 234)
Check Your Understanding 1. T 3. F 5. T 7. 20 9. QI and QII

Develop Mastery 1. (a) 1.6094, (b) 1.1931 3. (a) 0.6826, (b) 20.5108, (c) 1.5440 5. (a) 0.3466, (b) 0.8326,

(c) 0.6931 7. (a) 0.4136, (b) Undefined, (c) 0.5774 9. (a) Ï5 ; 2.24, (b) 1

Ï5
; 0.45

11. (a) Ï3; 1.73, (b) 1
6 ; 0.17 13. . 15. 5 17. . 19. b , a , c 21. No, different domains

23. No, different domains 25. (a) No, (b) R; ~0, `! 27. (a) No, (b) R; ~0, `! 29. (a) f 21~x! 5 2ln~x 2 2!,
(b) ~2.1, 2.1! 31. (a) f 21~x! 5 1 2 log~0.25x!, (b) ~1.4, 1.4! 33. (b) f 21~x! 5 1 1 ex, (c) D 5 R, R 5 ~1, `!

35. (b) f 21~x! 5
ex

ex 2 1
, (c) D 5 ~0, `!, R 5 ~1, `! 37.

3Ïe; 1.396 39.
e 1 10

15
; 0.848 41.

10 1 Ï10

9
; 1.462
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A-10 Answers to Selected Exercises

43.
ln 4

ln 3
; 1.262 45.

ln(ln 4)

ln 3
; 0.297 47. 2ln(ln 8 2 1); 20.076. 49.

2ln 6

ln 35
; 20.504 51. (0.66, 0), (0, 23)

53. ~20.48, 0!~0, 2! 55. (b) $x _ x $ 21% 57. (b) $x _ x # 2ln 2% 59. 1,
ln 2

ln 5
61. 1, e < 2.718

63. No solution 65. $20.9, 1.2, 16% 67. 36.3 69. 790 billion miles 71. $2% 73. $10, 1000% 75. (a) $10%,
(b) $e22, e2% 77. $x _ x . 0 and x 5/ 1% 79. $x _ x . 0 and x 5/ 1% 81. 1023wym2 83. (a) 95 dB, (b) 27 percent

85. f 21~x! 5 ln~x 1 Ïx 2 1 1!

EXERCISES 4.5 (page 245)
Check Your Understanding 1. f 3. a 5. c 7. a 9. b

Develop Mastery 1. (a) 16,000, (b) 25,000, (c) 5 hrs. 3. (a) 6.4 billion, (b) Year 2005 5. 270 million
7. 6 percent 9. 8 2

3 percent 11. $1,934.79 13. (a) 9.69 gm., (b) 6.2 gm. 15. 7.3 lb. 17. 3.9 yrs.
19. 7,500 yrs. 21. 1,340 yrs. 23. 250 times as great 25. 7.7 27. 19.5 km. 29. 7.35, slightly basic
31. 26 yrs. 33. (a) 111 lb., (b) 110 min. 35. (a) 16,800, (b) 17 days 37. (a) 25 percent, (b) 1.2 percent

CHAPTER 4 REVIEW (page 247)
Test Your Understanding 1. F 3. F 5. F 7. T 9. F 11. T 13. F 15. T 17. F 19. F

21. T 23. F 25. T 27. F 29. T 31. T 33. T 35. F 37. F 39. F 41. T 43. T 45. F

47. T 49. T 51. F 53. F 55. T 57. T 59. T 61. T 63. F 65. F 67. F 69. c 71. i

73. e

Review for Mastery 1. 6
5 3. 3

2 5. 0 7. 1
49 9. 1

2 11. 3.850 13. 0.235 15. 23.141 17. Three

19. Ï2 21. 2.08; 20.54 23. 22.35; 23.10 25. 9
2 27. 4 29. 1 31.

e

e 2 1
33. 0.86 35. 1.20

37. 0.29 39. 3.72 41. 0 43. $x _ x , 0 or x . 2% 45. $x _ x . 0% 47. $x _ x . 1% 49. Translate graph of

y 5 ln x up 1 unit. 51. Reflect graph of y 5 ex about the y-axis, then translate up 1 unit.
53. Draw graph of y 5 x for x . 0. 55. ~ln 2, 0! 57. ~ 5

2 , 0! 59. No; domains are different 63. ~2, 3!
65. (a) f 21~x! 5 e42x, (b) ~2.9, 2.9! 67. (a) f 21~x! 5 21 1 log2~x 2 1!, (b) None 69. 0.1, 4.5
71. 21.8, 1.1 75. (a) $1318.98 (b) 36.65 years 77. 77 percent; 18 percent 79. Nine years
81. 20; 70; 100; 120; 140

CHAPTER 5
EXERCISES 5.1 (page 264!

Check Your Understanding 1. F 3. T 5. F 7.
7p

6
9.

36

p

Develop Mastery 1. (a) (b) (c)

3. (a) (b) (c)

5. (a) (b) (c)



x

y

))P
3

pP

(1, 0)
x

(1, 0)

y

P
–

6))pP 

x

y

P
–

6 ))7pP p7

x
(1, 0)

y

P (– 2)

x

y

P9
4 ))P 

pgA-11 [R] G1 5-36058 / HCG / Cannon & Elich cr 12-4-95 MP2

Answers to Selected Exercises A-11

7. (a) 23.6338, (b) 143.2738, (c) 295.5178 9. (a) p
3 , 1.05, (b) 11p

6 ; 5.76, (c) p
8 ; 0.39, (d) 7p

12 ; 1.83
11. (a) 1208, (b) 758, (c) 7208, (d) 206.38 13. g , a , b 15. g , b , a 17. 498 19. p

3 21. (a) 4p ,
(b) 48p 23. (a) 733, (b) 60,100 25. (a) 150, (b) 2,800 27. (a) 2.33, (b) 133.58 29. (a) 1.26, (b) 117
million mi. 31. (a) 1058, (b) 172.58 33. (a) 9.42 in., (b) 311 in. 35. (a) 0.009 rad./min., (b) 0.105 rad./min.
37. (a) 23 mi./hr, (b) 80; 92, (c) 0.023 rad 39. 1357 cubic in. 41. 0.40 radians (238), 2.32 radians (1338)

43. (a) 144Ï3 cm.2, (b) 96p cm.2, (c) 192p cm.2 45. 380 m./min. 47. 66700 mi.yhr. 49. 390
rev.

min.

51. (a) 296
rev.

min.
, (b) 1900

km.

hr.

EXERCISES 5.2 (page 274)
Check Your Understanding 1. F 3. T 5. F 7. QII or QIII 9. ,

Develop Mastery 1. (a) 3. (a) 5. (a)

(b) All are positive. (b) cos~2 p
6 ! is positive, the other (b) sin~2 7p

6 ! is positive;
two are negative. the other two are negative.

7. (a) 9. (a)

(b) tan~22! is positive; the other two are negative. (b) sin~ 9
4! is positive; the other two are negative.

11. P~5p
2 ! is ~0, 1!; cos~5p

2 ! 5 0; sin~5p
2 ! 5 1, csc~5p

2 ! 5 1, cot~5p
2 ! 5 0

13. P~23p! is ~21, 0!; cos~23p! 5 21, sin~23p! 5 0, sec~23p! 5 21, tan~23p! 5 0
15. P~2 15p

2 ! is ~0, 1!; cos~2 15p
2 ! 5 0, sin~2 15p

2 ! 5 1, csc~2 15p
2 ! 5 1, cot~2 15p

2 ! 5 0

Exercise u sin u cos u tan u cot u sec u csc u

17.
5p

6

1

2
2

Ï3

2
2

1

Ï3
2Ï3 2

2

Ï3
2

19.
7p

4
2

1

Ï2

1

Ï2
21 21 Ï2 2Ï2

21. 2
11p

6

1

2

Ï3

2

1

Ï3
Ï3

2

Ï3
2

23.
13p

3

Ï3

2

1

2
Ï3

1

Ï3
2

2

Ï3
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A-12 Answers to Selected Exercises

25. $t _ t 5 k · 2p% 27. Ht _ t 5
p

3
1 k · 2p or t 5

5p

3
1 k · 2pJ 29. Ht _ t 5

p

6
1 k ·pJ

31. Ht _ t 5
3p

4
1 k · pJ 33. Ht _ t 5

5p

6
1 k · 2pJ 35. Ht _ t 5

3p

4
1 k · 2pJ

37. For t 5
2p

3
:

Ï3

2
, 2

1

2
, 2Ï3. For t 5

3p

4
:

1

Ï2
, 2

1

Ï2
, 21. For t 5

5p

6
:

1

2
, 2

Ï3

2
, 2

1

Ï3
39. IV 41. II or III

43. (a) negative, (b) negative 45. (a) negative, (b) positive 47. P~t! 5 ~2 3
5 , 4

5!; sin t 5 4
5 , cos t 5 2 3

5 , tan t 5 2 4
3 ,

cot t 5 2 3
4 , sec t 5 2 5

3 , csc t 5 5
4 49. P~t! 5 ~ 7

25 , 2 24
25!; sin t 5 2 24

25 , cos t 5 7
25 53. (a) x 5 6 1

Ï2
,

(b) cos t 5 6 1

Ï2
, sin t 5 7 1

Ï2
55. (a) y 5 6 1

Ï5
, (b) cos t 5 6 2

Ï5
, sin t 5 6 1

Ï5

57. 2
p

6
59.

7p

6
61. 2

3p

2
63.

5p

4
65.

p

4
67. cos t 5 2 Ï7

4 , sin t 5 2 3
4 , 69. cos t 5 2 3

5 , sin t 5 4
5 ,

71. 1 73. 1 75. (a) 21, (b) Ï2, (c) 21; sin 2t 5 2 sin t cos t 77. (a) 0, (b) 2, (c) 0; sin 2t 5 2 sin t cos t
79. The weight oscillates between 3 and 23 for y and makes a complete oscillation every 1

2 second.
81. (d) 42, 40, 58; 120, 119, 169

EXERCISES 5.3 (page 285)
Check Your Understanding 1. F 3. T 5. F 7. II 9. 3

Ï58

Develop Mastery 1. sin u 5 4
5 , cos u 5 2 3

5 , tan u 5 2 4
3 , 3. sin u 5 12

13 , cos u 5 5
13 , tan u 5 12

5

5. sin u 5 2 24
25 , cos u 5 2 7

25 , tan u 5 24
7 7. sin u 5 2 1

Ï2
, cos u 5 1

Ï2
, tan u 5 21

9. sin u 5 2 2

Ï5
, cos u 5 2 1

Ï5
, tan u 5 2 11. sin u 5 3

Ï13
, cos u 5 2

Ï13
, tan u 5 3

2

13. sin u 5 2 2
3 , cos u 5 Ï5

3 , tan u 5 2 2

Ï5
15. sin u 5 4

5 , cos u 5 2 3
5 , tan u 5 24

3

17. sin f < 20.45, cos f < 20.89, tan f 5 0.50 19. sin f < 0.40, cos f < 20.92, tan f < 20.44
21. sin f < 20.60, cos f 5 0.80, tan f < 20.75 23. sin f < 20.87, cos f 5 0.50, tan f < 21.73
25. sin f < 20.98, cos f < 0.20, tan f 5 25.00 27. 0.595 29. 0.972 31. 20.130 33. 23.381
35. 1.110 37. 21.323 39. (a) ~20.15, 0.99!, (b) sin t < 0.99, cos t < 20.15, tan t < 26.80
41. (a) ~0.81, 20.59!, (b) sin t < 20.59, cos t < 0.81, tan t < 20.73
43. (a) ~20.54, 20.84!, (b) sin t < 20.84, cos t < 20.54, tan t < 1.56
45. (a) ~20.91, 0.41!, (b) sin t < 0.41, cos t < 20.91, tan t < 20.45 47. (a) 0.416, (b) 7.750

49. (a) 20.909, (b) 1.342 51. a < 31, b < 16 53. b < 34, c < 38 55. sinSu 1
p

2D 5 cos u

57. 1 1 ~tan u!2 5 ~sec u!2 59. cos 2u 5/ 2 cos u, but cos 2u 5 ~cos u!2 2 ~sin u!2 5 2~cos u!2 2 1

61. 8 63. (a) 8Ï3, (b) Ï3 2 1 65. Area < 7.53 sq. in. 67. (a) x 5 4 cosS2pt

15D, y 5 4 sinS2pt

15D,

(b) Q~x, y!; ~22, 23.46!, ~22, 3.46!, ~22, 23.46!, ~22, 23.46! 69. (a) 1.04, (b) 25.36, (c) 0.703
71. cos 0.1 < 0.9950, C~0.1! < 0.9950; cos 0.2 < 0.9801, C~0.2! < 0.9801; cos 6.6 < 0.8253, C~6.6! < 0.8254

EXERCISES 5.4 (page 297)
Check Your Understanding 1. T 3. T 5. T 7. 4 9. QIII

Develop Mastery 1. (a) cos t, (b) 2sec t 3. (a) tan t, (b) 2csc t

5. For t 5 u 1
p

2
, sin t 5 2 3

5 , cos t 5 2 4
5 , tan t 5 3

4 , cot 5 4
3 , sec t 5 2 5

4 , csc t 5 2 5
3

7. No 9. No. 13. Draw the graph of y 5 sin x, 22p # x # 2p . 15. Draw the graph of y 5 tan x, 22p # x # 2p .
17. Starting point (1, 0), counterclockwise.
19. (a) Stretch the graph of y 5 sin x vertically away from the x-axis by a factor of 2.

(b) Stretch the graph of y 5 cos x vertically away from the x-axis by a factor of 2, then reflect about the x-axis.

21. f ~x! 5 21, D 5 $x _ x 5/ ~2k 2 1!~p
2 !% 23. f ~x! 5 1, D 5 $x _ x 5/ k~p

2 !%
25. (a) 2p # x # p , (b) f and g are even functions, (c) f is periodic, g is not 27. Sketch graph of y 5 1 without points
~2 p

2 , 1! and ~p
2 , 1!. 29. Sketch graph of y 5 2tan x on @2p , p#. 31. Stretch graph of f vertically away from x- axis by a

factor of 2. 33. Shift graph of f to the right by p
2 units. 35. ~22.6, 0!, ~20.5, 0!, ~3.7, 0!, ~5.8, 0! 37. 0.8

39. (a) Three, (b) Three, (c) Seven 41. (a) 2.7, (b) 2.0 43. (a) 2.2, (b) 1.9
45. (a) (i) p 5 4p (ii) D 5 R, R 5 @21, 5# , (b) (i) p 5 2p (ii) D 5 R, R 5 @0.37, 2.72#
47. (a) No, (b) f ~x! 5 1 for every x, (c) f ~x! 5 1 for every x in the domain of f. 49. For every x where x 5/ ~2k 2 1!~p

2 !.

