On the spectral stability of solitary wave solutions of the vector nonlinear Schrödinger equation

This content has been downloaded from IOPscience. Please scroll down to see the full text.

(http://iopscience.iop.org/1751-8121/46/41/415202)

View the table of contents for this issue, or go to the journal homepage for more

Download details:

IP Address: 129.123.40.55
This content was downloaded on 30/09/2013 at 16:52

Please note that terms and conditions apply.
On the spectral stability of solitary wave solutions of
the vector nonlinear Schrödinger equation

Bernard Deconinck1, Natalie E Sheils1, Nghiem V Nguyen2
and Rushun Tian2

1 Department of Applied Mathematics, University of Washington, Seattle, WA 98195-2420, USA
2 Department of Mathematics and Statistics, Utah State University, Logan, UT 84322-3900, USA

E-mail: bernard@amath.washington.edu, nsheils@amath.washington.edu,
nghiem.nguyen@usu.edu and rushun.tian@aggiemail.usu.edu

Received 21 February 2013, in final form 10 September 2013
Published 27 September 2013
Online at stacks.iop.org/JPhysA/46/415202

Abstract
We consider a system of coupled cubic nonlinear Schrödinger (NLS) equations

\[i \frac{\partial \psi_j}{\partial t} = -\frac{\partial^2 \psi_j}{\partial x^2} + \psi_j \sum_{k=1}^{n} \alpha_{jk} |\psi_k|^2, \quad j = 1, 2, \ldots, n, \]

where the interaction coefficients α_{jk} are real. The spectral stability of solitary wave solutions (both bright and dark) is examined both analytically and numerically. Our results build on preceding work by Nguyen et al and others. Specifically, we present closed-form solitary wave solutions with trivial and nontrivial-phase profiles. Their spectral stability is examined analytically by determining the locus of their essential spectrum. Their full stability spectrum is computed numerically using a large-period limit of Hill’s method. We find that all nontrivial-phase solutions are unstable while some trivial-phase solutions are spectrally stable. To our knowledge, this paper presents the first investigation of the stability of the solitary waves of the coupled cubic NLS equation without the restriction that all components ψ_j are proportional to sech.

PACS numbers: 02.30.Jr, 02.70.Hm, 47.11.Kb
Mathematics Subject Classification: 35Q55, 37K45

(Some figures may appear in colour only in the online journal)

1. Introduction
We consider the n-component coupled nonlinear Schrödinger (CNLS) system:

\[i \frac{\partial \psi_j}{\partial t} = -\frac{\partial^2 \psi_j}{\partial x^2} + \psi_j \sum_{k=1}^{n} \alpha_{jk} |\psi_k|^2, \quad j = 1, 2, \ldots, n, \]

(1)

where $\psi_j(x, t)$ is a complex-valued dimensionless wave function. When $n = 1$, (1) is referred to as the cubic nonlinear Schrödinger (NLS) equation. It has been used extensively to model,
among many other applications, waves in deep water [1, 37, 54], propagation in nonlinear optics [28, 34, 53], Bose–Einstein condensates [2, 25, 26, 36, 43, 49], and electron plasma waves [12]. The interaction matrix $\alpha = (\alpha_{jk})_{j,k=1}^{n}$ contains information about the nature of the interactions between the different components of the wave functions. Many scalings of the independent and dependent variables that change the effective interaction matrix α are possible. We choose one such that diagonal elements are ± 1, while the off-diagonal elements are nonzero parameters. This allows for the consideration of the limit to an uncoupled system in which these off-diagonal elements limit to zero. In other words, we regard (1) as a perturbation of n scalar NLS equations. Readers are referred to various other works (e.g. [6, 29, 30, 54, 55]) for the derivation of this system in its various application settings.

If system (1) is expressed in its original physical dimensions, the matrix α is usually symmetric since the interaction of wave functions with each other is typically symmetric. For example, in applications to Bose–Einstein condensates the governing equations for the interaction of $n \geq 2$ condensates (without the influence of an external potential) are [50]

$$\hbar \frac{\partial \psi_j}{\partial t} = -\frac{\hbar^2}{2m_j} \frac{\partial^2 \psi_j}{\partial x^2} + \sum_{k=1}^{n} \frac{2\pi \hbar^2 a_{jk}}{m_{jk}} |\psi_k|^2 \psi_j, \quad j = 1, \ldots, n,$$

where $\psi_j(x,t)$ is the wave function for the jth condensate, m_j is the atomic mass of the atom species of the jth condensate, $m_{jk} = m_j m_l / (m_j + m_l)$ is the reduced mass corresponding to the atom species of the jth and lth condensates and $a_{jk} = a_{kj}$ is the s-wave scattering length between the atomic species j and k. Rescaling dependent and independent variables, $m_{j} = 2\hbar, m_{jk} = \hbar, t = 2\pi t, x = 2\sqrt{\pi} x$, and $\psi_j = \tilde{\psi}_j / \sqrt{a_{jj}}$ we have (1) with $\alpha_{jk} = a_{jk} / |a_{jj}|$. Clearly, $\alpha_{jj} = \pm 1$ but α_{jk} is not necessarily α_{kj}. Thus in what follows we cannot impose that the matrix α in (1) is symmetric.

The literature discussing the stability of the soliton solutions in the case $n = 1$ is extensive, see [8, 35] for instance, as well as references therein. More recently, the literature has focused on the stability of the periodic counterparts of the solitons. This began with Rowlands [47], who found that for the focusing NLS equation ($\alpha > 0$) elliptic solutions are unstable. Gallay and Hărăguş [21, 22], and Hărăguş and Kapitula [27] establish spectral and orbital stability of elliptic solutions for the defocusing NLS equation ($\alpha < 0$). These results are extended by Bottman et al [8]. Although we only investigate solitary wave solutions, the results for the elliptic solutions are relevant for us, see section 5.

