Introduction to Preprocessing: RMA (Robust Multi-Array Average)

Utah State University – Spring 2014 STAT 5570: Statistical Bioinformatics Notes 1.4

References

- Chapter 2 of Bioconductor Monograph (course text)
- Irizarry et al. (2003) Biostatistics 4(2):249-264.
- Irizarry et al. (2003) Nucleic Acids Research 31(4):e15
- Bolstad et al. (2003) Bioinformatics 19(2):185-193
- Tukey. (1977) Exploratory Data Analysis
- Wu et al. (2004) Journal of the American Statistical Association 99(468):909-917

2

Three steps to preprocessing

- Background correction
 - Remove local artifacts and "noise"
 - so measurements aren't so affected by neighboring measurements
- Normalization
 - Remove array effects
 - so measurements from different arrays are comparable
- Summarization
 - Combine probe intensities across arrays
 - so final measurement represents gene expression level

Preprocessing – essentials

- Many different methods exist
- Three main steps in most preprocessing methods
- Keep eye on big picture:
 from probe-level intensities to estimate of gene expression on each array
- Choice makes a difference

Spike-in Experiment

- Prepare a single tissue sample for hybridization to a group of arrays
- Select a handful of control genes
- Separately prepare a series of solutions where the control genes' mRNA is spiked-in at known concentrations
- Add these spiked-in solutions to the original solution to be hybridized to the arrays

Why Spike-in?

- What can be done with a spike-in experiment?
 - What changes will be observed?
 The only differences in gene expression should be due to spike-ins
 - What is being measured?
 Gene expression; methods of estimation (RMA, GCRMA, MAS5, PLIER, others) can be calibrated

6

Motivation for RMA approach

- MM can detect true signal for some probes (but others seem to represent "background")
- Difference of PM from "background" increases with concentration - (in spike-in)
- Probe effects exist

Convolution Background Correction

$$PM_{ijk} = bg_{ijk} + s_{ijk}$$
Signal for probe j of probe set k on array i

Background caused by optical noise and non-specific binding

$$B(PM_{ijk}) = E[s_{ijk} | PM_{ijk}] > 0$$

$$s_{ijk} \sim Exp(\lambda_{ijk}) \qquad bg_{ijk} \sim N(\beta_i, \sigma_i^2)$$
Gives a closed-form transformation B()

(Model could be improved, but works very well in practice.)

7

Quantile Normalization

An approach to normalize each array against all others – why?

Need arrays to be comparable

 Consider 2 arrays – how to tell if probe intensities have same distribution?
 Could consider a quantile plot Quantile Plot for Two Arrays

Can project points onto diagonal; what about multiple arrays?

Quantile Plot of Intensities

10

Quantile Normalization

• What about multiple arrays?

If n vectors have the same distribution, plotting quantiles in n dimensions would give the unit vector "diagonal" $d = \left(\frac{1}{\sqrt{n}}, \frac{1}{\sqrt{n}}, \dots, \frac{1}{\sqrt{n}}\right)$

- Make n vectors have same distribution by projecting n-dimensional quantile plot onto the "diagonal"
- Does this eliminate meaningful differences?
 Not if only relatively few genes should change expression value

iue

11

(see Bolstad paper for details)

Summarization

Use the background-adjusted, quantile-normalized, and log-transformed PM intensities:

$$Y_{ijk} = \mu_{ik} + \alpha_{jk} + \mathcal{E}_{ijk}$$
Probe affinity effect; for each k, $\sum_{j} \alpha_{jk} = 0$

<u>Log-scale expression level</u> for gene k on array i

 Estimate model parameters by use of the Median Polish

Tukey's Median Polish

$$Y_{ij} = \mu + \underbrace{\delta_i}_{\text{column effects}} + \underbrace{\varepsilon_{ij}}_{\text{column effects}}$$

Alternately remove (subtract) row and column medians until sum of absolute residuals converges (for one gene k at a time)

What are we interested in here? The fitted (predicted) row values $\hat{\mu}_i = \hat{\mu} + \hat{\delta}_i$

13

Properties of Median Polish

- Robust
 - important because of potential for outliers in large data sets
- Exploratory
 - Allows for a "general picture" approach to statistical ideas
 - Important for computational efficiency and complex structures
- Could be "dominated" by column effects
 - here, primarily interested in row effects (center expression on array)
 - best if have more arrays than probes (authors recommend 10-12 or more arrays)

14

RMA and Standard Error

How to calculate SE of RMA median polish estimate?