51. (a) 0.80, (b) 1.04 53. 8.42 55. p 5 p 57. (a) ~0, 0!, ~p
2 , p

2 !, ~2 3p
2 , 2 3p

2 ! 59. (a) $0.69% ,
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Answers to Selected Exercises A-13

(b) $x _ 0 , x , 0.69% 61. (a) No, (b) g~x! 5 2cos~ x 1 p
2 ! 5 cos~ x 2 p

2 ! 63. (a) V 5 1125 p~cos u!2 sin u,

(b) 0.6 rad, (c) 1360 65. (b) u 5 p
4 < 0.79, (c) 144 67. Two solutions: 0.73 rad, 1.16 rad

69. V 5 2p r 2 Ï36 2 r 2 71. x in @21.20, 1.20#

EXERCISES 5.5 (page 309)
Check Your Understanding 1. F 3. F 5. T 7. 22 9. p

Develop Mastery 1. (a)
p

6
, (b)

5p

6
3. (a) 0, (b) 2

p

4
5. (a) 1.160, (b) 0.253 7. (a) 0.779, (b) 23

9. (a) 0.3, (b) 2
p

2
11. (a) 2

3 , (b) 1
3 13. (a) 1.471, (b) 0.860 15. (a) 20.35, (b) 20.74 17. (a) Reflect graph of

y 5 Cos21 x about the x-axis. (b) Shift graph of y 5 Cos21 x left one unit. 19. See graphs in Box on p. 306

21. (a) 0.80, (b) 0.95 23. (b) x 5
1

Ï2
25. (b) 27. (a) @24, 4#, (c) R 5 Hp

2J

29. (a) D 5 @21, 1#, R 5 @0, 1#, (c) Since 0 # Cos21 x # p , sin~Cos21 x! $ 0. 31. (a) 2.27, 4.02 33. (a) 0.321, (b) @0, p#
35. Best view: x < 6.8 feet, u < 0.25 (about 148). Janet is 1.6 feet from basketball player. 37. (a) y 5 Tan21 6

x 2 Tan21 2
x ,

(b) x < 3.5, (c) x 5 Ï12 39. (a) D 5 R, R 5 @0, p
2 ! 41. (a) 0.41, 2.73, (b) 0.41 43. (a) @0, p#, (b) @2 p

2 , p
2 #

47. f ~x! 5
x

Ï1 1 x 2
53. 2.04 55. (a) Yes, (b) Yes 57. (a) Even, (b) Neither, (c) Even, (d) Odd

59. f ~x! 5 H2x if 2 p
2 # x , 0

0 if 0 # x # p
2

, corners: ~0, 0!, ~p
2 , 0!, ~6p , 2p!, ~2 p

2 , 2p! 61. f ~x! 5 5
2x 2 p if 2p # x # 2 p

2

x if 2 p
2 , x , p

2

2x 1 p if p
2 # x # p

CHAPTER 5 REVIEW (page 312)
Test Your Understanding 1. (a) T, (b) F, (c) F, (d) T 3. F 5. (a) F, (b) T, (c) T, (d) T 7. F 9. T

11. T 13. F 15. T 17. T 19. (a) F, (b) F 21. T 23. T 25. T 27. T 29. T 31. T

33. F 35. T 37. T 39. T 41. F 43. F 45. F

Review for Mastery 1. s < 13 cm., A < 150 cm.2 3. r < 9.8, u < 1.3 5. (a) P~t! 5 ~2 Ï2
2 , Ï2

2 !, (b) sin t 5 Ï2
2 ,

cos t 5 2 Ï2
2 , tan t 5 21 7. (a) P~t! 5 ~2 Ï3

2 , 1
2!, (b) sin t 5 1

2 , cos t 5 2 Ï3
2 , tan t 5 2 Ï3

3 9. (a) P~t! 5 ~0.81, 20.59!,

(b) sin t 5 20.59, cos t 5 0.81, tan t 5 20.73 11. ~2k 1 1!p where k is any integer. 13. (a) Two points, (b) ~ 1
4 , 6 Ï15

4 !

15. 2cos t 17. 2sec t 19. (a)
5p

4
, (b)

2p

3
, (c) p 21. (a) 0.682, (b) 20.532, (c) 0.541 23. (a) 2 3

5 , (b) 3
5

25. (b) ~2 5
13 , 12

13 !, (c) 12
13 ; 2 12

5 27. sin u 5 4
5 , cos u 5 3

5 , tan u 5 4
3 ; u < 0.93 29. sin u 5 2 3

5 , cos u 5 2 4
5 , tan u 5 3

4 ;

u < 3.79 31. (a)
p

4
, (b)

5p

6
33. (a) 1

Ï5
, (b)

p

4
35. (a) 2

p

6
, (b) 2Ï5 37. (a) 2 5

7 , (b) 2 12
13 39. (a) 0.49,

(b) 1.82 41. Ï3
2 43. None 45. See graph in Figure 45. 47. Translate graph of y 5 cos x up 1 unit. 49. Draw graph

of y 5 2cot x by reflecting the graph in Figure 49b about the x-axis. 51. Graph is the line segment with endpoints (21, 21) and
(1, 1). D 5 $x _ 21 # x # 1%, R 5 $y _ 21 # y # 1%
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53. Translate graph of y 5 Cos21x in Figure 62b down p
2 units. D 5 $x _ 21 # x # 1%, R 5 $y _ 2 p

2 # y # p
2 %

55. (a) Locate point ~2 1
2 , 2p

3 ! on the graph. (b) $x _ 21 # x # 2 1
2% 57. 22p # x # 2p or 0 # x # p

59. (a) D 5 R, R 5 @1
3 , 3#, (b) Yes 61. Three; QI and QIII 63. 0.77 65. 671 cubic in.

67. (a) A 5 18x 2 36 sin x
2 cos x

2 , (b) 2.55

CHAPTER 6
EXERCISES 6.1 (page 326)
Check Your Understanding 1. T 3. T 5. F 7. $x _ x 5/ k p

2 % 9. 2tan x

Develop Mastery 1. (a) Identity; R, (b) Not an identity, (c) Identity; $x _ x . 0% 21. (a) R,

(b) $x _ x 5/ ~2k 2 1!p
2 % 23. (a) R, (b) $x _ x is in QI% 35. Not an identity 37. Identity

39. Not an identity 41. Identity 43. Identity 45. Identity 47. Identity 49. f ~x! 5 sin x
51. f ~x! 5 sec x 53. f ~x! 5 sin x cos x 55. f ~x! 5 sin x 57. f ~x! 5 sec x 59. @0, p#
61. $x _ x is in QI or QIV or x is coterminal with 0 or 6 p

2 % 63. $x _ x is in QI% 65. (a) @24, 4#, (b) @2100, 100#
67. (a) D 5 @21, 1#, R 5 @1, p 2 1#, (b) D 5 @21, 1#, R 5 @21 2 p

2 , 1 1 p
2 # 69. No, try any x . 10000.

71. ~ f 8 g!~x! 5 _ csc x _ 73. True 75. (a) ~x 2 1!2 1 ~y 1 2!2 5 1 77. Graphs coincide for 0 # x # 3. 79. S 5 0

EXERCISES 6.2 (page 339)
Check Your Understanding 1. F 3. T 5. T 7. 2 1

2 9. 2 Ï3

Develop Mastery 3. Functions of the type f ~x! 5 kx are additive. 7.
Ï6 2 Ï2

4
, 0.2588 9.

Ï2 2 Ï6

4
, 20.2588

11. (a)
Ï2 1 Ï6

4
, (b) 22 2 Ï3 13. 2 33

65 15. 63
16 17. 7

25 19. 2
3Ï7

8
21.

3Ï7 2 4Ï3

5

23.
3Ï2 2 Ï14

8
25. (a) Ï3

2 , (b) 0 27. (a) 1
2 , (b) 2 37. (a) D 5 R, (b) Identity 39. (a) D 5 R, (b) Not an

identity 41. (a) D 5 @0, `!, (b) Not an identity 43. f ~x! 5 2x for 21 # x # 1 45. f ~x! 5 2Ï1 2 x 2 49. 1
7

51. Shift the graph of g to the right p
6 units to get the graph of f. 53. 6 Ï3

2 55. (a) 29.78, (b) 26.68, 56.38, (c) ~2, 3!
57. 6

7 59. 1 63. (c) sin 108 < 0.1736481777, sin 508 < 0.7660444431, sin 2508 < 20.9396926208
69. (a) y 5 Tan21 12.5

x 2 Tan21 9
x , (b) x < 10.6 feet 71. x 5 4.90, y 5 0.47 73. (a) D 5 $x _ x is in QI or QIII% ,

(b) D 5 $x _ x is in QI% 75. (a) odd, (b) D 5 $x _ x 5y 0%, R 5 @21.8, 1.8#

EXERCISES 6.3 (page 347)
Check Your Understanding 1. F 3. T 5. T 7. , 9. .

Develop Mastery 1. (a)
Ï2 2 Ï3

2
, 0.25882, (b) 2

Ï2 2 Ï2

2
, 20.38268 3. (a) 2

Ï2 1 Ï2

2
, 20.92388,

(b) Ï2 2 Ï2
2 , 0.38268 5. (a) 5

Ï26
, (b) 1

Ï26
, (c) 5 7. (a) 2 2

Ï5
, (b) 2 1

Ï5
, (c) 2

9. (a) 2, 1, 6, (b) 2, 6, 6 11. (a) 2, 1, 1, (b) 2, 1, 1 13. (a) Yes, u 5 2408, (b) Yes, u 5 21208

15. (a) 2
Ï2 1 Ï3

2
< 20.9659, (b) 2

Ï2 1 Ï6

4
< 20.9659 25. Not an identity 27. Not an identity

29. Identity 31. Identity 33. Identity 35. Not an identity; try x . 10000 37. (a) 0.368, (b) 0.183, (c) 0.449

39. (a) 2 3
4 , (b) 1

Ï10
, (c) 2 3

Ï10
, 41. (a) Ï6

2 , (b) Ï6
2 43. (a) Decreasing, (b) D 5 @21, 1#, R 5 @0, `!, (c) ~0, 1!

45. (a) Decreasing, (b) D 5 @21, 1#, R 5 @0, 1# (c) ~0, Ï2
2 ! 47. ~1.5, 0.7! 49. (a) f (x) 5 H 1 if sin x $ 0, sin x , 1,

21 if sin x , 0 or sin x 5 1,
(b) g(x) is defined the same way as f (x), replacing sin x by cos x. 53. 1.33 57. (a) 1

2 ~sin 5x 1 sin x!,
(b) 1

2 ~cos 4x 1 cos 2x! 61. (a) 2 cos 2x sin x, (b) 22 sin 3x sin 2x 63. tan~5x
2 !

65. (a) cos x 5
1 2 u 2

1 1 u 2
, tan x 5

2u

1 2 u 2
, (b)

u~1 2 u 2!

1 1 u 2

EXERCISES 6.4 (page 357)
Check Your Understanding 1. F 3. T 5. T 7. p

2 9. p
4

Develop Mastery 1. p
3 , 5p

3 3. 0, 2p
3 , 2p 5. 0, p , 2p 7. p

4 , 3p
4 , 5p

4 , 7p
4 9. p

3 , 5p
3 11. p

6 , 5p
6 13. p

2 , 3p
2

15. p
6 , 5p

6 , 3p
2 17. p

2 , 3p
2 , p

6 , 5p
6 19. p

3 , 2p
3 21. 2p , 2 p

3 , p 23. 2 5p
6 , 2 p

3 , p
6 , 2p

3

25. $x _ x 5 6p
4 1 k · 2p% 27. $x _ x 5 2p

3 1 k · 2p or x 5 4p
3 1 k · 2p%
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29. $x _ x 5 p
2 1 k · 2p% 31. p

2 , p 33. p
6 35. 0, p

2 , p , 3p
2 , 2p 37. 0, p

4 , 3p
4 , p , 5p

4 , 7p
4 , 2p 39. 60.8

41. 20.4, 2.1 43. 21.9, 1.2 45. 60.9 47. 0.5, 22.7 49. 0.7, 2.4 51. 0.8, 2.3 53. 0.7
55. (a) max P~1.6, 2.7!, (b) Q~p

2 , e!, P and Q are the same point 57. (a) max P~2.0, 1.8!, (b) Q~2.0, 1.8!, P and Q are the

same point 59. 3
4 , 7

4 61. 0, 1
3 , 1, 5

3 , 2 63. 1
4 65. (a) f ~x! 5 Ï2 sin~x 2 p

4 !, (b) Ï2 (c) 3p
4

67. (a) f ~x! 5 2 sin~x 2 p
6 !, (b) 2, (c) 2p

3 69. 33p
2 < 51.84 71. 199p

4 73. (a) 3, (b) 0 75. (a) 13, (b) 24
77. (a) V 5 243p sin2 x cos x, Vmax < 294 in.3 (b) 0.49~288! or 1.37~78.58! 79. (a) A 5 ~2.75!2 csc u,
(b) D 5 @Tan21 11

30 , p
2 #

EXERCISES 6.5 (page 371)
Check Your Understanding 1. T 3. F 5. T 7. f 9. e

Develop Mastery 1. @0, 2p
3 # 3. @2 3

4 , 5
4# 5. (a) y 5 2cos 2x, (b) @0, p#, A 5 1, p 5 p 7. (a) y 5 22 sin x,

(b) @0, 2p#, A 5 2, p 5 2p 9. (1): y 5 sin
px

2
; (2): FI 5 @0, 4#; (3): ~0, 0!, ~2, 0!, ~4, 0!; ~4!: ~1, 1!, (3, 21). No phase shift

11. (1): y 5 23 sin~2x 2 p
4 !; (2): FI 5 @p

8 , 9p
8 #; (3): ~p

8 , 0!, ~5p
8 , 0!, ~9p

8 , 0!; (4): ~3p
8 , 23!, ~7p

8 , 3!. Phase shift p
8 to the right

13. (a) A 5 2, y 5 2; phase shift: shift graph of y 5 2 sin px left 3 units, not unique.
(b) g~x! 5 2 sin p~x 1 1!, not unique. 15. (a) A 5 3, p 5 p ; phase shift; shift graph of y 5 3 cos 2x to the left 1.5 units.
(b) g~x! 5 3 cos~2x 1 3!, not unique. 17. (a) A 5 2, p 5 1208; phase shift: shift graph of y 5 2 sin 3x to the right 208.
(b) g~x! 5 2 sin~3x 1 3008!, not unique. 19. (a) A 5 2, p 5 1208; phase shift: shift graph of y 5 22 cos 3x to the right 168.

(b) g~x! 5 22 cos~3x 1 3128!, not unique. 21. y 5 Ï2 sin~x 1 p
4 !, FI 5 @2 p

4 , 7p
4 #

23. y 5 2 sin~x 1 p
3 !, FI 5 @2 p

3 , 5p
3 # 25. 0.95, 20.62 27. 0.75, 20.25 29. First draw a graph of y 5 2 sin 2x with

FI 5 @0, p#, A 5 2, then translate upward 1 unit. 31. Draw graph of y 5 sin px with FI 5 @0, 2#, then shift down 2 units.
33. y 5 sin 2x 35. y 5 2 1 sin 2x. 37. y 5 cos 4x.
39. y 5 sin x, with missing points ~p

2 , 1!, ~2 p
2 , 21!, ~3p

2 , 21!, . . . . 41. y 5 cos x, where the domain is $x _ cos x . 0%.