The case of $n = 2$ with all elements of α equal is considered in [20]. In this case, the system is integrable and more analysis can be done than is undertaken here. In this case, the CNLS system (1) is known to possess modulational instabilities experimentally [45, 46] and theoretically [7, 44]. Nguyen et al [40] consider the system (1) with a general power-type nonlinearity and $\alpha_{jk} = \alpha_{kj}$. They prove global existence for small initial data and they establish conditions for finite-time blow-up, which implies instability. Deconinck et al [17] find two distinct families of solutions which are extensions of the families found for the scalar case, discussed in [9, 10], see also [24, 33]. We restrict the solutions discussed in [17] to the solitary wave case. These are discussed in detail in the next section. The special case $\alpha_{12} = \alpha_{21}$, $\alpha_{11} = \alpha_{22} = -1$ of (1) with $n = 2$ is discussed by Yang and Benney [52]. They study the dynamics of both exact and approximate solutions. For the case $\alpha_{12} = \alpha_{21}$ the orbital stability of some solitary wave solutions of (1) is established in [39] and [41], see also [4, 5, 42]. In the context of Bose–Einstein condensates with multiple components, the interaction of different solution types has been examined, predominantly in the presence of an external potential, see for instance [2, 11, 17].

This paper discusses the case of stationary solitary wave solutions with both trivial and nontrivial-phase profiles in the case $n = 2$. We examine stability for various choices of the
interaction matrix α by investigating the locus of the essential spectrum. If solutions are found to have a purely imaginary essential spectrum, we use Hill’s method to study their spectral stability by computing the discrete spectrum. To our knowledge, this paper presents the first investigation of the stability of the solitary waves of (1) without the restriction that all components ψ_j are proportional to sech, and without the presence of an external potential. Specifically we investigate the interaction of bright with dark solitary waves and dark with dark solitary waves. For any case of α, the stability study of the nontrivial-phase solutions is new as well.

The main aim of our work is to provide an atlas of the solitary wave instabilities present in the coupled NLS problem (1). We anticipate that such an atlas can be used as a starting point for understanding the dynamics of such solitary waves, or as a starting point for more advanced analytical work on their stability.

2. Stationary solutions

We restrict our attention to stationary solutions of (1), i.e. solutions whose time-dependence is of the following form,

$$\psi_j(x, t) = \exp(-i \omega_j t + i \theta_j(x)) r_j(x),$$

where $j = 1, \ldots, n$, and

$$\frac{d\theta_j}{dx} = \frac{c_j}{r_j^2(x)},$$

$$r_j^2 = A_j \tanh^2(x) + B_j,$$

$$\sum_{j=1}^n \alpha_{\beta j} A_j = 2,$$

$$\omega_j = 2 + \frac{B_j}{A_j} + \sum_{l=1}^n \alpha_{\beta j} B_l,$$

$$c_j^2 = \frac{B_j}{A_j} (A_j + B_j)^2.$$ (4)

Equations (4) are an immediate consequence of substituting the ansatz (3) into (1). Note that (4) gives all solutions of the form (3) for (1). No additional ansatz is required. In order to uniquely determine A_j, the matrix α needs to be inverted. The resulting family of solutions has n free parameters B_j, $j = 1, 2, \ldots, n$. If the matrix α is of co-rank m we have an $(n + m)$-dimensional family of solutions.

If $d\theta_j/dx = 0$ ($c_j = 0$) the solution is referred to as having trivial phase and we choose $\theta_j(x) = 0$, without loss of generality. With $n = 2$, (4) are written out explicitly as

$$\frac{d\theta_1}{dx} = \frac{c_1}{r_1^2(x)}, \quad \frac{d\theta_2}{dx} = \frac{c_2}{r_2^2(x)},$$

$$r_1^2 = A_1 \tanh^2(x) + B_1, \quad r_2^2 = A_2 \tanh^2(x) + B_2,$$

$$2 = \alpha_{11} A_1 + \alpha_{12} A_2, \quad 2 = \alpha_{21} A_1 + \alpha_{22} A_2,$$

$$c_1^2 = \frac{B_1}{A_1} (A_1 + B_1)^2, \quad c_2^2 = \frac{B_2}{A_2} (A_2 + B_2)^2.$$ (5)

We have three cases for $(\alpha_{11}, \alpha_{22})$ depending on whether the self-interactions are focusing ($\alpha_{kk} = -1$) or defocusing ($\alpha_{kk} = +1$):
Figure 1. Ranges of $(\alpha_{12}, \alpha_{21})$ for which trivial-phase solutions exist in Case (i): $(\alpha_{11}, \alpha_{22}) = (-1,-1)$, i.e. (focusing, focusing), $(\alpha_{11}, \alpha_{22}) = (-1,1)$, i.e. (focusing, defocusing), $(\alpha_{11}, \alpha_{22}) = (1,1)$, i.e. (defocusing, defocusing).

(i) $(\alpha_{11}, \alpha_{22}) = (-1,-1)$, i.e. (focusing, focusing).
(ii) $(\alpha_{11}, \alpha_{22}) = (-1,1)$, i.e. (focusing, defocusing).
(iii) $(\alpha_{11}, \alpha_{22}) = (1,1)$, i.e. (defocusing, defocusing).

The case $\alpha_{11} = 1$ and $\alpha_{22} = -1$ can be ignored since it is identical to Case (ii) if the indices are switched. Requiring $r_j^2 \geq 0$, $c_j^2 \geq 0$ for $j = 1, 2$ restricts our parameter space as displayed for trivial-phase solutions in figures 1–3 and for nontrivial-phase solutions in figure 4.