There is no way – it's just an exploratory approach - but the bootstrap can be applied (G. Nicholas)

"Naïve nominal estimate"

Fit an ANOVA model to
$$Y_{ijk} = \underbrace{\mu_{ik}}_{ljk} + \alpha_{jk} + \varepsilon_{ijk}$$
 Use SE of the estimate of this; treat with skepticism

GCRMA

- Similar to RMA, but calculates background differently
- Makes use of MM intensities to correct background
 - Background more directly addresses nonspecific binding (appears to be sequencedependent)
- Not necessarily better than RMA

RMA in Bioconductor

```
print(date())

# data <- ReadAffy(celfile.path="C:\\folder")
## - NOTE: usually will create AffyBatch object this way

data <- Dilution # Dilution is an AffyBatch object
gn <- geneNames(data)

# RMA - this is part of the affy package
rma.eset <- rma(data)
rma.exprs <- exprs(rma.eset) # a matrix of expression values

# Compare with another preprocessing method: GCRMA
library(gcrma)
gcrma.eset <- gcrma(data)
gcrma.exprs <- exprs(gcrma.eset)

print(date())</pre>
```

```
# Compare expression estimates (on just one array)
par(mfrow=c(2,2))
plot(rma.exprs[,1],gcrma.exprs[,1],
    xlab='RMA', ylab='GCRMA', pch=16)
# Identify highest-expressed genes
hist(rma.exprs[,1], xlab='RMA', main=NA)
gn[which.max(rma.exprs[,1])]
# AFFX-hum_alu_at
```


side note: what's lost here?

18

Comparing Preprocessing Methods

- Big picture:
 - □ probe level intensities → gene expression estimates
 - background correction, normalization, summarization
- We focused on one (RMA) and mentioned another (GCRMA)
 - □ There are many others: MAS5, PLIER, dChip (Li-Wong), vsn, ... why just these?
- Which is best?
 - one way a competition (iteration 3 began in 2011):
 http://affycomp.biostat.jhsph.edu/
 - another consideration: statistical properties of estimates

(independence, bias, SE, robust, etc.)

Numerical Dependence in Gene Expression Summaries - notation

- Let $\hat{\mu}_x$ be a given gene's log-scale expression level estimate for array x, after some preprocessing method
- Let $\hat{\mu}_{x(y)}$ be the gene's expression level estimate for array x when array y is not included in any step of preprocessing
- Use convention $\hat{\mu}_{x(x)} \equiv 0$

19

(Stevens & Nicholas, PLoS ONE 2012)

Jackknife Expression Difference (JED)

JED(x,y) between arrays x and y for the gene:

$$\frac{\left|\hat{\mu}_{x} - \hat{\mu}_{x(y)}\right|}{2 \cdot \max\left\{\hat{\mu}_{x}, \hat{\mu}_{x(y)}\right\}} + \frac{\left|\hat{\mu}_{y} - \hat{\mu}_{y(x)}\right|}{2 \cdot \max\left\{\hat{\mu}_{y}, \hat{\mu}_{y(x)}\right\}}$$

- By definition, JED(x,x)=1 (strict dependence)
- JED(x,y)=0 when strict numerical independence: $\hat{\mu}_{x(y)} = \hat{\mu}_x$ and $\hat{\mu}_{y(x)} = \hat{\mu}_y$

21

Summary

- Preprocessing involves three main steps:
 - Background / Normalization / Summarization
- RMA
 - Convolution Background Correction
 - Quantile Normalization
 - Summarization using Median Polish
- Almost all preprocessing methods return expression levels on log2 scale ("the approximately right scale")
- By most reasonable metrics, RMA performs well (at least well enough to justify using it without losing too much sleep)

Numerical dependence in most common preprocessing methods

(for 1000 random genes from a public dataset)