43. (b) Loc. maxS1
4

,
1

4Ï2
D, S2

3

4
,

1
4Ï8
D Loc. min.S2

1

4
, 2

1
4Ï2
D, S3

4
, 2

1
4Ï8
D, (c) The graphs of f and g meet at the local

maximum points of f. The graphs of f and h meet at the local minimum points of f.
45. (a) Yes, p 5 2p

3 , (b) Yes 47. (a) Yes, p 5 2p , (b) No 49. (a) f ~x! 5 2 sin~x 1 p
6 !, not unique, (b) A 5 2,

p 5 2p ; shift the graph of y 5 2 sin x to the left p
6 units; not unique. 51. f ~x! 5 sin~2x 1 2!

57. f ~x! 5 sin~2x 2 2p
3 ! 59. f ~x! 5 1 1 sin~2p~x 2 0.5!! 61. f ~x! 5 22 sin~x 1 p

4!

63. A 5 4, p 5 1
3 , f 5 3, f ~0! 5 0 65. A 5 2Ï26

5 , p 5 3, f 5 1
3 , E~0! 5 2

67. Graph of f meets the envelope curves at ~p
8 , Ïp

8 !, ~5p
8 , Ï5p

8 !, ~3p
8 , 2 Ï3p

8 !, ~7p
8 , 2 Ï7p

8 !

69. Graph of f meets the envelope curves at ~0.25, Ï0.5!, ~1.25, Ï2.5!, ~2.25, Ï4.5!, ~0.75, 2Ï1.5!, ~1.75, 2Ï3.5!, ~2.75, 2Ï5.5!
71. By ~I- 22!, f ~x! 5 ~2 sin x! cos 5x. The graph of f will touch the graph of y 5 2 sin x whenever cos 5x 5 1, and will touch the

graph of y 5 22 sin x whenever cos 5x 5 21. 73. (a) I~t! 5 4.0 1 0.4 sinS 2pt

10.8D, (b) I~0! 5 4.0, I~4! < 4.3

CHAPTER 6 REVIEW (page 374)
Test Your Understanding 1. T 3. T 5. T 7. T 9. F 11. T 13. F 15. F 17. T 19. F
21. T 23. T 25. T 27. T 29. T 31. F 33. F 35. F 37. 0 39. 0.8 41. @21, 1#
43. QI, QIII, QIV 45. 7

Review for Mastery 13. Identity 15. Not an identity 17. Identity 19. f ~x! 5 cos x, x 5/ ~2k 2 1!~p
2 !

21. f ~x! 5 1 for every real number x. 23. 2 4
3 25. 2 1

Ï26
27. 2 3

5 29. 27 31. p
4 , 3p

4 , 5p
4 , 7p

4 33. p
2 , 7p

6 , 11p
6

35. 3p
4 37. p

6 , 5p
6 , 7p

6 , 11p
6 39. 21.11, 2.03 41. 20.97, 22.18 43. 0 45. $x _ x is in QI or QII or x is coterminal

with 0, p
2 or p . 47. $x _ x is in QI or QIV or x is coterminal with 0 or 6 p

2% 49. $x _ x is in QI% 51. Graph is a sine curve
with FI 5 @p

4 , 9p
4 #, amplitude 2, period 2p , and phase shift p

4 to the right 53. Draw a graph of y 5 2 sin~x 2 p
4 !.

55. Draw a graph of y 5 2 cos 2x, reflect about the x-axis and then shift left p
6 units. 57. Shift the graph of g right p

6 units.
59. Shift the graph of g right p

4 units. 61. 1.89 63. (a) Yes, p 5 2, (b) Yes 65. (a) Yes, p 5 p , (b) No
67. 61.45 69. 0.85, 1.32 71. 4.36 73. (a) 72.08, (b) ~25, 21! 75. f 21~x! 5 2cos x, D 5 @0, p#, R 5 @21, 1#
77. f ~x! 5 Ï2 sin~x 1 p

4 !
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CHAPTER 7
EXERCISES 7.1 (page 385)
Check Your Understanding 1. T 3. F 5. F 7. a~1 1 cot a 1 csc a! 9. 308

Develop Mastery 1. b 5 548, b 5 5.1, c 5 6.3 3. b 5 638, a 5 18, c 5 39 5. a 5 248409, a 5 9.89, b 5 21.5
7. c 5 92, a 5 538, b 5 378 9. b 5 29.9, a 5 35.68, b 5 54.48 11. 0.078 13. 0.588 15. 1.45 17. 638
19. 5.3 21. 16.66 cm. and 8.397 cm. 23. 3.55 cm., 42.08 25. 15 ft. 27. 17 29. (a) 8.3, (b) 24
31. P 5 47.5 cm., A 5 109 cm.2 33. (a) 750 cm.2, (b) 1,200 cm.2, (c) 1,500 cm.2, (d) 1,700 cm.2 35. 51 ft.

39. 6,280 cm.3 41. 47.168 43. (c) sin 158 5
1

2Ï2 1 Ï3
, cos 158 5

Ï2 1 Ï3

2

45. d 5 Ï1.5h 1 ~ h
5,280!

2 , h in feet, d in miles. 47. 1,070 mi.

49. K 5 64Ï2 2 20p < 27.68 51. 2
3 53. 16Ï2 2 Ï3 55. K 5 ~3 2 Ï3

4 !s 2

57. (a) 0 , h # c
2 , (b) The pair $a, b% is uniquely determined.

EXERCISES 7.2 (page 397)
Check Your Understanding 1. T 3. T 5. T 7. a sin g

sin a 9. 6Ï3

Develop Mastery 1. g 5 81.08, b 5 35.6, c 5 36.4 3. g 5 21.08, a 5 158, b 5 208
5. a 5 928 159, a 5 14.2, c 5 11.9 7. g 5 90.08, a 5 28.0, c 5 53.0
9. Two solutions: b1 5 828, g1 5 428, c1 5 46; b2 5 988, g2 5 268, c2 5 30 11. a 5 328, g 5 248, a 5 2.1 13. 364
15. 630 17. 298 ft. 19. 374 yds. 21. 437 ft. 23. _ BC _ 5 5.5, _ CD _ 5 2.8

25. 41.48 27. (a) c 5 4Ï2 6 Ïa2 2 32 , (b) No solution when a , 4Ï2; one solution when a 5 4Ï2 or a $ 8; two

solutions when 4Ï2 , a , 8. 29. (a) V 5 25p
3 sin2 x~5 cos x 1 Ï64 2 25 sin2 x! , (b) Vmax < 189 when x < 1.22 ~about 708!

31. (a) K 5 ~8 sin x!~cos x 1 Ï4 2 sin2 x!, (b) Kmax < 16 when x < 1.11 ~about 63.68!
33. (a) 240, (b) 50 35. 5.268 37. 30.2 39. (a) 63 million mi., 120 million mi.; (b) 238, one solution
41. u 5 Sin21~ 5

14! < 20.98 43. Yes

EXERCISES 7.3 (page 405)
Check Your Understanding 1. T 3. T 5. F 7. 5Ï3 9. 908

Develop Mastery 1. c 5 52, a 5 308, b 5 1028 3. b 5 114, a 5 39.58, g 5 25.18 5. a 5 51.38, b 5 38.68, g 5 90.08
7. a 5 6.30, b 5 72.48, g 5 53.98 9. a 5 908, b 5 588, g 5 328 11. a 5 478, b 5 408, g 5 938
13. c 5 53, a 5 588, b 5 328 15. (a) 4.4, (b) 16 17. (a) 6.95, (b) 18.9 19. (a) 36.28, (b) 26.68, (c) 825
21. (a) 34.18, (b) 2.44, (c) 4.16 23. b 5 868 25. 18 27. (a) 28, (b) 988 29. (a) ~21, 5!, (b) 138, 308

31. 2.0 33. (a) y 5 Ï369 2 360 cos x , (b) 16, (c) 51.38, (d) Kmax 5 90
35. c < 22.3, g < 105.38, a 5 15.4, a 5 41.98 37. 58.0 (for l . 908)

41. (a) y <
7.49

sin x
, 48.58 , x , 141.48, (b) 908, (c) 7.9, (d) Two solutions: 528 and 1288

47. (a) 15, (b) 90 49. (a) d 5 H4t if 0 # t # 1

Ï9t 2 2 30t 1 37 if t . 1,
(b) 7.8 mi., (c) 1:30 P.M. 51. 308

53. (a) 0.769, (b) 221 55. 788 57. 2Ï43 59. 58 m. 61. 20 1 16Ï2 63. (a) Yes, (b) 180 sq. ft.

EXERCISES 7.4 (page 417)
Check Your Understanding 1. F 3. T 5. T 7. QII 9. Four

Develop Mastery 1. (a) ~23, 0!; 3~cos 1808 1 i sin 1808!, (b) ~0, 21!; cos 2708 1 i sin 2708

3. (a) ~3, 5!; Ï34~cos u 1 i sin u!, u 5 Tan21~5
3!, (b) ~2, 23!; Ï13~cos u 1 i sin u!, u 5 Tan21~21.5!

5. (a) ~Ï3, 2!; Ï7~cos u 1 i sin u!, u 5 Tan21~ 2

Ï3
!, (b) ~1, 1!; Ï2~cos 458 1 i sin 458!

7. (a) ~0, 21!; cos 2708 1 i sin 2708, (b) ~1
2 , 2 1

2!; ~ 1

Ï2
! ~cos 3158 1 i sin 3158! 9. Ï2 1 Ï2i
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11. 4i 13. 2 1
2 2 ~Ï3

2 !i 15. 2~cos 3158 1 i sin 3158! 17. 4~cos 2708 1 i sin 2708!
19. cos~2308! 1 i sin~2308! 21. cos 608 1 i sin 608 5 1

2 1 ~Ï3
2 !i 23. cos 608 1 i sin 608 5 1

2 1 ~Ï3
2 !i

25. 2~cos 1508 1 i sin 1508! 5 2Ï3 1 i 27. 2~cos 2708 1 i sin 2708! 5 22i 29. 8~cos 908 1 i sin 908! 5 8i
31. cos 1208 1 i sin 1208 5 2 1

2 1 ~Ï3
2 !i 33. cos 2408 1 i sin 2408 5 2 1

2 2 ~Ï3
2 !i

35. cos 1808 1 i sin 1808 5 21 37. 16~cos 608 1 i sin 608! 5 8 1 8Ï3 i
39. 16~cos 08 1 i sin 08! 5 16 41. ~1

4!~cos 908 1 i sin 908! 5 ~1
4!i 43. 1

64 45. 60.87 2 0.5i, i
47. 6~1.44 1 0.41i!, 6~0.41 2 1.44i! 49. 20.52 1 1.63i, 21.15 2 1.26i, 1.67 2 0.36i
51. 6~1.48 1 0.24i!, 6~0.24 2 1.48i! 53. 61, 6~0.50 6 0.87i! 55. 61.73 2 i, 2i
57. 1, 0.31 6 0.95i, 20.8i 6 0.59i 59. 6~0.38 1 0.92i!, 6~0.92 2 0.38i! 61. 6~1.10 6 0.46i!
63. 21, 6~0.50 6 0.87i! 65. i, 6~0.50 6 0.87i! 67. En 5 2 cos~n · 308!, E45 5 0, E48 5 2

EXERCISES 7.5 (page 426)
Check Your Understanding 1. F 3. F 5. F 7. 〈,2Ï2, 22Ï2〉 9. Two

Develop Mastery 1. 〈4, 4〉 3. 〈26, 3〉 5. 〈1, 26〉 7. 〈210, 13〉 9. 〈23, 0〉 11. 〈1, 5〉 13. 1138

15. 1388 17. ~ 1

Ï5
!〈1, 2〉, ~ 1

Ï5
!〈21, 22〉 19. Ï2, 2Ï2 21. Ï5, 3Ï5 23. Ï2, k Ï2

25. Ï5, Ï29, Ï5a2 2 18ab 1 29b 2 27. 〈 8

Ï5
, 4

Ï5
〉 or 〈2 8

Ï5
,2 4

Ï5
〉 29. 〈8, 2〉 or 〈22, 2〉 31. Any x, y for which

~x, y! is a point on the circle with center ~23, 1! and radius 2 33. ~2, 6! or ~2, 22! 35. 87.4 m., 168 north of east
37. 8.8 ft., 388 north of east 39. Downstream at 6 mph, at an angle of 558 from direction of current.
41. (a) m~t! 5 〈0, 2640 2 96t 〉, j~t! 5 〈1760 2 72t, 0〉

(b) m~20! 5 〈0, 720〉, j~20! 5 〈320, 0〉
m~30! 5 〈0, 2240〉, j~30! 5 〈2400, 0〉

(c) 176 ft. when t 5 26.4 secs.

43. (a) _ v~x! _ 5 Ïx 2 1 400Ï2x 1 160,000

(b) u 5 Tan21 S x

x 1 400Ï2
D (c) From north east

(d) x 5 40, 429 mph, 48 east of north
x 5 80, 460 mph, 78 east of north
x 5 120, 492 mph, 108 east of north
x 5 250, 366 mph, 68 west of north

45. 575 mph, 388 north of east

47. (a) T~x! 5
2400

Ïx 2 1 500Ï2x 1 125000
, (b) (i) 4.5 hr (ii) 4.2 hr (iii) 5.2 hr

49. 538 south of east, one hour and 35 minutes.

CHAPTER 7 REVIEW (page 428)
Test Your Understanding 1. F 3. T 5. F 7. T 9. F 11. T 13. F 15. T 17. F 19. T

21. T 23. F 25. T 27. T 29. F 31. T 33. T 35. T 37. T 39. T 41. T 43. F 45. T

47. F 49. F

Review for Mastery 1. a 5 648409, a 5 33.8, b 5 16.0 3. 1.96 cm. 5. 35 cm.2 7. 8.89 9. 298
11. 2.98 13. 200 in.2 15. 52.2 cm., 641 cm.2 17. (a) 0.99 cm.2, (b) 0.099 cm.2 19. 116 ft.

21. (a) f ~x! 5 8 cos x 1 Ï25 2 ~8 sin x!2, g~x! 5 8 cos x 2 Ï25 2 ~8 sin x!2, (b) f ~258! < 10.9, g~258! < 3.6,

(c) 0 , x , Sin21~5
8! 23. (a) V 5 ~125p

3 !sin2 x~cos x 1 Ï4 2 sin2 x!, (b) x < 74.78, V < 245.5
27. (a) 150 ft., (b) 1,600 sq. ft. 29. (a) 29.58, (b) 13.4, (c) 47.5 31. (a) 70.68, (b) 109.48
33. 11 35. 44 ft. 37. One 39. Infinitely many 41. One 43. (a) 24 2 4i, (b) 22,035 1 828i

45. (a) 16, (b) 12.39 1 8.66i 47. (a) 64i, (b) 2i 49. (a) i 6 1, (b)
2 6 Ï3

2
2

i

2
51. 6~0.97 2 0.23i!, 6~0.23 1 0.97i! 53. 6~1.96 1 0.39i!, 6~0.39 2 1.96i! 55. (a) 〈21, 21〉, (b) 〈22, 10〉
57. 1628 59. (a) 445 mph, 518 north of east, (b) 2 hrs. and 15 min.