2.1. Trivial-phase solutions

Trivial-phase solutions occur for those values of B_1, B_2 for which $c_1 = c_2 = 0$. Specifically, in the solitary wave case,
Figure 2. Ranges of \((\alpha_{12}, \alpha_{21})\) for which trivial-phase solutions exist in Case (ii):
\[(\alpha_{11}, \alpha_{22}) = (-1, 1). \]
(a) \((\psi_1(x), \psi_2(x)) \sim (\text{sech}(x), \text{sech}(x))\), (b) \((\psi_1(x), \psi_2(x)) \sim (\text{tanh}(x), \text{tanh}(x))\),
(c) \((\psi_1(x), \psi_2(x)) \sim (\text{sech}(x), \text{tanh}(x))\), and (d) \((\psi_1(x), \psi_2(x)) \sim (\text{tanh}(x), \text{sech}(x))\).

\[B_j = 0 \Rightarrow \psi_j(x, t) = \sqrt{A_j} \text{tanh}(x) e^{-i \omega_j t} \quad (6a) \]
\[B_j = -A_j \Rightarrow \psi_j(x, t) = \sqrt{-A_j} \text{sech}(x) e^{-i \omega_j t}. \quad (6b) \]

We refer to (6a) as a dark solitary wave while (6b) is a bright solitary wave.

First, we examine the case when the matrix \(\alpha\) has co-rank 1. Then \(\alpha_{21} = \alpha_{11}\) and \(\alpha_{12} = \alpha_{22}\). We may solve for one of \(A_1, A_2\) in terms of the other. Without loss of generality, let \(A_1 = (2 - \alpha_{22} A_2)/\alpha_{11}\).

- For Case (i), \((\text{sech}(x), \text{sech}(x))\) solutions exist for all values of \(-2 \leq A_2 \leq 0\) while \((\text{tanh}(x), \text{tanh}(x))\) solutions are impossible for any value of \(A_2\). If \(A_2 \geq 0\), \((\text{sech}(x), \text{tanh}(x))\) solutions are possible, while if \(A_2 \leq -2\), \((\text{tanh}(x), \text{sech}(x))\) solutions exist.
In Case (ii), \((\text{sech}(x), \text{sech}(x))\) solutions exist for all values of \(A_2 \leq 0\) while \((\text{sech}(x), \text{tanh}(x))\) solutions are possible for all values of \(0 \leq A_2 \leq 2\). If \(A_2 \geq 2\), \((\text{tanh}(x), \text{tanh}(x))\) solutions exist. There are no values of \(A_2\) for which \((\text{tanh}(x), \text{sech}(x))\) solutions are possible.

Finally, in Case (iii), \((\text{sech}(x), \text{sech}(x))\) cannot exist for any \(A_2\). Solutions of the form \((\text{tanh}(x), \text{sech}(x))\) exist for all values of \(A_2 \leq 0\). If \(0 \leq A_2 \leq 2\), \((\text{tanh}(x), \text{tanh}(x))\) solutions are possible. If \(A_2 \geq 2\), \((\text{sech}(x), \text{tanh}(x))\) solutions exist.

Next, if \(\alpha\) is not singular, each of Cases (i)–(iii) leads to solutions corresponding to the four combinations of \(\text{sech}(x)\) and \(\text{tanh}(x)\). The possible values of \(\alpha_{12}\) and \(\alpha_{21}\) for which solutions exist are shown as shaded regions in figures 1–3. In Cases (i) and (iii) we do not discuss...
Figure 4. Ranges of \((\alpha_{12}, \alpha_{21})\) for which nontrivial-phase solutions exist given \(B_1, B_2 \geq 0\). (a) \(\alpha_{11} = -1, \alpha_{22} = -1\), (b) \(\alpha_{11} = -1, \alpha_{22} = 1\), and (c) \(\alpha_{11} = 1, \alpha_{22} = 1\).

(tanh\((x)\), sech\((x)\)) solutions because these are the same as (sech\((x)\), tanh\((x)\)) solutions with the indices switched. These regions are created by requiring (5) to be satisfied.

More specifically, in figures 1(a)–(c) bounding curves are given by the graphs of \([\alpha_{21} = -1 \text{ or } \alpha_{12} = -1 \text{ or } \alpha_{21} = 1/\alpha_{12} < 0], \ [\alpha_{21} = 1/\alpha_{12} > 0], \text{ and } [\alpha_{21} = 1/\alpha_{12} < 0 \text{ or } \alpha_{21} = -1] \) respectively. Points are removed from or added to these lines in accordance with the rank-deficient case. Areas shaded in red correspond to unstable solutions where the essential spectrum is not confined to the imaginary axis (i.e., the solution is unstable), whereas areas in blue correspond to solutions that have a purely imaginary essential spectrum, see section 4. Note that a purely imaginary essential spectrum does not guarantee spectral stability since we have not discussed the point spectrum. In figure 1 and the following figures, the notation \((\psi_1(x), \psi_2(x)) \sim (f(x), g(x))\) is used to denote that \(\psi_1(x)\) is proportional to \(f(x)\), and \(\psi_2(x)\) is proportional to \(g(x)\).
Similarly, in figures 2(a)–(d) bounding curves are given by the graphs of $\{\alpha_2 = 1/\alpha_1 < 0 \}$ or $\{\alpha_2 = -1\}$, $\{\alpha_2 = 1\}$ or $\{\alpha_2 = -1/\alpha_1 < 0 \}$, and $\{\alpha_2 = -1/\alpha_1 > 0 \}$ respectively. Also, in figures 3(a)–(c) bounding curves are given by the graphs of $\{\alpha_2 = 1/\alpha_1 < 0 \}$, $\{\alpha_2 = 1\}$ or $\{\alpha_2 = 1/\alpha_1 < 0 \}$ or $\{\alpha_2 = 1\}$, and $\{\alpha_2 = 1\}$ or $\{\alpha_2 = 1/\alpha_1 > 0 \}$ respectively. In addition, figure 3(a) includes a point which corresponds to a solution for singular α.