61. T~x! 5
1500

Ïx 2 2 400Ï2x 1 160,000
, 3.9 hours, 4.3 hours, 4.6 hours
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CHAPTER 8
EXERCISES 8.1 (page 440)
Check Your Understanding 1. F 3. F 5. T 7. 7

6 9. 6

Develop Mastery 1. 4, 7, 10, 13; 25 3. 1
5 , 1

25 , 1
125 , 1

625 ; 1
390625 5. 43, 47, 53, 61; 113 7. 1

2 , 3
4 , 7

8 , 15
16 ; 255

256

9. 2, 12, 120, 1680; 518918400 11. 2, 4, 14, 32; 184 13. 3, 21, 25, 29 15. 2, 6, 18, 54
17. 1, 2, 2, 4 19. 2, 4, 6, 10 21. 1, 2, 3

2 , 7
4 23. 1, 1

2 , 1
12 , 1

288 25. 3, 8, 15, 24 27. 1
2 , 3

4 , 7
8 , 15

16

29. 1, 3
2 , 11

6 , 25
12 31. 65 33. 2 5

6 35. 49
16 37. an 5

1

2n
39. an 5 ~21!n11

n

~n 1 1!2

41. an 5 n! 1 1 43. ~1, 21!, ~2, 1!, ~3, 21!, ~4, 1!, ~5, 21! 45. ~1, 22!, ~2, 3
2!, ~3, 2 4

3!, ~4, 5
4!, ~5, 2 6

5!

47. o
6

k51

1

k 11
49. o

4

k51

1

k~k 1 1!
51. o

5

k51

~21!k11

k~k 1 1!
53. 15 55. 2,450 57. 9!

4! 5!

59. (a) 1, 5, (b) 18, 180 61. Yes 63. an 5 2n 2 1 65. an 5 1 2
1

2n
67. 1, 2, 5, 29, 866 69. 1, 2, 2, 4, 8

71. (a) an: 3, 5, 9, 15, 23 bn: 3, 5, 9, 15, 23, (b) Yes, (c) 3,543 73. (a) 68, (b) 112 terms
75. (b) For a1 equal to 1 or 3, sequence eventually reaches 1, 2 as a loop. For a1 equal to 5, 7, or 9, the loop is 5,14, 7, 20, 10.
77. an 5 bn only for n 5 1, 2, 3, 4, 5. 79. 771 million years.

EXERCISES 8.2 (page 448)
Check Your Understanding 1. T 3. T 5. F 7. Three 9. Ï5

Develop Mastery 1. Diverges 3. Converges to 2 5. Converges to 3 7. Converges to 2 1 1
e 9. Diverges

11. (a) 1.732, 1.126, 1.369, (b) 1.302776 (c)
21 1 Ï13

2

13. (a) 2.646, 2.087, 2.217, (b) 2.192582 (c)
21 1 Ï29

2
15. (a) 1.817, 1.985, 1.999, (b) 2 (c) 2 is a root of x 3 2 x 2 6 5 0.
17. (a) 3, 10

3 , 33
10 , (b) 3.302776, (c) 3 1 Ï13

2 19. (a) 3, 8
3 , 21

8 , (b) 2.618034, (c) 3 1 Ï5
2

21. (a) 3, 28
9 , 2433

784 , (b) 3.103803, (c) Root of x 3 2 3x 2 2 1 5 0 23. (a) 2, 1
2 , 21, 2, 1

2 , 21; No, (b) 21, 30

25. (a)–(d) If a1 5 k, then all terms of $an% are k. 27. (a) 3, 8
3 , 21

8 , 55
21 , 144

55 , 377
144 , (b) an 5

f2n12

f2n

31. For any value of a1, limit < 1.272020. 33. (a) No, (b) $a2n21% converges to 21, $a2n% converges to 1.
35. (a) No, (b) $a2n% converges to 0, $a4n23% converges to 1, $a4n21% converges to 21.

41. (a) 6, 3, 6, 3, (b) 6, 3, (c) 90 43. (a) 4, 12
5 , 4, 12

5 , (b) 4, 12
5 , (c) 64 45. 0.37255950

47. 0.97069872 49. 1.74903139 51. 58.77010594

53. (a) If a1 5 1
2 , a3 5 0 and a4 is not defined. (b) 1

2 , 2
3 , 3

5 , 5
8 , . . . ; sequence is H fn

fn11
J for n $ 2. (c) If a1 5 3

5 , a5 5 0 and a6 is

not defined. (d) Round off 55. 2 57. Ï2 59. 3
61. (a) 4.236068, (b) 3.732051, (c) $c2n21% converges to 3.732051, $c2n% converges to 4.236068.

EXERCISES 8.3 (page 459)
Check Your Understanding 1. T 3. T 5. F 7. 28 9. 1

Develop Mastery 1. (a) 3, (b) 18, 30, (c) 165 3. (a) 25, (b) 221, 241, (c) 2185

5. (a) 2 8
3 , (b) 20

3 , 24, (c) 80 7. (a) 22Ï2, (b) 1 2 9Ï2, 1 2 17Ï2, (c) 10 2 80Ï2
9. (a) ln 2, (b) 6 ln 2, 10 ln 2, (c) 55 ln 2 11. (a) 2 1

3 , (b) 2 1
243 , 2 1

2.187 , (c) 61
81

13. (a) 1
3 , (b) 2

27 , 2
243 , (c) 242

9 15. (a) Ï2, (b) 4Ï2, 8Ï2, (c) 7 1 3Ï2 17. (a) 1
2 , (b) 3

32 , 3
128 , (c) 93

16

19. (a) 1 1 Ï2, (b) 17 1 12Ï2, 99 1 70Ï2, (c) 11 1 9Ï2 21. Neither 23. Neither
25. Arithmetic, d 5 ln Ï3 27. Geometric, r 5 0.01 29. d 5 2 5

3 , a1 5 25
3 31. d 5 2, S8 5 64

33. a1 5 1, S4 5 16 35. a4 5 0, a16 5 4p , S16 5 24p 37. r 5 3
2 , a6 5 243

8 39. a1 5 4
81 , S5 5 211

324

41. a5 5 2
9 , S5 5 242

9 43. a1 5 2 32
5 , S8 5 2 17

4 45. 1 47. 6Ï2 49. 3 51. Arithmetic 53. Geometric
55. Geometric 57. (a) r 5 2 1

3 ; Sn 5 3
4 ~1 2 ~2 1

3!
n!, (b) 3

4

59. (a) r 5 3
4 ; Sn 5 3

4 ~1 2 ~3
4!

n!, (b) 3
4 61. 9

5 63. (a) Sn 5 2.5~1 2 ~20.6!n!, (b) 2.5, (c) 16, 25 65. (a) 31
25 , (b) 41

33

67. (a) 9
8 , (b) 1,124

999 69. 264p 71. 10,000 75. 60 77. Ï1 1 Ï5
2

79. (a) 548 m., (b) 850 m.
81. (a) 16 ft., (b) an 5 32n 2 16, arithmetic, (c) 2,304, (d) 20 terms, sum 5 6,400
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EXERCISES 8.4 (page 468)
Check Your Understanding 1. T 3. F 5. F 7. T 9. F

Develop Mastery 1. (b) f ~n! is divisible by 4 for every n, and is divisible by 3 and 12 for every even number n.
3. The units digit of f ~n! is 0 for every even n and it is 9 for every odd n. The units digit is never 1.
5. (a) f ~n! is prime for all n in the table. (b) The units digit of f ~n! is 1, 3, or 7. (c) f ~n 1 1! 5 f ~n! 1 2n, (d) f ~n! is not

prime when n is 41 or 82. 7. (b) f ~n! 5 n~n 1 1! 9. (b) f ~n! 5
2n 2 1

2n

11. (b) f ~n! 5 3n, (c) o
n

k51

3k21 5
3n 2 1

2
13. (b) f ~n! 5 2n, (c) g~n! 5 2n 2 1

15. f ~n! 5
n 1 2

n 1 1
17. (b) f ~n! 5 n~n 1 1! 19. f ~n! 5

n~n 2 1!

2
21. Row n has n 1 1 entries.

25. f ~n! 5 2n21 27. f ~n! 5 Sn 1 1

2 D 29. f ~n! 5 Sn 1 3

4 D 31. P~n! 5 1 1 Sn 1 1

2 D
33. R~4! 5 8, R~5! 5 16, R~6! 5 31, R~7! 5 57 35. (b) bn16 5 bn, (c) 2y 2 x, x 1 y

EXERCISES 8.5 (page 474)
Check Your Understanding 1. F 3. F 5. T 7. T 9. F

Develop Mastery 1. All are true. 3. P~1! and P~2! are true; P~5! is false.
5. P~1! and P~2! are true; P~5! is false. 7. All are true. 9. 6 11. 3

13. Hyp: 13 1 23 1 . . . 1 k 3 5
k 2~k 1 1!2

4
; Concl: 13 1 23 1 . . . 1 k 3 1 ~k 1 1!3 5

~k 1 1!2~k 1 2!2

4

15. Hyp: 1 · 2 1 2 · 3 1 . . . 1 k~k 1 1! 5
k~k 1 1!~k 1 2!

3
;

Concl: 1 · 2 1 2 · 3 1 . . . 1 k~k 1 1! 1 ~k 1 1!~k 1 2! 5
~k 1 1!~k 1 2!~k 1 3!

3
17. Hyp: 4k 2 1 is a multiple of 3; Concl: 4k11 2 1 is a multiple of 3. 41. True for every n 43. True for every n
45. P~4! is false. 47. P~41! is false. 49. True for every n 51. (a) 1, 4, 9, 16, (b) Sn 5 n2

53. (a)–(b) All Terms are 180. 57. (b) All odd integers greater than 3 and not a multiple of 3; the sequence includes all prime
numbers greater than 3.

EXERCISES 8.6 (page 483)
Check Your Understanding 1. F 3. T 5. T 7. 10 9. 28

Develop Mastery 1. (a) 84, (b) 84 3. (a) 56, (b) 56 5. (a) 1,330, (b) 1,330 7. (a) 210, (b) 210
9. (a) 4,200, (b) 4,200 11. (a) 720, (b) 120 13. (a) 124, (b) 6,700 15. (a) 735471, (b) 443667

17. (a) 564300, (b) 38 19. n 21.
n~n 1 1!

2
23.

n 2 k

k 1 1
25. x 5 2 5x 4 1 10x 3 2 10x 2 1 5x 2 1

27.
1

x 4
2 8

y 2

x 3
1 24

y 4

x 2
2 32

y 6

x
1 16y 8 29. 243x 5 1 405x 2 1

270

x
1

90

x 4
1

15

x 7
1

1

x 10

31. (b) 32 2 80x 1 80x 2 2 40x 3 1 10x 4 2 x 5 33. (b) x 10 1 10x 7 1 40x 4 1 80x 1
80

x 2
1

32

x 5

35. (a) Nine, (b) 5,670x 8 37. (a) Six, (b) 10x 1 10x Ïx 39. x 20 1 20x 18 1 190x 16 41. 40x 7

43. 21,920x 7y 3 45. 24 47. 42,240 49. 23,003 51. 15 53. 1 55. 2 57. 8 59. 6
63. (a) S8 5 9!, (b) Sn 5 ~n 1 1!! 65. (a) 10, (b) 15, (c) 30

CHAPTER 8 REVIEW (page 485)
Test Your Understanding 1. F 3. T 5. T 7. F 9. F 11. F 13. T 15. T 17. F 19. T 21. T
23. T 25. T 27. T 29. T 31. T 33. T 35. F 37. T 39. F 41. T 43. F 45. T

Review for Mastery 1. (a) 1
2 , 3

4 , 7
8 , 15

16 , (b) 49
16 3. (a) 2, 5, 8, 11, (b) 26 5. 3, 6, 12, 24, 48 7. an 5 5n 2 2

9. an 5 2n 2 1 11. an 5 ~21!n 13. (a) 118, (b) 1,452 15. 21 or 3 17. (a) 3
2 , 5

4 , 9
8 , 17

16 , (b) No, (c) 79
16

19. (a) 0.93, (b) 1.63, (c) 0.2142857 21. 225 23. 1
2 25. 47 27. 10

11 29. 2 17
2 31. 2 1

128 33. 1
4

37. Yes 39. (a) 15, (b) 455, (c) 84 41. 81 1 216x 1 216x 2 1 96x 3 1 16x 4 43. 99 2 70Ï2

45.
1

x 6
1 6

y 1y2

x 5
1 15

y

x 4
1 20

y 3y2

x 3
1 15

y 2

x 2
1 64

y 5y2

x
1 y 3 47. ~ 20

729!x 8 49. 6435x 6

51. (a) 0.34868, (b) 0.36603, (c) 0.36770, (d) 0.36786, (e) 0.36788 53. (a) 2, 6, 20, (b) ~ n
2n!

55. (a) 2.236068, (b) Ï5 57. $a2n 2 1% converges to 5, $a2n% converges to 20 59. (a) 1140, (b) 680



pgA-20 [V] G2 5-36058 / HCG / Cannon & Elich cr 12-4-95 MP1

A-20 Answers to Selected Exercises

CHAPTER 9
EXERCISES 9.1 (page 498)
Check Your Understanding 1. T 3. T 5. F 7. F 9. ~23, 21!

Develop Mastery 1. x 5 1, y 5 3 3. x 5 1
9 , y 5 2 1

3 5. Inconsistent 7. x 5 6, y 5 3, z 5 23

9. x 5 2, y 5 21, z 5 0 11. Dependent x 5
2k 1 3

3
, y 5

13k 1 3

3
, z 5 k (any number) 13. x 5 2, y 5 23

15. x 5 8, y 5 21 17. x 5 23, y 5 1, z 5 22 19. Dependent x 5 2k, y 5 0, z 5 k (any number)

21. Inconsistent 23. Dependent x 5
12 2 k

7
, y 5

24 2 2k

7
, z 5 k (any number) 25. x 5 21, y 5 1, z 5 2

27. x 5 1, y 5 21, z 5 4 29. x 5 5, y 5 2, z 5 22 31. x 5 1, y 5 2, z 5 23 33. x 5 22, y 5 4, z 5 4
35. x 5 2, y 5 22, z 5 1 37. x 5 21, y 5 28 39. x 5 27, y 5 15 41. x 5 212, y 5 2 43. x 5 1, y 5 1

3

45. x 5 2 1
6 , y 5 2 1

11 47. ~21, 22! 49. No real solutions. 51. (a) 8 1 2Ï2 1 2Ï10, (b) 8

53. (a) 5 1 3Ï5 1 Ï10, (b) 7.5 55. x 5 24
5 , y 5 8, z 5 24 57. x 5 e, y 5

1

e
, z 5 Ïe 59. x 5 5, y 5 1

61. (b) ~1, 1!, ~3, 2! ~5, 21!, (c) 978 63. 35 cm.2 65. $800 and $1,700 67. 882 69. x 5 400 gm., y 5 1,600 gm.
71. Plane 420 km./hr., wind 60 km./hr. 73. Sandwich $1.60, drink $0.30, pie $0.60
75. x 5 300 gm., y 5 1,200 gm., z 5 900 gm. 77. 2 hrs. and 40 min.

EXERCISES 9.2 (page 507)
Check Your Understanding 1. T 3. T 5. T 7. x 5 1, y 5 22 9. x 5 1, y 5 2, z 5 22

Develop Mastery 1. x 1 2y 5 21

x 2 3y 5 2
3. x 2 y 5 1

2x 1 3y 2 4z 5 1

2x 2 2y 1 3z 5 5

5. F2

1

21

2

3

21G 7. 3 1

2

21

1

21

2

21

0

21

1

3

04
9. x 5 1, y 5 2, z 5 22 11. x 5 0, y 5 21, z 5 22 13. x 5 1

2 , y 5 2 5
2 15. x 5 2, y 5 24

17. Dependent, x 5
8k 2 5

4
, y 5 k (any number) 19. x 5 3

11 , y 5 7
11 , z 5 16

11 21. x 5 2 4
3 , y 5 1

3 , z 5 0

23. Dependent, x 5
5 2 4k

3
, y 5

11 2 4k

3
, z 5 k (any number) 25. x 2 1 y 2 2 3x 1 5y 2 14 5 0

27. y 5 1.6x 2 1 0.4x 2 6.2 29.
3

3x 1 2
2

1

x 2 2
31.

1

x
1

2

x 1 2
2

3

x 2 2
33.

2

x 2 1
1

3x

x 2 1 1

35.
4

x 2 2
1

1

~x 2 2!2
2

3

x
37. 9, 3, 12 39. Oatmeal 0.6 cup, milk 0.5 cup, orange juice 1 cup.

EXERCISES 9.3 (page 511)
Check Your Understanding 1. F 3. F 5. T 7. ~61, 0! 9. ~62, 22!

Develop Mastery 1. ~21, 1!, ~4, 16! 3. ~0, 0!,~20.5, 1.5! 5. ~23, 1!, ~1.5, 22! 7. No solution
9. ~0, 25!, ~3, 4! 11. ~22.56, 24.56!, ~1.56, 20.44! 13. ~4, 2! 15. ~22, 22!, ~22, 2!, ~2, 22!, ~2, 2!
17. x 5 1, y 5 0 19. x 5 2, y 5 1.39 21. x 5 3.56, y 5 4.75 23. x 5 3, y 5 8 25. ~21, 2!, ~1, 2!
27. ~2, 1!, ~22, 21!, ~Ï2, Ï2!, ~2Ï2, 2Ï2! 29. ~1, 2!, ~21, 22!, ~2, 1!, ~22, 21!

31. ~p
4 , 1

Ï2
!, ~5p

4 , 2 1

Ï2
! 33. ~p

6 , 0!, ~p
6 , 2p!, ~5p

6 , 0!, ~5p
6 , 2p! 35. ~2, 4!, ~2, 24!, ~22, 4!, ~22, 24!

37. ~0, ln 5! 39. ~e, 1
e! 41. ~6, 23! 43. 8 cm. by 12 cm. 45. 66 cm. 47. y 5 x

49. 6 1 4Ï10 1 Ï148 < 30.81 cm or 6 1 4Ï10 1 Ï244 < 34.27; base 6, altitude 12

EXERCISES 9.4 (page 518)
Check Your Understanding 1. F 3. F 5. F 7. QIV 9. QII, QIII

Develop Mastery 1. (a) No, (b) Yes 3. (a) No, (b) No 5. (a) All points below line x 1 2y 5 4 (broken),
(b) ~0, 0!, ~1, 1! 7. (a) All points on or below line 2x 2 3y 5 6 (solid), (b) ~2, 21!, ~4, 0!
9. (a) All points below line x 1 y 5 24 (broken), (b) ~23, 22!, ~26, 0! 11. (a) All points on or above line y 5 2x
(solid), (b) ~0, 0!, ~0, 1! 13. All points below line x 1 y 5 4 and above line 2x 2 y 5 21 (both broken), corner point (1, 3),
open circle 15. All points on or below line x 2 2y 5 4 (solid) and to the right of x 5 2 or to the left of x 5 22, corner points
(2, 21), (22, 23), open circles 17. All points inside the triangle with vertices ~21, 2!, ~3, 4!, and ~1, 22!, all open circles.
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19. All points above the x-axis and above line x 1 y 5 1, corner point ~1, 0!, open circle 21. All points to the left of the y-axis
and above the line x 1 y 5 1, corner point ~0, 1!, open circle 23. All points inside the triangle with vertices ~2, 21!, ~2, 1!, and
~4, 21!, all open circles 25. I and II 27. II and III 29. All points on or below line 2x 2 y 5 4 (solid)
31. All points above line 2x 1 y 5 2 (broken) 33. All points on or between lines y 5 x 1 1 and y 5 x 2 1 (both solid)
35. All points to the right of the y-axis and above line y 5 x (broken) 37. x 1 2y $ 4 39. 2x 2 3y # 6
41. 2x 1 3y # 6

x 2 3y # 3
x 2 y $ 22

43. (b) x 1 3y . 22
3x 1 2y , 8
2x 2 y . 24

45. (b) y . 0
2x 1 y , 4
4x 2 3y . 212

47. 2x 2 y , 1
x 1 2y , 4

49. Minimum 320 at (3, 1); maximum 496 at (2, 5) 51. Minimum 2548 at (24, 28); maximum 472 at (6, 2)
53. Minimum 97.2 at (0, 2.4); maximum 696 at (4, 6) 55. Let x, y denote number of $6, and $3 seats, respectively:
0 # x # 200, 0 # y # 600, 6x 1 3y $ 2,100. All lattice points ~x, y! that satisfy the constraints. 57. 1,000 Rambis, 2,000
Eustis; profit $28,000 59. x units of A, y units of B: x $ 0, y $ 0, 2x 1 3y $ 8, 5x 1 2y $ 9, 2x 1 y # 8 61. x units of C,
y units of D: 0 # x # 3, y $ 2, 3x 1 y $ 5, 3x 1 4y # 21 63. (a) 64 acres of soybeans and 38 acres of corn for a return of
$8300, (b) 64 acres of soybeans and 38 acres of corn for a return of $8940 65. One bag of A, four bags of B, cost $22.50.

EXERCISES 9.5 (page 529)
Check Your Understanding 1. T 3. T 5. F 7. 2 9. 2

Develop Mastery 1. c12 5 1, c31 5 21 3. c22 5 2Ï3, c33 5 10 5. 25 7. 1 9. 216
11. 0 13. 2132 15. 45 17. 20.723 19. 0 21. (a) 16x, (b) 3

16 23. (a) ex 2 e2, (b) 2
25. (a) 228x, (b) 2 1

7 27. (a) 0 · x, (b) Any real number 29. (a) 8 sin x 1 5, (b) 3p
2 1 k · 2p

31. 1,
3 6 Ï13

2
33. 0, 6Ï6 35. x 5 4, y 5 23 37. x 5 8.5, y 5 21.5 39. Dependent, x 5 k, y 5 k, z 5 k.

41. 14 43. 0.5 45. 31.5 47. 4 49. (a), (b), (c) Each determinant is equal to 0.
51. (a) 212a, (b) 7k, (c) 217c 53. x 2 2y 1 5 5 0 55. 9i 2 5i 1 3k

EXERCISES 9.6 (page 539)
Check Your Understanding 1. T 3. T 5. T 7. F 9. T

Develop Mastery 1. (a) 2 by 2, (b) a12 5 23, a21 5 21 3. (a) 3 by 3, (b) a12 5 1, a21 5 0

5. F9

1G 7. 35

0

44
9. F21

24

24

25G 11. 3 27

211

28

1

2

0

22

21

104
13. F2

3

3

5G 15. F 1

23

0

0.5G
17. No inverse 19. 323

0

1

22

1

0

6

21

214
21. 323

2

5

21

1

2

1

2

04
23. 324

10

21

2

25

1

23

8

214
25. 31.5

2

21

1

1

21

21

0

14
27.

1
20

2

240

234

6

1

50

33

27

3

210

21

21

21

230

213

7

29. (a) =A= 5 1, (b) x 5 230, y 5 23

31. (a) =A= 5 21, (b) x 5 10, y 5 17 33. (a) =A= 5 21, (b) x 5 13, y 5 13, z 5 17
35. (a) =A= 5 21, (b) x 5 225, y 5 6, z 5 3 37. (a) =A= 5 0, (b) Inconsistent
39. (a) =A= 5 238, (b) x 5 2, y 5 3, z 5 1, w 5 21 41. (a) x 2 1 y 2 2 4x 2 4y 5 17, (b) Center (2, 2) radius 5
43. (a) x 2 1 y 2 2 6x 1 4y 5 12, (b) Center (3, 22), radius 5
45. (a) y 5 2x 2 1 2x 1 2, (b) ~1 2 Ï3, 0), (1 1 Ï3, 0!; V~1, 3! 47. (a) a 5 22, b 5 12, c 5 230, (b) 14.1 sec.

49. (a) AB 5 F25

4

26

5G, (b) ~AB!21 5 F25

4

26

5G, (c) A21B21 5 F1

2

0

21G, B21A21 5 F25

4

26

5G
51. (a) AB 5 3215

5

1

25

2

0

7

1

244,
(b) ~AB!21 5 328

21

22

220

53

25

219

50

254,
(c) A21B21 5 314

24

47

26

211

221

11

19

374, B21A21 5 ~AB!21

53. (a) I, (b) A, (c) I, (d) A 55. (a) I, (b) A, (c) I, (d) A 57. (a) A, (b) A, (c) A, (d) A

59. An 5 F0

0

0

0G for n 5 2, 3, 4, . . . 61. An 5 A for n 5 1, 2, 3, . . .
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63. (a) 324

2

2

28

4

24

0

0

0
4,

An 5 30

0

0

0

0

0

0

0

0
4 for n 5 3, 4, 5, . . .

CHAPTER 9 REVIEW (page 541)
Test Your Understanding 1. T 3. F 5. F 7. T 9. F 11. T 13. T 15. T 17. F 19. F
21. F 23. F 25. T 27. T 29. F 31. F 33. F 35. F 37. F 39. F

Review for Mastery 1. x 5 7, y 5 8 3. x 5 4, y 5 26 5. x 5 22, y 5 21, z 5 3

7. Dependent, x 5
26k 2 3

2
, y 5

16k 1 5

4
, z 5 k (any number) 9. x 5 15

37 , y 5 15
16

11. A line and a circle intersecting at ~213, 0! and ~5, 12! 13. Graphs intersect at (2, 2) and (24, 21)
15. Two parabolas intersecting at (0, 4) and (3, 1) 17. All points above line x 1 y 5 1 and above line 2x 2 y 5 5 (both
broken), lines intersect at (2, 21) 19. All points below line 2x 1 y 5 4 (broken) and on or below line x 2 2y 5 1 (solid),
intersection point ~9

5 , 2
5! not in the graph 21. All points on or inside the triangle with vertices at (0, 28), (4, 24), and (3, 22)

23. 2 25. 2 2
5 27. (a) F 1

22

23

7G, (b) F 1

23

21

4G 29. (a) F 10

223

213

30G, (b) F 10

223

213

30G
31. B21 5 F 1

23

21

4G; x 5 25, y 5 18 33. x 5 26, y 5 21, z 5 210

35. (a) ~0, 0!, ~5
4 , 0!, ~5

6 , 5
6!, (b) Maximum 15

2 when x 5 5
6 , y 5 5

6

37. (a) (0, 2), (1, 1), (3, 5), (b) Minimum 7 when x 5 1, y 5 1 39. 5
41. For x (number of $5 tickets) and y (number of $3 tickets), 0 # x # 500, 0 # y # 1,000, and 5x 1 3y $ 3,700
43. At (120, 120) cost is $42, at (160, 80) cost is $44. 45. Minimum cost is $1,140 when x is 50 and y is 20.
47. y 5 2x 2 1 4x 1 5 49. x 2 1 y 2 1 2x 2 4y 2 4 5 0

CHAPTER 10

EXERCISES 10.1 (page 552)
Check Your Understanding 1. T 3. F 5. T 7. F 9. T

Develop Mastery 1. x 1 y 5 0 3. x 2 3y 5 24 5. ~x 2 7!2 1 ~y 2 12!2 5 80
7. ~x 2 1.5!2 1 ~y 1 0.5!2 5 4.5 17. x 2 1 y 2 2 6x 2 4y 5 0 19. x 2 1 y 2 2 6x 2 4y 1 4 5 0
21. Two circles: ~x 2 5!2 1 ~y 2 5!2 5 25, ~x 2 17!2 1 ~y 2 17!2 5 289 23. ~x 1 2!2 1 y 2 5 50
25. ~x 2 3!2 1 ~y 2 6!2 5 4 27. x 2 1 y 2 2 4x 1 2y 2 8 5 0 29. x 2 1 y 2 2 4x 2 21 5 0
31. Two lines: y 5 2x 1 2 and y 5 x 2 4 33. Two lines: y 5 1 and 8x 2 15y 5 17
35. Two lines: y 5 x 2 2 and x 1 7y 5 10 37. (a) Yes, (b) 3

2Ï5
, (c) dL 5 5

2Ï5
, dK 5 4

Ï5

39. (a) Yes, (b) 41, (c) dL 5 17, dK 5 24 41. (a) y 5 2 x
3 1 3, (b) y 5 3x 1 3, (c) (0, 3), (d) Ï10

45. 3

Ï10
47. Ï2 49. (a) 2

Ï5
, (b) 4 51. (a) 3Ï2, (b) 12 53. (a) D~x! 5 Ï~x 2 1!2 1 ~x 1 7!2; 5.7,

(b) 4Ï2 55. (a) D~x! 5 Ï~x 1 1!2 1 ~22x 1 6!2; 3.6, (b) 8

Ï5

EXERCISES 10.2 (page 562)
Check Your Understanding 1. T 3. F 5. A quarter circle 7. Half of a parabola 9. A line segment

Develop Mastery 1. y 5 4 2 x 2; graph is a parabola that opens down. 3. y 5 Ï4 2 x 2; graph is the upper half of a circle
with center at (0, 0) and radius 2. 5. y 5 Ï4 2 x 2 where x $ 0 and y $ 0; graph is a quarter-circle. 7. x 1 y 5 7; graph
is a line. 9. 5x 1 3y 5 11; graph is a line. 11. ~x 2 1!2 1 ~y 2 1!2 5 1; graph is a circle. 13. x 1 y 5 0 where
21 # x # 1; graph is the line segment with endpoints (21, 1) and (1, 21). 15. x 1 y 5 2 where x . 1; graph is a half-line
from endpoint (1, 1). 17. y 5 x 2 2 1 where 21 # x # 1; graph is part of a parabola with endpoints (21, 0) and (1, 0).
19. Both graphs are parts of the line x 1 y 5 0. (a) Line segment with endpoints (21, 1) and (1, 21), (b) Line segment with

endpoints (0, 0) and (1, 21) 21. Graphs are parts of the graph of y 5
1

x
. (a) Graph is the part in the first quadrant.

(b) Graph is the part in the third quadrant. 23. Graphs are parts of the circle x 2 1 y 2 5 1. (a) Graph is the upper half.
(b) Graph is the right half. 25. Graphs are parts of the line 3x 1 y 5 1. For both (a) and (b) the graph is the line segment with
endpoints (1, 22) and (21, 4). 27. ~x 2 1!2 1 ~y 2 2!2 5 1; graph is a circle. 29. x 1 y 5 3 where 0 # x # 2; graph is a

line segment. 31.
x 2

16
2

y 2

25
5 1 33.