2.2. Nontrivial-phase solutions

For nontrivial-phase solutions we are unable to make many of the reductions discussed in section 2.1. Once we choose α_{11} and α_{22}, the shaded regions of the $(\alpha_{12}, \alpha_{21})$-plane do not depend on B_1 and B_2 if $B_1, B_2 \geq 0$. These regions are presented in figure 4. It is of note that for any of the $(\alpha_{11}, \alpha_{22})$ cases we can move continuously from nontrivial-phase to trivial-phase solutions by letting $B_j \to 0$. We cannot investigate the limit $B_j \to -A_j$ since the values of α_{12}, α_{21} necessary to look at this limit are outside of the regions of existence presented in figure 4. The absence of this limit is related to the fact that in the scalar case, nontrivial-phase bright solitons do not exist for focusing NLS whereas for defocusing NLS gray solitons do exist [35].

In what follows we examine the limit $(B_1, B_2) \to 0$ since in this case nontrivial-phase solutions can limit to both stable and unstable trivial-phase solutions.

3. Stability problem

To examine stability of the exact solutions given in (3), we linearize the governing equations (1) around these solutions:

$$
\psi_j(x, t) = e^{i\theta_j(x) - i\omega_j t} (r_j(x) + \epsilon \phi_j(x, t) + O(\epsilon^2)),
$$

for a small parameter ϵ. Substituting (7) into (1) and ignoring terms multiplying higher than linear powers in ϵ gives

$$
\frac{\partial}{\partial t} \begin{pmatrix} u \\ v \end{pmatrix} = J\mathcal{L} \begin{pmatrix} u \\ v \end{pmatrix} = J \begin{pmatrix} L^+ & S \\ -S & L^- \end{pmatrix} \begin{pmatrix} u \\ v \end{pmatrix},
$$

where $u = (u_1, \ldots, u_n)^T$, $v = (v_1, \ldots, v_n)^T$ and u_j, v_j are the real and imaginary parts of ϕ_j respectively. Also, $J = \begin{pmatrix} 0_n & 1_n \\ -1_n & 0_n \end{pmatrix}$, where 0_n is the $n \times n$ zero matrix and 1_n is the $n \times n$ identity matrix. The remaining $n \times n$ matrix operators in (8) are given by

$$
(L^+)_{jk} = \begin{cases} -\alpha_j^2 + r_j^2 - \omega_j + 2\alpha_{jk}r_jr_k & j = k \\ 2\alpha_{jk}r_jr_k & j \neq k \end{cases}
$$

and

$$
(L^-)_{jk} = \begin{cases} -\alpha_j^2 + r_j^2 - \omega_j + \sum_{p=1}^{n} \alpha_{jp}r_p^2 & j = k \\ 0 & j \neq k \end{cases}
$$

and

$$
(S)_{jk} = \begin{cases} 2\epsilon \frac{r_j - \epsilon r_k}{r_j} & j = k \\ 0 & j \neq k \end{cases}
$$

where $j, k = 1, \ldots, n$.

8
Since (8) is autonomous in \(t\), we employ separation of variables and consider solutions of the form \((u(x,t), v(x,t)) \equiv e^{i\xi} (\hat{u}(x), \hat{v}(x))\). The eigenfunctions \(\hat{u}\) and \(\hat{v}\) satisfy the spectral problem
\[
\lambda \begin{pmatrix} \hat{u}(x) \\ \hat{v}(x) \end{pmatrix} = J \mathcal{L} \begin{pmatrix} \hat{u}(x) \\ \hat{v}(x) \end{pmatrix} = J \begin{pmatrix} L^+ & S \\ -S & L^- \end{pmatrix} \begin{pmatrix} \hat{u}(x) \\ \hat{v}(x) \end{pmatrix}.
\tag{12}
\]
Since \(S\) is anti-symmetric and \(\mathcal{L}\) is self adjoint, (12) demonstrates the Hamiltonian structure of the problem. In order to show that solutions are spectrally stable, we need to verify that the spectrum of \(J \mathcal{L}\) does not intersect the open right-half of the complex-\(\lambda\) plane. That is, there are no \(\lambda\) with bounded eigenfunctions satisfying (12) such that the real part of \(\lambda\) is positive. Since the CNLS equation is Hamiltonian \([1]\), the spectrum of its linearization is symmetric with respect to both the real and the imaginary axis \([51]\). Thus, proving spectral stability of a solution is equivalent to proving that the spectrum of \(J \mathcal{L}\) is strictly imaginary.

As usual the time-independent spectrum consists of two parts, the essential spectrum and the discrete spectrum.

The analytical investigation of linear stability, beyond the study of the essential spectrum (see section 4) for nontrivial-phase solutions, is beyond the scope of our methods. However, if all components are described by periodic trivial-phase solutions, more analysis is possible, see \([17]\). Note that in the trivial-phase case, \(S = 0_n\). Theorems 1 and 2 in \([17]\) give explicit requirements on \(\alpha\) and \(r_j(x)\) to ensure linear stability for periodic trivial-phase solutions. No information about stability of nontrivial-phase solutions or the case when \(\alpha\) is neither positive nor negative definite can be obtained from the results in \([17]\). This situation should be contrasted with that for the scalar NLS equation, where the stability of a variety of solutions is relatively well understood, as discussed in the introduction.

4. The locus of the essential spectrum

The determination of the essential spectrum is an important component for this work. We are able to get analytical results for the essential spectrum of both the trivial and nontrivial-phase solutions. If for a particular solution any part of the essential spectrum is in the right-half complex plane, the solution is spectrally unstable and there is no need to examine the stability of the solution numerically unless we not only want to determine stability, but also which modes are the most unstable. To answer this second question, a determination of the entire spectrum is required. If a solution is spectrally unstable due to the location of the essential spectrum we will forego the numerical investigation of the next section.

Definition. A solution for which the essential spectrum of (12) is on the imaginary axis is called essentially spectrally stable.

It is clear that solutions that are not essentially spectrally stable are spectrally unstable. The analytical expressions for the essential spectrum provide a means to check the accuracy of the numerical results of the next section.

To compute the essential spectrum we investigate the asymptotic spectral problem determined by letting \(|x| \to \infty\). This results in a constant coefficient problem and we let \((\hat{u}(x), \hat{v}(x)) \equiv e^{i\kappa x} (U, V)\) where \(\kappa \in \mathbb{R}\). Equation (12) becomes
\[
\lambda \begin{pmatrix} U \\ V \end{pmatrix} = J \tilde{\mathcal{L}} \begin{pmatrix} U \\ V \end{pmatrix} = J \begin{pmatrix} \tilde{L}^+ & \tilde{S} \\ -\tilde{S} & \tilde{L}^- \end{pmatrix} \begin{pmatrix} U \\ V \end{pmatrix},
\tag{13}
\]
with
\[
(\tilde{L}^+)_{jk} = \begin{cases} \kappa^2 + \frac{c_j^2}{r_j^2} - \omega_j + 2\alpha_j r_j^2 + \sum_{p=1}^n \alpha_j r_p^2, & j = k, \\ 2\alpha_j r_j r_k, & j \neq k. \end{cases}
\tag{14}
\]
The eigenvalues are
\[\lambda_{jk} = \begin{cases} \kappa^2 + \frac{\gamma^2}{\tau^2} - \omega_j + \sum_{p=1}^{n} \alpha_p r_{jp}^2, & j = k, \\ 0, & j \neq k, \end{cases} \quad (15) \]

\[(\tilde{S})_{jk} = \begin{cases} 2c_j \frac{r_{jk} - i\kappa x_j}{\tau}, & j = k, \\ 0, & j \neq k, \end{cases} \quad (16) \]

for \(j, k = 1, 2, \ldots, n \).

Finding the eigenvalues of the matrix \(J\tilde{L} \) gives a parameterization in terms of \(\kappa \in \mathbb{R} \) of the essential spectrum. Eigenvalues with nonzero real part correspond to unstable modes with a growth rate equal to the absolute value of the real part. In this paper we do not concern ourselves with finding the largest growth rate. Instead we focus on determining whether solutions are spectrally stable.

As mentioned in section 1 we focus on the case \(n = 2 \). In this situation \(\tilde{L} \) is a \(4 \times 4 \) matrix and the characteristic equation is quartic in \(\lambda \). In the trivial-phase case the characteristic equation is biquadratic and we are able to compute explicit parameterizations for the essential spectrum. This is also possible in the nontrivial-phase case but our formulas become extremely unwieldy.

4.1. Trivial-phase solutions

For all three cases of \(\alpha \), if we are in the trivial-phase case such that \(B_j = -A_j \), that is, \(\psi_j(x) \sim \text{sech}(x) \), (13) becomes

\[\lambda \begin{pmatrix} U \\ V \end{pmatrix} = \begin{pmatrix} 0 & 0 & 1 + \kappa^2 & 0 \\ 0 & 0 & 0 & 1 + \kappa^2 \\ -1 - \kappa^2 & 0 & 0 & 0 \\ 0 & -1 - \kappa^2 & 0 & 0 \end{pmatrix} \begin{pmatrix} U \\ V \end{pmatrix}. \quad (17) \]

The eigenvalues are \(\lambda = \pm i(1 + \kappa^2) \), each with multiplicity 2. This results in a double covering of the imaginary axis for values of \(|\lambda| > 1 \), shown in figure 5. Thus, all \((\text{sech}(x), \text{sech}(x))\) solutions are essentially spectrally stable. It remains to examine their discrete spectrum which is done in the next section.

- For Case (i), that is \((\alpha_{11}, \alpha_{22}) = (-1, -1) \) the essential spectrum for the other trivial-phase solutions is displayed in figure 6. The analytical formula obtained by solving (13) with the proper values of \(\alpha_{11} \) and \(\alpha_{22} \) implies the essential spectrum has nonzero real part. The plots of these analytical formulas presented in figure 6 make it clear that the solutions are unstable in every case shown. The explicit values of \(\kappa \) for which the real part of any eigenvalue is positive in the case \((\psi_1(x), \psi_2(x)) \sim (\tanh(x), \tanh(x))\) is examined later in this section.

- For Case (ii), that is \((\alpha_{11}, \alpha_{22}) = (-1, 1) \) the essential spectrum for the non-(sech(x), sech(x)) trivial-phase solutions is as given in figure 7. Notice that for some types of trivial-phase solutions, i.e. \(\psi_1(x) \sim \tanh(x), \psi_2(x) \sim \tanh(x) \), we show two sets of essential spectrum. This corresponds to the two regions of the solution space shown in figure 2(a).

- Finally, for Case (iii), that is \((\alpha_{11}, \alpha_{22}) = (1, 1) \) the essential spectrum for the non-(sech(x), sech(x)) trivial-phase solutions is shown in figure 8. The analytical formula obtained by solving (13) with the proper values of \(\alpha_{11} \) and \(\alpha_{22} \) gives an expression for the essential spectrum. The plots of these analytical formulas presented in figure 8 make it clear when the solutions are unstable. The explicit values of \(\kappa \) for which the real part of any eigenvalue is positive in the case \((\psi_1(x), \psi_2(x)) \sim (\tanh(x), \tanh(x))\) is examined later in this section.
Figure 5. The essential spectrum for any choice of α_{11}, α_{12}, α_{21}, and α_{22} with $(\psi_1(x), \psi_2(x)) \sim (\text{sech}(x), \text{sech}(x))$.