~x 2 1!2

16
2

y 2

25
5 1 35. x 5 t 2 2, y 5 3t 1 4, or x 5 t, y 5 3t 1 10
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37. x 5 4t 2 3, y 5 3t 1 4, or x 5 4t 1 1, y 5 3t 1 7 41. x 5 3 cos a, y 5 sin a where 0 # a # p
2 ; equation is

x2

9 1 y2

1 5 1. 43. x 5 ~4 2 a! cos a, y 5 a sin a; when a 5 2, then the graph is a circle.

45. x 5 2t 2
t 2

10
, y 5

t Ï100 2 t 2

10
for 0 # t # 10; x 5 20 2 t, y 5 0 for 10 # t # 20. 49. (a) 2p , (b) About y-axis

51. (a) 2p , (b) About x-axis. 53. 2.2 to (2, 0) 55. 3.2, to (22, 0) 57. 1.8 59. (a) Line, (b) d 5 4

Ï5
61. (a) (1, 0), (b) (0, 1) 63. (a) (4, 0), (6, 0), (10, 0), (b) None

EXERCISES 10.3 (page 577)
Check Your Understanding 1. F 3. F 5. F 7. (63, 0) 9. Two

Develop Mastery 1. V~0, 0!, F~2, 0!, D: x 5 22 3. y 2 5 8x; opens right, V~0, 0! 5. x 2 5 22y; opens down, V~0, 0!
7. y 2 5 4x 9. (a) 1

8 , (b) 4, 2Ï2 11. 10000
15 < 666.7 in 13. (a) y 5 mx 1 1 2 m, (b) m 5 2

17. (a) Ellipse, V~63, 0!, F~6Ï5, 0!, (b) Major 6, minor 4 19. (a) Hyperbola, V~63, 0!, F~6Ï13, 0!, (b) y 5 6 2x
3

21. (a) Ellipse, V~6Ï5, 0!, F~61, 0!, (b) Major 2Ï5, minor 4 23. (a) Hyperbola, V~62, 0!, F~63, 0!, (b) y 5 6 Ï5x
2

25. (a) Hyperbola, V~0, 64!, F~0, 64Ï10!, (b) y 5 6 x
3 27.

x 2

25
1

y 2

16
5 1 29.

x 2

9
1

y 2

5
5 1 31. x 2 1 9y 2 5 25

33.
x 2

45
1

y 2

36
5 1; 16x 2 1 11y 2 5 576 35.

y 2

4
2

x 2

12
5 1 37.

x 2

1
2

y 2

4
5 1 39. 4x 2 2 y 2 5 15

41. ~3
2 , 21!, ~2 9

14 , 13
7 ! 43. ~6 1

2 , 1
2!, ~6 1

2 , 2 1
2! 45. C: x 2 1 y 2 5 81

20 47. 118 yds. from nearest vertex

55. (b) x 5 6Ï5
2
, y 5 6Ï27

8
57. (b) ~0, 0!, ~2, 0!, ~6, 224! 59. x 2 1 y 2 5 1

61. (a) (62.13, 2.54), (b) (62.1305, 2.5391)

EXERCISES 10.4 (page 588)
Check Your Understanding 1. F 3. T 5. F 7. QIV 9. QI, QIV

Develop Mastery 1. V~22, 1!, F~23, 1!, D: x 5 21 3. V~1, 2!, F~1, 3
2!, D: y 5 5

2

5. V~21, 23!, F~21, 2 3
2!, D: y 5 2 9

2 7. ~y 1 1!2 5 4~x 2 2! 9. ~x 1 1!2 5 4
5 ~y 1 2!, or ~y 1 2!2 5 25

2 ~x 1 1!

11. ~y 2 1!2 5 28~x 2 2!, or ~x 2 2!2 5 16~y 2 1! 13. ~y 1 2!2 5 8~x 2 4!

15. ~x 2 2!2 5 2~y 2 1
2!, or ~x 2 2!2 5 22~y 2 3

2! 17.
~x 2 3!2

5
1

y 2

9
5 1 19.

~x 2 1!2

4
1

4~y 1 1!2

7
5 1

21.
~x 1 3!2

4
1

y 2

9
5 1 23.

~y 2 1!2

4
2

~x 1 2!2

5
5 1 25.

x 2

4
2

~y 2 2!2

12
5 1

27. Hyperbola, center ~1, 21!, V:~21, 21!, ~3, 21!, a 5 2, b 5 3 29. Ellipse, center ~0, 1!, V:~0, 22!, ~0, 4!, a 5 3, b 5 2Ï2
31. Ellipse, center ~2 1

2 , 3
2!, V:~2 9

2 , 3
2!, ~7

2 , 3
2!, a 5 4, b 5 1 33. Parabola, V~23, 25!, opens up

35. Ellipse, center ~1, 0!, V:~1, 3!, ~1, 23!, a 5 3, b 5 2 37. Circle, C~23, 1!, r 5 2
39. Hyperbola, center ~21, 2!, V:~23, 2!, ~1, 2!, a 5 2, b 5 1 41. ~x 2 3!2 5 y 1 5, parabola, V~3, 25!, opens up

43.
~x 2 1!2

4
1

~y 1 2!2

16
5 1; ellipse, center ~1, 22!, foci (1, 22 6 2Ï3) 45. ~x 2 3!2 1 ~y 1 1!2 5 4; circle, C~3, 21!, r 5 2

47.
~x 2 2!2

4
2

~y 1 3!2

4
5 1; hyperbola, center (2, 23), foci (2 6 2Ï2, 23) 49. 2200~y 2 50! 5 ~x 2 100!2

55. (a) tan 2u 5 2 4
3 , cos 2u 5 2 3

5 , (b) x 5
X 2 2Y

Ï5
, y 5

2X 1 Y

Ï5
, (c) 2Y 2 2 3X 2 5 6; hyperbola

57. (a) tan 2u 5 2 3
4 , cos 2u 5 24

5 , (b) x 5
X 2 3Y

Ï10
, y 5

3X 1 Y

Ï10
(c) 9Y 2 2 X 2 5 36; hyperbola

59. (a) tan 2u 5 2Ï3, u 5 608, (b) x 5
X 2 Ï3 Y

2
, y 5

Ï3 X 1 Y
2

, (c) 5X 2 1 Y 2 5 10; ellipse

61. (a) tan 2u is undefined, so 2u 5 908, u 5 458, (b) x 5
X 2 Y

Ï2
, y 5

X 1 Y

Ï2
, (c) 5X 2 2 Y 2 5 20; hyperbola

63. 3x 2 1 3y 2 2 2xy 5 8 65. d < 1.4 to ~3.7, 0.7!



pgA-24 [V] G2 5-36058 / HCG / Cannon & Elich cr 12-5-95 mp2

A-24 Answers to Selected Exercises

EXERCISES 10.5 (page 598)
Check Your Understanding 1. T 3. T 5. F 7. @2Ï2, 2 p

4 # 9. Q II

Develop Mastery 1. A is ~1, Ï3!; B is ~21, 2Ï3!. 3. A is @2, 2 p
6 # or @2, 11p

6 #; B is ~Ï2, 2Ï2!.

5. P is @2, 5p
6 # or @22, 2 p

6 # or ~2Ï3, 1!. Q is @2, 11p
6 # or @2, 2 p

6 # or ~Ï3, 21!.

7. A is ~0, Ï3! or @Ï3, p
2 #; B is ~21, 0! or @1, p#; C is ~1, 0! or @1, 0#. 9. r 5 2 or r 5 22; graph is a circle with

center at the pole and radius 2. 11. r 5 3 sec u; graph is a vertical line. 13. u 5 Tan21 3; graph is a line through the origin.
15. r 5 2 cos u 2 2 sin u; graph is a circle with center at (1, 21) and radius Ï2. Pole is given by @0, p

4 #.
17. x 2 1 y 2 5 4; graph is a circle with center at (0, 0) and radius 2. 19. x 2 1 y 2 1 4x 5 0; graph is a circle with a hole at
the origin. 21. x 1 y 5 0; graph is a line. 23. x 2 1 y 2 5 1; graph is a circle with center at the origin and radius 1.
25. x 2 1 y 2 2 2Ï3 x 2 2y 5 12; graph is a circle with center at (Ï3, 1) and radius 4. 27. Three-leafed rose is traced on the
interval @0, p#; r , 0 on leaf in QIII 29. Cardioid; r $ 0 for all u 31. Four-leafed rose; r , 0 on top and bottom leaves.
33. Graphs are the same circle, starting at opposite ends of a diameter. 35. Circle ~r 5 sin u! is traced out on @0, p#, the cardioid
on @0, 2p#. 37. First is a cardioid enclosed in a limaçon. 39. Graphs are the same spiral. 41. Two cardioids intersecting

at @1, p
2 #, @1, 3p

2 #, and the pole. 43. Circle meets limaçon at @3, 6Cos21 .25#. 45. Lemniscate and circle meet at four points,

@61, 3.015#, @61, 1.697#. 47. QI, QIV 49. QI, QIV 51. 1 # r # 22 sin 2u on @19p
12 , 23p

12 # 53. 1 # r # 1 1 cos u on
@2p

2 , p
2 # 55. 0 # r # 2~1 1 2 cos u! on @2p

3 , 4p
3 # 57. (a) y 2 5 4~x 1 1!, parabola; y 2 5 24~x 2 1!, parabola,

(b) 3x 2 1 8x 1 4y 2 5 16 ellipse; 3x 2 2 8x 2 y 2 1 4 5 0; hyperbola 59. Line; Ï3 x 2 y 5 4 61. Center ~a
2 , b

2!, radius
1
2Ïa2 1 b 2

CHAPTER 10 REVIEW (page 600)

Test Your Understanding 1. T 3. F 5. F 7. T 9. F 11. F 13. T 15. T 17. F 19. T
21. T 23. T 25. T 27. F 29. F

Review for Mastery 1. Ellipse; V~0, 65!, F~0, 64! 3. Hyperbola; V~63, 0!, F~6Ï34, 0!
5. Ellipse; V1~1, 3!, V2~1, 27!, F1~1, 2!, F2~1, 26! 7. ~x 1 2!2 1 ~y 2 1!2 5 9 9. y 2 5 12x

11.
~x 1 1!2

12
1

~y 2 4!2

16
5 1 13.

~x 2 1!2

4
2

~y 1 1!2

5
5 1 15. ~y 2 1!2 5 2~x 2 2.5!

17. ~x 2 3!2 5
4~y 1 1!

3
19. Parabola, opens down, V~1, 3!, F~1, 2.5! 21. Circle, center (0, 1), radius Ï3

23. Parabola, opens up, V~1, 21!, F~1, 2 3
4! 25. y 5 Ï4 2 x 2, upper half of a circle 27. y 5 2x 1 5; x 5 21; graph is a

half-line with endpoint (21, 3). 29. Graph is the upper half of the parabola y 2 5 x without (0, 0).

41. x 1 2y 5 23
4 43. x 2 ~1 1 Ï2!y 5 0, x 2 ~1 2 Ï2!y 5 0 45. d 5 Ï10 2 1, to ~1 1 3

Ï10
, 1 2 1

Ï10
!

47. d 5 Ï17, to (0, 0) 51. Limaçon, r . 0 for all u 53. Cardioid, r $ 0 for all u

55. Circles intersect at @Ï2, p
4 # and the pole. 57. (2, 1) 59. (Ï2 2 1, 2Ï2 2 2)

61. x 5 b cos u, y 5 a sin u; curve is an ellipse.
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PREFACE

Technology affects almost every aspect of our lives. There has never been a greater
need for a population with good mathematical skills and proper training in apply-
ing mathematics to solving problems. Technology demands people who can handle
new challenges and apply their training to tackle problems never before encoun-
tered.

Fortunately, the same technology provides new tools and new ways to help us
learn the mathematical skills and ideas needed. Precalculus: Problem Solving with
Technology is a partial response to the changing demands on our students.

The whole area of introductory mathematics has been in ferment in the last
decades of this century. There has been a profound revolution in mathematics
education, with major national efforts in calculus reform, the adoption of standards
for teaching and assessment of public school mathematics, and attempts at better
articulation of college mathematics with the disciplines that depend on calculus.
One significant driving force of this effort has been technology. With more empha-
sis on technology has come a re-examination of fundamental principles of peda-
gogy. Both pedagogical concerns and technology have significantly influenced the
design and writing of this book.

Our assumption is that every student has consistent and convenient access
to graphing or computational technology. A graphing calculator will certainly be
the primary tool for most users, but the book can be used just as well with more
sophisticated computer systems. We expect our students to learn to use graphing
tools and to use them to explore their own mathematics. We expect active learners.
Mathematics has always required student involvement, and this text provides guid-
ance to make that involvement more productive, whether done individually, in
small learning groups, or in full classroom discussions.

Our philosophy on the impact of technology on mathematics is summed up in
the following two statements.

Some mathematics becomes more important because
technology requires it;

some mathematics becomes less important because
technology replaces it;

some mathematics becomes possible because
technology allows it.

Technology provides powerful tools, but it has
unavoidable limitations.

ix
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We strongly believe that technology should affect the precalculus curriculum.
Many books that attempt to make use of graphing technology still cover every
traditional topic, many in the old traditional ways, making technology just an
adjunct that permits the treatment of more difficult problems.

Our attitude is that students should learn some topics in entirely new ways.
Other topics should receive less emphasis (or be dropped entirely) because they no
longer carry the same importance in a world where students have ready access to
computer power. Graphing calculators are really hand-held computers, each with
more computing power than entire universities had not many years ago.

We realize that not all students have access to the same technology. It is handy,
but frequently impossible, for the teacher to have the same calculator or computer
for all students. Even in schools where there are classroom sets of a single calcula-
tor, one classroom may have Texas Instrument machines and another may be
supplied by Hewlett-Packard. We make a strong effort to be “calculator neutral.”
Our language, illustrations, and instructions are generic, not mimicking any spe-
cific calculator. To provide some help to students, however, we include an on-page
pedagogical feature called Technology Tips, suggestions about using specific calcu-
lators for specific tasks.

We have no intention of making our students calculator experts. They will end
up knowing much more than we could ever hope to teach them, anyway. Our aim
is limited: we want each student to understand a few tasks well enough to make the
calculator a tool for mathematical exploration, a means of visualizing mathematical
concepts. Our Technology Tips address most of the general questions students will
have about the kinds of calculator skills required, as well as opening up a number
of unexpected vistas, ideas not found anywhere else in our experience.

An essential part of learning about calculators is an understanding of some of
the limitations of computing technology, so most sections in which the calculator
is discussed also include examples to suggest where the calculator cannot take us.

We endorse the principles enunciated in “For Good Measure,” the report of the
National Summit on Mathematics Assessment, and our exercises and examples
specifically address each of the following from that report:

Encourage students to explore
Many exercises are titled Explore, directing students toward specific goals
while inviting them to delve into open-ended explorations.

Help students to verbalize their mathematical ideas
Students are invited to verbalize appropriate strategies for a particular ex-
ercise or to explain why some result might be counterintuitive.