Figure 6. (a) The essential spectrum for $\alpha_{11} = -1$, $\alpha_{12} = 1.5$, $\alpha_{21} = 2$, and $\alpha_{22} = -1$ with $(\psi_1(x), \psi_2(x)) \sim (\tanh(x), \tanh(x))$. (b) The essential spectrum for $\alpha_{11} = -1$, $\alpha_{12} = 1$, $\alpha_{21} = -2$, and $\alpha_{22} = -1$ with $(\psi_1(x), \psi_2(x)) \sim (\text{sech}(x), \tanh(x))$.

It is possible to give explicit expressions characterizing κ for which the real part of λ is positive. For instance in

- Case (i) with $(\psi_1(x), \psi_2(x)) \sim (\tanh(x), \tanh(x))$, $(\alpha_{11} = \alpha_{22} = -1, \alpha_{12} > 0$, and $\alpha_{21}\alpha_{12} > 1)$, the essential spectrum is unstable whenever $|\kappa| < 2\sqrt{\alpha_{12} + 1}/(\alpha_{12} - 1)$ and $\alpha_{12} = \alpha_{21} > 1$.

11
Figure 7. (a) The essential spectrum for $\alpha_{11} = -1, \alpha_{12} = 3, \alpha_{22} = 1$ with $(\psi_1(x), \psi_2(x)) \sim (\tanh(x), \tanh(x))$. (b) The essential spectrum for $\alpha_{11} = -1, \alpha_{12} = 0.5, \alpha_{22} = 0$ with $(\psi_1(x), \psi_2(x)) \sim (\tanh(x), \tanh(x))$. (c) The essential spectrum for $\alpha_{11} = -1, \alpha_{22} = 0.1, \alpha_{21} = 1$ with $(\psi_1(x), \psi_2(x)) \sim (\sech(x), \tanh(x))$. (d) The essential spectrum for $\alpha_{11} = -1, \alpha_{22} = 1.5, \alpha_{21} = 0.5$ with $(\psi_1(x), \psi_2(x)) \sim (\tanh(x), \sech(x))$.

- Similarly, in Case (ii) $(\psi_1(x), \psi_2(x)) \sim (\tanh(x), \tanh(x)), (\alpha_{11} = -1, \alpha_{22} = 1$ and either $0 < \alpha_{12} < 1$ and $\alpha_{21} < -1/\alpha_{12}$ or $\alpha_{21} > 1$ and $\alpha_{21} > -1/\alpha_{12}$), the essential spectrum is unstable whenever $\alpha_{12} = \alpha_{21} > 1$ and $|\kappa| > 2\sqrt{(\alpha_{12}^2 - 1)/(\alpha_{21}^2 + 1)}$.

- In the final case we consider, Case (iii) $(\psi_1(x), \psi_2(x)) \sim (\tanh(x), \tanh(x)), (\alpha_{11} = \alpha_{22} = 1$ and $-1 < \alpha_{12}, \alpha_{12} \neq 1$) where the essential spectrum is unstable whenever $\alpha_{12} = \alpha_{21} > 1$ and $|\kappa| < 2\sqrt{(\alpha_{12}^2 - 1)/(\alpha_{21}^2 - 1)}$.

Remark. We can examine these cases further and look at the real and imaginary parts of the eigenvalues for all $\kappa \in \mathbb{R}$. For instance, in Case 1b, with $(\psi_1(x), \psi_2(x)) \sim (\tanh(x), \tanh(x))$,

\[(a) \]
\[(b) \]
\[(c) \]
\[(d) \]
the eigenvalues are given by
$$\lambda_{1,2} = \pm i|\kappa|\sqrt{4 + \kappa^2},$$
$$\lambda_{3,4} = \pm |\kappa|\sqrt{\frac{4(\alpha_{12} + 1)(\alpha_{21} + 1) + (1 - \alpha_{12}\alpha_{21})\kappa^2}{\alpha_{12}\alpha_{21} - 1}}.$$
These eigenvalues form a cross on the imaginary axis similar to that shown in figure 6(a). The part on the real axis depends on the values of α_{12} and α_{21}. The parameterization of the essential spectrum is not informative because it gives no results on the stability of the solution. We know the essential spectrum is stable (purely imaginary) but we have yet to compute the discrete spectrum which may prove to have nonzero real part which would imply instability.
4.2. Nontrivial-phase solutions

As mentioned before, the analytic expressions for the parameterization of the nontrivial-phase solutions in terms of κ are too complicated for generic values of $\alpha_{12}, \alpha_{21}, B_1,$ and B_2. It is important to note that for both trivial and nontrivial-phase solutions we have an analytic description of the essential spectrum in terms of an implicitly defined quartic curve. In order to create the plots for the more complicated nontrivial-phase case, we compute the roots of the quartic equation numerically to machine precision. In the following figures we present plots of the essential spectrum for a fixed $(\alpha_{12}, \alpha_{21})$ while varying B_1 and B_2, eventually approaching $B_1 = B_2 = 0$, the trivial-phase case with $\psi_j(x) \sim \tanh(x)$, $j = 1, 2$. Figures 9–11 display the essential spectrum for each of the three choices with two possibilities for different values of α_{12}, α_{21} for Case (iii).
Figure 11. (a) The essential spectrum of nontrivial-phase solutions with $\alpha_{11} = 1$, $\alpha_{22} = 1$, $\alpha_{12} = 2$, and $\alpha_{21} = 1.5$ for varying values of $B_1 = B_2$ computed analytically. (b) A zoomed in picture for $B_1 = B_2 = 0.0001$.

For Cases (i) and (ii), the essential spectrum always covers the imaginary-λ axis and in addition contains a set whose graph has the shape of a figure eight. The figure eight collapses onto the real axis as B_1 and B_2 approach zero, eventually limiting to the cross as shown in figures 9 and 10. This limit is qualitatively the same as that seen in the trivial-phase case in figures 6(a) and 7. In figure 11 the figure eight collapses onto the imaginary axis and approaches a stable solution as B_1 and B_2 go to zero. This mirrors the case shown in figure 8(b). In the figures presented in this paper we take the limit $B_1, B_2 \to 0$ along $B_1 = B_2$. However, taking the limit along any curve with $B_1, B_2 \geq 0$ will also give a series figure eights collapsing to the axis.

Bottman et al [8] prove the stability of trivial- and nontrivial-phase solutions of the scalar defocusing NLS equation. To compare results we choose $\alpha_{22} = \alpha_{11} = 1$ and $\alpha_{12} = \alpha_{21} = 0$. In this case the eigenvalue problem for the essential spectrum, equation (13) becomes

$$
\lambda \begin{pmatrix} \hat{u} \\ \hat{v} \end{pmatrix} = \begin{pmatrix}
-\imath \sqrt{2B_1} & 0 & \kappa^2 & 0 \\
0 & -\imath \sqrt{2B_2} & 0 & \kappa^2 \\
-4 - 2B_1 - \kappa^2 & 0 & -\imath \sqrt{2B_1} & 0 \\
0 & -4 - B_2 - \kappa^2 & 0 & -\imath \sqrt{2B_2}
\end{pmatrix} \begin{pmatrix} \hat{u} \\ \hat{v} \end{pmatrix}.
$$

The eigenvalues for (18) are given by

$$
\lambda_{1,2} = -\imath (\sqrt{2B_1} \pm \sqrt{4 + 2B_1 + \kappa^2}),
$$

and

$$
\lambda_{3,4} = -\imath (\sqrt{2B_2} \pm \sqrt{4 + 2B_2 + \kappa^2}).
$$

Clearly these are imaginary for $B_1, B_2 \geq 0$. Varying κ results in λs covering the whole of the imaginary axis. This is consistent with the analysis in [8].

Remark. The reader may be familiar with the appearance of a figure eight in the context of the stability analysis of solutions of the NLS equation. Indeed, the stability spectrum a trivial-phase cn-type of the focusing NLS equation consists of the imaginary axis and a figure eight centered at the origin, see [18, 31]. The center of the figure eight is the hallmark of the Benjamin–Feir or modulational instability [47]. The figure eight obtained in our investigations
is quite different: our solutions are solitary wave solutions, and the figure eight is the zero set of an explicitly known quartic curve. In addition, the size of the figure eight is significantly larger than that of the trivial-phase cn solution. As a consequence, the growth rates associated with the instabilities found here are larger.

5. The numerical computation of the spectrum

We use Hill’s Method as presented in [16]. Since the coefficients of \(L \) can be approximated by functions with period \(2L \) we represent them as Fourier series. We recall Floquet’s theorem [3, 14, 19].

Theorem. (Floquet). Consider the linear homogeneous differential equation \(y' = A(x)y \), for some square matrix \(A(x) \) of complex continuous functions such that \(A(x + 2L) = A(x) \). Then any fundamental matrix \(\Phi(x) \) of this system may be decomposed as \(\Phi(x) = \hat{\Phi}(x)e^{\mu x} \), where \(\hat{\Phi}(x + 2L) = \hat{\Phi}(x) \), \(\hat{\Phi}(x) \) is nonsingular and \(R \) is a constant matrix.

We refer to the eigenvalues of the matrix \(R \) as the Floquet exponents. It follows [16] that every bounded solution of (12) is of the form

\[
\begin{pmatrix}
\hat{u}(x) \\
\hat{v}(x)
\end{pmatrix} = e^{i\mu x}\phi(x),
\]

with \(\phi(x + 2L) = \phi(x) \) for any fixed \(\lambda \) and \(\mu \in [0, \pi/L) \). The factor \(\exp(i\mu x) \) is referred to as the Floquet multiplier and \(i\mu \) is the Floquet exponent (eigenvalue of the matrix \(R \)). In this manuscript we loosely refer to \(\mu \) as the Floquet exponent. Writing \(\phi(x) \) as a Fourier series such that

\[
\hat{\phi}_j = \frac{1}{4L} \int_{-2L}^{2L} \phi(x) e^{\pi i j x / (2L)} dx, \quad j \in \mathbb{Z},
\]

equation (12) is equivalent to

\[
\hat{\mathbb{M}}(\mu)\hat{\phi} = \lambda\hat{\phi},
\]

where \(\hat{\phi} = (\ldots, \hat{\phi}_{-1}, \hat{\phi}_0, \hat{\phi}_1, \ldots)^T \) and \(\hat{\mathbb{M}}(\mu) \) is a bi-infinite matrix. It is important to note that no approximations have been introduced to obtain (20). In order to obtain a numerical method which approximates the spectrum of (12), we choose a cut-off \(N \) on the number of Fourier modes of the eigenfunctions \(\phi(x) \) which results in a \((2N+1) \times (2N+1) \) matrix system

\[
\hat{\mathbb{M}}_N(\mu)\hat{\phi}_N = \lambda_N\hat{\phi}_N,
\]

where the eigenvalues \(\lambda_N \) approach \(\lambda \) as \(N \) approaches infinity.

The convergence of this method as \(N \to \infty \) is proven in [15, 32]. This method is spectrally accurate for differential eigenvalue problems with periodic coefficients and an almost-uniform approximation to the entire spectrum is obtained [16]. The numerical component of this method is limited to

(i) choosing the size of the matrices to be used, and
(ii) an eigenvalue solver.