Show students that many mathematical questions have more than one right
answer

Exercises titled Your Choice ask students to create their own examples sat-
isfying given conditions, testing an understanding of basic underlying con-
cepts.

Teach students, through experience, the importance of careful reasoning and
disciplined understanding

Examples, many with strategies outlining the reasoning to be followed,
step students carefully through numerous applied problems, followed by
discussions of pitfalls or common errors, sometimes looking at the nature
of solutions and how meaningful a particular result may be.
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Provide evidence that mathematics is alive and exciting
In addition to casting examples in terms of contemporary and interesting
applications, we include frequent Historical Notes humanizing some
significant mathematical developments, as well as marginal quotations
from contemporary mathematicians that suggest how these individuals
came to discover mathematics or how they dealt with challenges on their
way to their present stature. Capsule biographies appear in an appendix,
“How They Came to Mathematics.”

Content Highlights

Functions and Graphs Graphing technology can make functional behavior
come to life for students. Terminology such as “increasing” or “decreasing” be-
comes clear in the context of pictures. Students learn functional notation naturally
as they explore translations and dilations of graphs and see for themselves the
difference between the graphs of f ~x! 1 c and f ~x 1 c!. The language of functions
is introduced in Chapter 2 and is a unifying theme throughout the text.

Roots and Zeros of Functions The solutions of both equations and inequalities
have vivid meaning in terms of graphs. Students find that much of the mystery that
has traditionally attended work with absolute values evaporates when they can
draw their own graphs, and the algebraic manipulations required make more sense.
(See Sections 1.4 and 1.5.) Students see new connections between algebraic and
graphical information and find reinforcement with each new kind of function
studied.

Polynomial and Rational Functions Some of the powerful theorems that have
been developed for finding zeros of polynomial functions take on new meaning in
the light of graphing technology. As an example, the rational zeros theorem is not
needed as a means of starting the search for zeros of an integer polynomial func-
tion, but it yields information about the nature of zeros that the calculator cannot
provide. On the other hand, calculators give us excellent decimal approximations
beyond reach without technology. Relations between factored and expanded forms
have geometric meaning. In exploring asymptotic behavior of rational functions,
students learn how important different windows can be. The calculator can alert us
to significant aspects of functional behavior, but if we fail to understand the under-
lying mathematical meaning, the calculator can just as easily hide important, subtle
items. When students are asked to construct their own examples of polynomial
functions with certain properties of turning points, they see if they really under-
stand polynomial structure.

Parametric Equations Parametric equations allow us to view many topics in a
new light. Parametric graphing is introduced in Chapter 2 and is used consistently
throughout the text. Inverse functions are most natural when we interchange vari-
ables and see how the graph is reflected. Thus relations between the graphs of
exponential and logarithmic functions, or graphs of trigonometric and inverse
trigonometric functions are more easily seen. Circles and other conic section
graphs are easy to produce. After an introduction to matrices (Section 9.6), we get
matrix transformations to rotate axes, and with parametric graphing students can
graph rotated conics (Section 10.4).
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Exponential and Logarithmic Functions After a foundation of transformations
of functions (Chapter 2), the essential unity of all exponential functions becomes
transparent; any exponential function can be considered as a transformation of any
other, and the natural exponential function is our choice as prototype. The same
relations apply just as naturally to the function inverses, the logarithmic functions.

Trigonometric Functions The function concept and the dynamic possibilities of
graphing provide more unity than has previously been available for introducing the
trigonometric functions and their inverses. Graphing technology allows new ap-
proaches to identities, but limitations of the technology illustrate for students why
there is something to prove.

Optimization and Problem Solving A consistent theme of the text is the proper
formulation and solution of applied problems. We examine examples of problems
leading to polynomial, exponential, trigonometric, linear, and nonlinear models.
We discuss differences between exact and approximate solutions and consider
where each may be appropriate or necessary. Students are constantly encouraged
to check their results to see if they are reasonable or appropriate, leading naturally
to ideas of estimation.

Exercises and Pedagogy Exercises are numerous and varied. Mathematical
skills are developed and reinforced. Because we assume that every student uses a
graphing calculator regularly, we do not segregate exercises that call on calculators,
but most sets of related exercises are identified with capsule titles. Many exercises
call for both algebraic and graphical solutions. Each exercise set begins with Check
Your Understanding exercises, going beyond typical skills-based problems. They
allow individuals to test understanding of key ideas, or they can be used for class
discussion purposes. Test Your Understanding sets at the end of each chapter serve
the same ends, pulling together the concepts of the whole chapter, followed by
Review for Mastery exercises. A frequent feature is Looking Ahead to Calculus.
These examples and exercises develop the algebraic and technological skills needed
for certain kinds of problems normally encountered in a calculus course. Some
exercises are labeled Explore or Your Choice, which may be used individually as
enrichment or as a basis for group or written projects. Many exercises ask students
to verbalize their responses, to explain or relate ideas, and can be used for varied
purposes by the instructor.

Technology Tips All graphing calculators that are now widely available will do
many more things than we ask of our students in this text. Several calculators have
built-in routines to approximate solutions to transcendental equations or find com-
plex zeros of polynomials or solve systems of linear equations; some have split-
screen graphing or tabular function displays. We deal essentially only with calcula-
tor capabilities that are common to the following calculators:

TI-81, TI-82, TI-85,
HP 48G and 48GX, and the HP 38G,
Casio fx-7700 (or 9700 or 9900).

Our Technology Tips help students to use all of these calculators to do specific tasks
required in the text. Instructors, of course, have the option of teaching their students
to use other calculator or computer routines that may be available, and they can
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make appropriate adjustments in assigning exercises or designing test questions.
This text is based in part on the second edition of our Precalculus but it has

been rewritten from the ground up. We have re-examined every topic, every
section, and every exercise. Many of the changes are those suggested by our work
with pilot sections of classes in which all students have graphing calculators. In
each such class we get confirmation of the fact that our students have lots to teach
us, their teachers, in addition to what they teach each other if we give them an
opportunity.

Supplement Package to Accompany the Text

This text is accompanied by the following supplements:

For the Instructor. The Instructor’s Guide includes solutions to all of the text
exercises. A collection of problems for each chapter can be used for tests.

The HarperCollins Test Generator for Mathematics is one of the top testing
programs on the market for IBM and Macintosh computers. It enables instructors
to select questions for any section in the text or to use a ready-made test for each
chapter. Instructors may generate tests in multiple-choice or open-response for-
mats, scramble the order of questions while printing, and produce up to 25 versions
of each test. The system features printed graphics and accurate mathematical
symbols. The program also allows instructors to choose problems randomly from
a section or problem type, or to choose problems manually while viewing them on
the screen with the option to regenerate variables. The editing feature allows
instructors to customize the chapter disks by adding their own problems. This is
especially important in designing questions that are appropriate for students.

The QuizMaster On-Line Testing System, available in both IBM and Macintosh
formats, coordinates with the HarperCollins Test Generator and allows instructors
to create tests for students to take at the computer. The test results are stored on disk
so the instructor can view or print test results for a student, a class section, or an
entire course.

For the Student. The Student’s Solution Manual contains detailed solutions to
the odd-numbered exercises. It is available for student purchase; ask your college
bookstore manager to order ISBN 0-673-99971-8.

Precalculus Investigations Using DERIVE (0-673-99097-4) by David
Mathews of Longwood College and Precalculus Investigations Using MAPLE
(0-673-99410-4) by David Mathews and Keith Schwingendorf, of Purdue Univer-
sity-North Central, will help you to integrate technology into your precalculus
course. Twelve lab exercises provide carefully structured, interactive learning envi-
ronments for students. The manual includes real-world applications, concept over-
views, and lab reports.
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linear, 513
polar, 597, 599
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quadratic, 41, 43, 101, 105
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system of, 514
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convergence, 458
definition, 458
representation of functions, 458–59
sum formula, 458
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definition, 119
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graph, 120
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Kac, M. 25, 170, 389
Kaplansky, I., 210, 513, 554
Karmarkar algorithm, 516
Kepler, J., 548, 582
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Law of Sines, 390
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LeCam, L., 591
Leibnitz, G., 526 558
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Libby, W., 243
Limaçon, 596
Lindemann, F., 204
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equations, 29, 91, 528
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perpendicular, 92
point-slope, 91
polar form, 596
slope, 31, 90
slope-intercept, 91
tangent to a circle, 551

Linear
depreciation, 94, 96, 138
equation, 40
function, 89
inequality, 40
speed, 262
system of, equations, 491

Linear programming theorem, 517, 543
Local extrema, 150, 154, 156, 189, 193
Locator (sign change) theorem, 158, 167
Logarithmic functions

definition, 211–12
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domain, range, 211–12
graphs, 211, 215
natural, common, 215, 228
properties, 220, 225

Logarithms
calculator evaluation, 228
change-of-base formula, 228
natural (base e), 215

“Looking Ahead to Calculus,” 103, 108,
139, 140, 157, 210, 236, 247,
287, 336, 347, 350, 359, 457,
527, 597

MacLane, S., 158, 277, 317
Mathematical induction,

principle of, 473
Mathematical models
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earthquake intensity, 244
exponential growth, decay, 237, 240
falling body, 131, 136
general, 2, 49
linear depreciation, 94, 96
revenue functions, 107, 133, 138

Matrix
algebra, 532
determinant of, 523
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echelon form, 501, 504
elementary row operations, 501
equality, 522
identity, 534
inverse, 535
product, 533
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102, 106, 110, 143, 150, 169,
227, 396

Midpoint of segment, 27
Moog, R., 366
Morawetz, C., 237, 360
Mosteller, F., 10, 254
Multiplicity of a zero, 147

Napier, J., 230, 285
Nautical mile, 265
Negative-product principle, 41
Newton, I., 7, 131, 135, 548, 558, 582
Newton’s method, 174–75, 178
Niven, I., 211
Nonlinear systems of equations, 509,

512
Numbers

approximate, 3
complex, 20
coterminal, quadrantal, 270
decimal approximation, 14

representation, 12
e, 203

exact form, 14
large, 57, 209, 210, 212, 235
line, 17, 24
natural, 11
nonreal complex, 21
prime, 11
rational, irrational, 13
real, 10
subsets of, 11
transcendental, 204

Objective function, 516
Oblique triangle, 389
Odd function, 70–71
One-one function, 123–24
Open sentence

definition, 38
domain, replacement set, 39
linear, 40
quadratic, 41
solution set, 40

Ordering of
complex numbers, 23
real numbers, 17, 24

Outside-inside operations, 80

Parabola
and quadratic functions, 99
applications, 566
axis and vertex, 99, 565
core graph, 70
definition, 565
focal chord, width, 565
focus, directrix, 565
latus rectum, 565
parametric equations, 584
parametric graphing, 576
standard form equations, 566, 584
translated, 581

Parameter, 121, 360, 554
Parametric

equations, 121, 128, 129, 555
for conic sections, 576, 584

graphs, 123, 559
intersection of graphs, 577

Partial fractions, 505, 508
Partial sums

arithmetic, geometric sequence,
455–56

definition, 438
Parts of a triangle, 380
Pascal, B., 463, 479, 582
Pascal’s triangle, 436, 463, 464
Penrose, R., 462, 532, 545
Period of

generalized sine, cosine, 360, 362
trigonometric functions, 290

Péter, R., 62, 300, 471

Phase shift, 363
Pi, 6, 7, 12, 16, 305
Piecewise-defined functions, 64, 65
Piltdown Man, 243
Point, initial and terminal, 267
Polar

axis, pole, 590
coordinates, 590
graphing catalog, 596
transformation equations, 591

Polar (trigonometric) form of complex
number, 409

Polynomial function
applications, 176
approximations for zeros, 174
combinations, 147
cubic, 162
definition, 146
division algorithm, 159, 161
end behavior, 169
graphs, 148, 150, 154
inequalities, 167
number of zeros, 170
rational zeros, 163–64

Position point (on unit circle), 267
Positive-product principle, 41
Principal square root, 21
Problem solving

guidelines, 53
using graphs, 295

Product-to-sum identities, 345
Ptolemy, C., 285
Pythogoras, 20
Pythagorean

identity, 320
theorem and proof, 26, 28
triples, 276

Quadrantal number, 270, 275
Quadrants, 26
Quadratic

equations, 41
formula, 21
function, 98–99
inequalities, 41, 43, 101, 105
open sentences, 42

Quintic formula, 163

Rabi, I.I., 509
Radian

applications, 258
definition, 256
degree relationship, 256
measure, 256
mode setting, 280

Range of
exponential, logarithmic functions,

203, 211
function, 62, 88, 105
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Index I-5

Rational function
asymptotes, 181–85
definition, 180
not reduced, 186
reduced, 180

Rational power function, 199
Rational zeros theorem, 163, 166, 168
Real axis, 409
Real numbers

characterization, 13
decimal representation, 12
subsets, 11

Recursive functions, sequences, 469
Reduced polynomial, 162
Reduction formulas, 292, 295
Reference triangle, 271, 278, 313
Remainder, 168
Remainder theorem, 162, 168
Repeated zero (multiplicity k), 170
Repeating decimal, 458
Replacement set, 39
Revenue functions, 107, 138, 144, 210
Richter scale, 244
Right triangle

solving, 283
trigonometry, 282

Robinson, J., 17, 108, 180, 196, 434, 532
Roots of

complex number, 416, 418–19
polynomial equation, 147

Rosetta Stone, 36
Rotation of axes, 587, 589
Rose, n- leafed, 595
Rounding off, 6, 15
Row reduction, 501
Rudin, M.E., 38, 110, 400

Scientific notation, 8
Sequence

arithmetic, 451
definition, 434
geometric, 451
factorial, 437, 441
Fibonacci, 436, 442
infinite, 457
nested square and cube roots, 445
notation, 434
of partial sums, 438, 439
recursively defined, 435, 440, 444
3N11, 441
subsequences, 447, 449

Shannon, C. 521
Sigma (summation) notation, 438
Signed-product principle, 41
Significant digits, 3, 8

guidelines, 381
Simple harmonic motion, 365, 374
Sinusoidal functions, 366, 372, 376
Slope, 31

Slope-intercept form equation, 91
Snell’s Law, 391
Solution

integer, 46
set, 40, 47

Solving
equations, 47, 205, 222

of the form f ~x! 5 x, 447, 450
inequalities, 47
oblique triangles, 389, 397, 405

ambiguous case, 393–95, 429
Law of Cosines, 401
Law of Sines, 390

right triangles, 380, 385
Sounds, intensity, 233, 236
Special right triangles, 269
Speed, angular and linear, 262–63
Square roots, 15, 21
Squaring property, 546
Statement, 38
Steen, L., 461
Subsequence, 447, 449
Sum and difference identities, 329
Sum-to-product identities, 346
Summation (sigma) notation, 438
Symmetry

about axes, origin, 70
about line, 120
of odd, even functions, 71

Synthetic division algorithm, 160
System of equations

dependent, 495
equivalent, 493
inconsistent, 495
linear, 491
matrix form, 501
nonlinear, 509, 512
solution, 491

using matrices, 536
unique solution, 495

System of inequalities, 514

Tangent line, point, 93
Tangent line theorem, 551
Technology Tips

Always use enough parentheses to be
sure, 281

Built-in inverse graphs, 128
Calculating A21B, 538
Calculating recursively defined

functions, 444
Calculating with two-step recursions,

446
Checking algebra, 149
Decimal window, 29
Entering absolute values, 45
Evaluating binomial coefficients, 481
Finding intersections of parametric

graphs, 577

Function evaluation, 166
Graphical solutions again, 356
Graphing compositions and defining

functions, 111
Graphing identical functions, 229, 371
Graphing in dot mode, 74
Graphing piecewise-defined functions,