Hill’s method is not intended for linear operators with coefficients that are localized on the whole line as is the case with our problem. In our simulations we approximate the localized function by an elliptic one which converges to it as the elliptic modulus \(k \) approaches one [38]. In order to ensure that Hill’s method is providing an accurate approximation to the periodic problem, the number of Fourier modes needs to be increased as the period is
Figure 12. The stability spectrum for any choice of α_{11}, α_{12}, α_{21}, and α_{22} with $(\psi_1(x), \psi_2(x)) \sim (\text{sech}(x), \text{sech}(x))$. increased. This is similar to the work done in [13]. In using this method of approximating infinite line potentials with periodic potentials with large periods the question arises in what sense the spectrum of such large-period potentials approximates the spectrum of infinite-line potentials. Since the spectrum of the periodic problem is the image of the unit circle in the complex plane as parameterized by the Floquet exponent, Gardner [23] showed that if the period L is sufficiently large, the image of the unit circle is mapped to a simple closed curve containing the spectrum of the infinite line problem. Moreover multiplicities are preserved, implying that no eigenvalues are lost, or no spurious eigenvalues are introduced in the limit. Sandstede and Scheel [48] extended this result to find the precise location of these simple closed curves.

5.1. Trivial-phase solutions

The figures in this section have multiple parts. The blue and red dots correspond to the spectrum computed numerically using Hill’s method. Red dots indicate periodic perturbations (Floquet parameter equal to zero) and blue dots represent the full range of the Floquet parameter. The analytic expression for the locus of the essential spectrum computed and discussed in section 4 is shown in light gray for comparison. All simulations are carried out in python and the formulae used are direct adaptations of those found in [16]. For the numerics seen here, we chose the elliptic modulus k to be $1 - 10^{-16}$. This choice was seen to be sufficiently close to 1 as was discussed above.

In figure 12 in the case of any interaction matrix α for solutions with $(\psi_1(x), \psi_2(x)) \sim (\text{sech}(x), \text{sech}(x))$, the solution is stable with essential spectrum lining the imaginary axis for
purely imaginary $|\lambda| > 1$. The point at the origin is an eigenvalue or member of the discrete spectrum. The numerics agree with the analysis of the essential spectrum in section 4. This shows that solutions of the form $(\psi_1(x), \psi_2(x)) \sim (\tanh(x), \tanh(x))$ are spectrally stable. In what follows we focus on the remaining cases.

- Case (i) solutions are unstable in every case of (ψ_1, ψ_2) and the corresponding α_{12}, α_{21} by virtue of the essential spectrum computed in section 4.
- Case (ii) solutions are spectrally stable if $(\psi_1(x), \psi_2(x)) \sim (\sech(x), \tanh(x))$ and for α_{12} and α_{21} in the regions shown in figure 2(c). In all other subcases of Case (ii), the solutions are unstable. In figure 13 the spectrum for cases which have purely imaginary essential spectrum are shown. As seen in figure 13(a), a positive real eigenvalue exists which implies instability. This illustrates the importance of examining both the essential and the discrete spectrum.
- Case (iii) solutions are stable if $(\psi_1(x), \psi_2(x)) \sim (\sech(x), \tanh(x))$ and for α_{12} and α_{21} in the regions shown in figure 3(c). If $(\psi_1(x), \psi_2(x)) \sim (\tanh(x), \tanh(x))$, solutions have discrete spectrum with nonzero real part and these solutions are unstable. The discrete and essential spectrum are plotted in figure 14 for solutions with purely imaginary essential spectrum. As in the previous case, a real positive eigenvalue exists in the $(\tanh(x), \tanh(x))$ case as seen in figure 14(a).

6. Summary

We have thoroughly investigated all cases of the two-component coupled NLS system. Solutions that are spectrally stable are presented in table 1 where α_{12} and α_{21} are chosen to be in the proper ranges as discussed in section 2. All other solutions, including all nontrivial-phase solutions, are spectrally unstable. For the case $\alpha_{12} = \alpha_{21}$, the first four rows of table 1 are consistent with results presented in [4, 5, 39, 41, 42].
Figure 14. (a) The stability spectrum for $\alpha_{11} = 1$, $\alpha_{12} = -1.5$, $\alpha_{21} = 2$, and $\alpha_{22} = 1$ with $(\psi_1(x), \psi_2(x)) \sim (\tanh(x), \tanh(x))$. (b) The stability spectrum for $\alpha_{11} = 1$, $\alpha_{12} = 0.8$, $\alpha_{21} = 3$, and $\alpha_{22} = 1$ with $(\psi_1(x), \psi_2(x)) \sim (\sech(x), \tanh(x))$.

Table 1. Solutions we found to be spectrally stable with α_{12} and α_{21} appropriately chosen as discussed in section 2.

<table>
<thead>
<tr>
<th>α_{11}</th>
<th>α_{22}</th>
<th>$\psi_1(x)$</th>
<th>$\psi_2(x)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>$\sech(x)$</td>
<td>$\sech(x)$</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>$\sech(x)$</td>
<td>$\tanh(x)$</td>
</tr>
<tr>
<td>1</td>
<td>-1</td>
<td>$\sech(x)$</td>
<td>$\sech(x)$</td>
</tr>
<tr>
<td>1</td>
<td>-1</td>
<td>$\tanh(x)$</td>
<td>$\sech(x)$</td>
</tr>
<tr>
<td>-1</td>
<td>1</td>
<td>$\sech(x)$</td>
<td>$\sech(x)$</td>
</tr>
<tr>
<td>-1</td>
<td>1</td>
<td>$\sech(x)$</td>
<td>$\tanh(x)$</td>
</tr>
<tr>
<td>-1</td>
<td>-1</td>
<td>$\sech(x)$</td>
<td>$\sech(x)$</td>
</tr>
</tbody>
</table>

Acknowledgments

BD and NES acknowledge support from the National Science Foundation under grant NSF-DMS-1008001. NES also acknowledges support by the National Science Foundation under grant number NSF-DGE-0718124. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the funding sources.

References