65
Importance of t- step, 560
Limitations and power, 491
Lines and circles, 94
Missing points, 187
Mode setting, 280
“Nice pixel” windows, 240
Numerical derivatives, 175
Parametric graphing and t -range,

123
Pixel columns, 443
Polar graphing on the HP-48 and the

TI-81, 593
Proper use of parentheses, 31
Rational functions and parentheses,

181
Roots in the complex plane, 417
Roots of negative numbers, 197
Sampling graphs, 290
Scaling and autoscaling, 152
Shifting a decimal window, 326
t- range for inverse functions, 127
Trapping an intersection, 153
Trigonometric window, 290
Unit circle and sine graph, 288
What about A0?, 242
What your calculator may not show

you, 200
Zooming in on a point, 147

Theta (u) ray, 590
Thurston, W., 78, 170, 400
Towers of Hanoi, 475
Transformation equations

polar-rectangular, 591
rotation, 587
translation, 580

Transformations (basic) of graphs, 78
Translation of axes, 580
Triangle

area, 392, 397, 403, 406, 531
oblique, 389
parts, 380
reference, 271, 278
solving, 283, 380, 389
special right, 269

Trigonometric functions
definitions in terms of

right triangle (acute angles), 282,
380

standard position angles, 272
unit circle, 271

domain, range, 272
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I-6 Index

generalized sine, cosine, 360
graphs, 288–94, 364–70
inverse (arc-), 300
period, 280
polynomial approximations, 299
with restricted domain, 301

Trigonometric identities, see Identities
Turing, A., 436
Turning points, 150, 152, 154–56, 168

Ulam, S., 98, 491
Unit circle, 267

Variable, dependent, independent, 62
Vectors

algebra of, 421
angle between, 422, 426

compass directions, 423
components, 420
cross (vector) product, 527,

531
direction, 420
distances, 424
equality of, 420
geometric representation, 420
initial, terminal points, 420
magnitude, 420
parallelogram addition, 420
properties, 423
scalar multiplication, 421
unit, 423

Vertex of
ellipse, 569

hyperbola, 572
parabola, 99

Wigner, E.P., 409
Wilson, R., 26, 63, 146
“Witch” of Agnesi, 558, 563

Your Choice exercises, 96, 116, 130,
161, 169, 219, 227, 312, 374,
406, 450, 553

Zero-product principle, 41, 48, 155
Zeros of polynomial functions, 147,

151, 155, 170, 172
Zeros, rational, 164, 168
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What Size is Your Calculator Display?

Addressable Pixels Familiar (Decimal)
Model (plus axes) Window

TI–82, Casio 7700 94 by 62 @24.7, 4.7# 3 @23.1, 3.1#

Casio 9800 94 by 62 @24.7, 4.7# 3 @23.1, 3.1#

TI–81 95 by 63 @24.8, 4.7# 3 @23.2, 3.1#

TI–85 126 by 62 @26.3, 6.3# 3 @23.1, 3.1#

Casio 9700 126 by 74 @26.3, 6.3# 3 @23.7, 3.7#

HP–38G, 48G 130 by 63 @26.5, 6.5# 3 @23.1, 3.2#

Algebra

x 2 2 y 2 5 ~x 1 y!~x 2 y!

x 3 6 y 3 5 ~x 6 y!~x 2 7 xy 1 y 2!

Quadratic Formula: If ax 2 1 bx 1 c 5 0, a 5/ 0, then

Geometry

Triangles

a 1 b 1 g 5 1808 Area 5 1
2 bh

Perimeter 5 a 1 b 1 c

Sphere

Volume 5 4
3pr 3

Surface area 5 4pr 2

Absolute Value

_ u _ 5 H u if u $ 0
2u if u , 0

_ u _ $ 0
Ïu 2 5 _ u _

~x 6 y!2 5 x 2 6 2xy 1 y 2

~x 6 y!3 5 x 3 6 3x 2y 1 3xy 2 6 y 3

x 5
2b 6 Ïb 2 2 4ac

2a

Circle

Pythagorean Theorem

A triangle is a right triangle (with g 5 908)
if and only if a2 1 b 2 5 c 2.

Circumference 5 2pr
Area 5 pr 2

Arc length: s 5 ru
Area of sector: A 5 1

2 r 2u 5 1
2 rs

,

where u must be in radians

Cone

Volume 5 1
3pr 2h

Slant surface area 5 prs

Right Cylinder

Volume 5 pr 2h
Surface are 5 2pr~r 1 h!
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Distance Formula

The distance between points P~x1, y1! and Q~x2, y2!
is given by

d~P, Q! 5 Ï~x1 2 x2!
2 1 ~y1 2 y2!

2

The distance between the point P~x1, y1! and line
Ax 1 By 1 C 5 0 is given by

d 5
_ Ax1 1 By1 1 C _

ÏA2 1 B 2

Binomial Theorem

~a 1 b!n 5 o
n

r50
Sn

rDan2rb r 5 an 1 Sn
1Dan21b 1 Sn

2Dan22b 2 1 . . . 1 S n
n 2 1Dab n21 1 b n

Conic Sections with Parametric Equations for Calculator Graphing

Circle

Center: ~h, k! Radius: r
~x 2 h!2 1 ~y 2 k!2 5 r 2

HX 5 H 1 R COS T 0 # T # 2p
Y 5 K 1 R SIN T

Ellipse

~x 2 h!2

a2 1
~ y 2 k!2

b 2 5 1
~x 2 h!2

b 2 1
~ y 2 k!2

a2 5 1

Center: ~h, k!, a . b,
c 2 5 a2 2 b 2

HX 5 H 1 A COS T X 5 H 1 B COS T

0 # T # 2p
Y 5 K 1 B SIN T Y 5 K 1 A SIN T

Parabola

Vertex: ~h, k! Vertex: ~h, k!
Axis: x 5 h Axis: y 5 k
~x 2 h!2 5 4 p~ y 2 k! ~ y 2 k!2 5 4 p~x 2 h!

HX 5 H 1 T, HX 5 H 1 (1y(4P)) T2

Y 5 K 1 (1y(4P)) T2 Y 5 K 1 T

Hyperbola

Focal axis: y 5 k Focal axis: x 5 h
~x 2 h!2

a2 2
~ y 2 k!2

b 2 5 1
~ y 2 k!2

a2 2
~x 2 h!2

b 2 5 1

Center: ~h, k!, c 2 5 a2 1 b 2

HX 5 H 1 AyCOS T X 5 H 1 B TAN T

0 # T # 2p
Y 5 K 1 B TAN T Y 5 K 1 AyCOS T



y

x

u
a

x

y

r =    x2 + y2

Q(x, y)
y

x

Unit
circle

(cos   , sin   )
= (a, b)

u

u

u

b

P

a

1

a

a

adj a

opp a hyp

x

y

1
2

3
2(–   ,        )

1
2

3
2

–(      ,    )

1
2

3
2

–(–      ,      )
1
2

1
2

–(–      ,         )
1
2

3
2

–(–   ,         ) (0, – 1)
1
2

3
2

–(  ,         )

1
2

1
2

–(    ,         )

1
2

3
2

–(     ,      )

1
2

3
2(     ,    )

1
2

1
2(     ,      )

1
2

1
2(–     ,       )

1
2

3
2(  ,     )

(– 1, 0) (1, 0)

(0, 1)

11 
6
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6
p


4
p


3
p


2
p
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2

5
3

7 
4
p

p
p

0

4 
3
p

5 
4
p

7 
6
p

5 
6
p

3 
4
p

2 
3
p

p

– 1

1

p 2p
2
p 3 

2
p

y = cos t

– 1

1

p 2p
2
p 3 

2
p

y = sin t

y

t

–  p
2

3p
2

p
2

ppp 

1

y = tan t

p

y

t
p
2

3p
2

pp p p

1

– 1

y = cot t

2

3p
2
p

y = csc t

1

– 1

y

t
p 2ppp

2
p

y = sec t

p

2pp

y

t
p
2

3p
2
pp

1

– 1
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Exponential Properties

If b . 0 and u and v are any real numbers, then

b ub v 5 b u1v b 0 5 1
b uyb v 5 b u2v b 1 5 b
~b u!v 5 b uv

Natural Exponential and Logarithmic Functions

The base of the natural exponential function ~ex! and the natural logarithmic function (ln x) is the number
e < 2.718281828. These functions are related:

ln x 5 y if and only if ey 5 x He ln x 5 x for every positive number x
ln ex 5 x for every real number x

Trigonometric Functions

For any P~u! on the unit circle,

Hthe x-coordinate is cos u
the y -coordinate is sin u

Graphs

Logarithm Properties

If b, u, and v are positive ~b 5/ 1! and p is any real number,
then

logb~uv! 5 logb u 1 logb v logb 1 5 0
logb~uyv! 5 logb u 2 logb v logb b 5 1
logb~u

p! 5 p logb u

Angles in
Standard Position

cos u 5 xyr sin u 5 yyr
tan u 5 yyx

Angles
in Right Triangle

cos a 5 adjyhyp sin a 5 oppyhyp
tan a 5 oppyadj



C

B

a

a b

g

b

c
A
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Law of Sines

sin a

a
5

sin b

b
5

sin g

c

Law of Cosines

c 2 5 a2 1 b 2 2 2ab cos g

Basic Identities

tan t 5
sin t
cos t

cot t 5
cos t
sin t

sin~2t! 5 2sin t cos~2t! 5 cos t
tan~2t! 5 2tan t sin2t 1 cos2t 5 1
tan2t 1 1 5 sec2t 1 1 cot2t 5 csc2t

Product-Sum Identities

2 sin a cos b 5 sin~a 1 b! 1 sin~a 2 b!
2 cos a cos b 5 cos~a 1 b! 1 cos~a 2 b!
2 sin a sin b 5 cos~a 2 b! 2 cos~a 1 b!

Half Angle Identities

sin
t
2

5 6Î1 2 cos t
2

cos
t
2

5 6Î1 1 cos t
2

tan
t
2

5
sin t

1 1 cos t
5

1 2 cos t
sin t

sin2t 5
1 2 cos 2t

2
cos2t 5

1 1 cos 2t
2

Complex Numbers

Trigonometric Form

a 1 bi 5 r~cos u 1 i sin u!,
r 5 Ïa2 1 b 2, tan u 5 bya

Powers and Roots

~a 1 bi!n 5 @r~cos u 1 i sin u!#n 5 r n~cos nu 1 i sin nu!

The nth roots of r~cos u 1 i sin u! are given by

wk 5 r 1ynFcosSu 1 k · 3608

n D 1 i sinSu 1 k · 3608

n DG,

where k 5 0, 1, 2, . . . , n 2 1.

Arithmetic Sequence

First term a1 5 a, common difference d, an 5 a 1 ~n 2 1!d

Sum a1 1 a2 1 . . . 1 an 5 n
a1 1 an

2
5 n

2a 1 ~n 2 1!d
2

Sum and Difference Identities

sin~a 6 b! 5 sin a cos b 6 cos a sin b

cos~a 6 b! 5 cos a cos b 7 sin a sin b

tan~a 6 b! 5
tan a 6 tan b

1 7 tan a tan b

Double Angle Identities

sin 2t 5 2 sin t cos t
cos 2t 5 cos2t 2 sin2t 5 1 2 2 sin2t 5 2 cos2t 2 1

tan 2t 5
2 tan t

1 2 tan2t

Sum-to-Product Identities

sin x 2 sin y 5 2 cos
x 1 y

2
sin

x 2 y
2

cos x 1 cos y 5 2 cos
x 1 y

2
cos

x 2 y
2

cos x 2 cos y 5 22 sin
x 1 y

2
sin

x 2 y
2

sin x 1 sin y 5 2 sin
x 1 y

2
cos

x 2 y
2

Reduction Formulas

sinSp

2
6 tD 5 cos t sin~p 6 t! 5 7sin t

cos~p 6 t! 5 2cos tcosSp

2
6 tD 5 7sin t

Geometric Sequence

First term a1 5 a, common ratio r, an 5 ar n21

Sum a1 1 a2 1 . . . 1 an 5
a

1 2 r
~1 2 r n!

Geometric series o
`

n51
ar n21 5

a
1 2 r

, if _ r _ , 1



Page 25,  Ex. 47: should be 

Page 88,  Ex. 38:  should be . . . 

Page 105,  Ex. 27: 

Page 129,  Exs. 35-36:  should be (a) (b)

Page 166, Line 14: should be 2nd Alpha y1)

Page 168,  One line above #25: should be 

Page 169,  end of line 3: insert 

Page 172,  Line 3: should be

Page 209,  Exs. 65, 68:  replace 0.5 by 1.4

Page 235,  Ex. 31: ·

Page 248,  #26, 36, 37:  replace by 

Page 277,  Line 2:  should position point 

Page 284,  Figure 40:  label 

Page 364,  Figure 40:  the fundamental cycle starts on axis

Page 366,  Historical Note, paragraph 4, line 2:  should be saxaphone

Page 375,  Ex. 12:  replace by 

Page 417, Technology Tip, number 4, line 2:  should be . . . Trace . . .

Page 431,  Ex. 53:  should be 

Page 449,  Exs. 11-22:  replace  by 
      Ex. 34:  

Page 450,   line 4:  Exercises 61-62,

Page 460,  Ex. 64:  replace by 

Page 483,  Ex. 2:   . . . terms in the ex sion of . . .pan

Errata
Should read Figure 40



Page 538,  Technology Tip:  delete initial letter of lines 2  and 5- -

Page 596:  Final graph is 

A-2,  Exercises 1.5,  63: (a) 7 (b) 7
        Exercises 1.6,  36: 6 Area is 3
        Exercises 1, Review 45: (c) (0, )

A-5, Exercises 2.6,  11: (a) first entry is 
                              63:  replace by 

A-6,  Exercises 2.8,  45:  we have denoted area by not 

A-7,  Exercises 3.1,  11, 13:  replace (c) by (iii)

A-8  Exercises 3.4  85:  (a) 8.2 by 24.6 by 12.3

A-9,  Exercises 4.2,  49: (a) 

A-12,  Exercises  5.2,  51:  add an answer  (a)  (b) 

A-15, Exercises 6.5,  13:  change "left" to "right"
     15: (b) 
     51:  Add 

A-17,  Exercises 7.4,  65:  replace  by 
     Exercises 7.5,  7:  delete

A-18,  Exercises 8.3, 11:  (b) 1
2187

                                  77: 

A-21,  Exercises 9.6,

     49: (a) (b) (c) ,
1 -3
0 1

                            1

A-22,  Exercises 9.6,  63: (a) lower left entry should be 

A-24,  Exercises 10.5,  55:  delete minus sign

Index I-1:  Circular motion, 8, 259

Index I-2:  Fibonacci sequence, 436, 442, 449
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