‘ Introduction to Preprocessing:
RMA (Robust Multi-Array
Average)

Utah State University — Spring 2014
STAT 5570: Statistical Bioinformatics
Notes 1.4

‘ References

= Chapter 2 of Bioconductor Monograph
(course text)

= Irizarry et al. (2003) Biostatistics 4(2):249-
264.

= Irizarry et al. (2003) Nucleic Acids Research
31(4):e15

= Bolstad et al. (2003) Bioinformatics
19(2):185-193

= Tukey. (1977) Exploratory Data Analysis

= Wu et al. (2004) Journal of the American
Statistical Association 99(468):909-917

‘ Three steps to preprocessing

= Background correction

o Remove local artifacts and “noise”

= SO measurements aren’t so affected by neighboring
measurements

= Normalization
o Remove array effects
= S0 measurements from different arrays are comparable
= Summarization

o Combine probe intensities across arrays
= so final measurement represents gene expression level

‘ Preprocessing — essentials

Many different methods exist

Three main steps in most preprocessing methods

Keep eye on big picture:
from probe-level intensities to estimate of gene
expression on each array

Choice makes a difference

| Spike-in Experiment

= Prepare a single tissue sample for
hybridization to a group of arrays

= Select a handful of control genes

= Separately prepare a series of solutions
where the control genes’ mRNA is spiked-in
at known concentrations

= Add these spiked-in solutions to the original
solution to be hybridized to the arrays

 Why Spike-in?

= What can be done with a spike-in
experiment?
o What changes will be observed?

The only differences in gene expression should be
due to spike-ins

o What is being measured?

Gene expression; methods of estimation (RMA,
GCRMA, MAS5, PLIER, others) can be calibrated

Motivation for RMA approach

= MM can detect true signal for some probes
(but others seem to represent “background”)

= Difference of PM from “background” increases
with concentration - (in spike-in)

= Probe effects exist

Convolution Background Correction
PM;;, = bgijk + Sij
H—I H—I
‘ Signal for probe j of probe

setk on array i

Background caused by optical noise
and non-specific binding
B(PMijk): E[s | PMy]>0 } Gives a
2 closed-form
Sijk ~ Exp(ﬂ’ljk) by, ~ N(i1 Oi) transformation B()

(Model could be improved, but works very well in practice.)

‘ Quantile Normalization

= An approach to normalize each array against
all others — why?

Need arrays to be comparable

= Consider 2 arrays — how to tell if probe
intensities have same distribution?
Could consider a quantile plot

| Quantile Plot for Two Arrays

library (affydata) ; data(Dilution)
int.1 <- c(pm(Dilution[,1]),
mm (Dilution[,1]))
int.2 <- c(pm(Dilution[,2]),
mm (Dilution[,2]))
g.l <- quantile(log(int.1l) ,probs=seq(0,1,0.02))
g.2 <- quantile(log(int.2) ,probs=seq(0,1,0.02))
par (mar=c(5,5,4,2)+0.1)
plot(g.1,9.2,pch=16,cex=1.5,x1lim=c(4,10), -
cex.lab=1.5, cex.main=2,ylim=c(4,10),
xlab='Array 1', ylab='Array 2°',
main='Quantile Plot of Intensities')
abline (0,1,1wd=3) g

Can project points onto diagonal;
what about multiple arrays?

Quantile Plot of Intensities

10

‘ Quantile Normalization
= What about multiple arrays?

If n vectors have the same distribution,
plotting quantiles in n dimensions would
give the unit vector “diagonal” ’ (1 1 1

Jnon

= Make n vectors have same distribution by

projecting n-dimensional quantile plot onto
the “diagonal”

= Does this eliminate meaningful differences?

Not if only relatively few genes should change
expression value

(see Bolstad paper for details) 11

‘ Summarization

= Use the background-adjusted, quantile-normalized,
and log-transformed PM intensities:
Yijk = My T &y T &y
=

Probe affinity effect; for each k, Y a;, =0
j

Log-scale expression level for gene k on
array i

= Estimate model parameters by use of the
Median Polish

| Tukey’s Median Polish

Probe
j

Yij = U+, +a;+ &
Array Y I column effects

row effects

Alternately remove (subtract) row and column medians
until sum of absolute residuals converges (for one gene k at a time)

What are we interested in here? .
The fitted (predicted) row values ji = i+ 9,

‘ Properties of Median Polish

= Robust
o important because of potential for outliers in large data sets

= Exploratory
o Allows for a “general picture” approach to statistical ideas
o Important for computational efficiency and complex
structures
= Could be “dominated” by column effects

o here, primarily interested in row effects
(center expression on array)

o best if have more arrays than probes
(authors recommend 10-12 or more arrays)

‘ RMA and Standard Error

= How to calculate SE of RMA median polish
estimate?

There is no way — it's just an exploratory approach
- but the bootstrap can be applied (G. Nicholas)

= “Naive nominal estimate”

Fit an ANOVA model to Y, = g4, + o, + &,
—

Use SE of the estimate of this;
treat with skepticism

' GCRMA

= Similar to RMA, but calculates background
differently

= Makes use of MM intensities to correct
background

o Background more directly addresses non-
specific binding (appears to be sequence-
dependent)

= Not necessarily better than RMA

RMA in Bioconductor

print(date())

data <- ReadAffy(celfile.path="C:\\folder")
- NOTE: usually will create AffyBatch object this way

data <- Dilution # Dilution is an AffyBatch object
gn <- geneNames (data)

RMA — this is part of the affy package
rma.eset <- rma(data)
rma.exprs <- exprs(rma.eset) # a matrix of expression values

Compare with another preprocessing method: GCRMA
library (gcrma)

gcrma.eset <- gcrma(data)

gcrma.exprs <- exprs(gcrma.eset)

print(date())

Compare expression estimates (on just one array)
par (mfrow=c(2,2))
plot(rma.exprs[,1l] ,gcrma.exprs[,1],

xlab='RMA', ylab='GCRMA', pch=16)
Identify highest-expressed genes
hist(rma.exprs[,1], xlab='RMA', main=NA)
gn[which.max (rma.exprs[,1])]
AFFX-hum alu at

10 12 14

1500
1

GCRMA
8
Frequency

RMA RMA

side note: what'’s lost here?

Comparing Preprocessing Methods

Big picture:

o probe level intensities > gene expression estimates

o background correction, normalization, summarization

We focused on one (RMA)

and mentioned another (GCRMA)

a There are many others: MAS5, PLIER, dChip (Li-
wong), vsn, ... — why just these?

Which is best?

o one way — a competition (iteration 3 began in 2011):
http://affycomp.biostat.jhsph.edu/

o another consideration: statistical properties of
estimates
(independence, bias, SE, robust, etc.)

Numerical Dependence in Gene
Expression Summaries - notation

Let /1, be a given gene’s log-scale
expression level estimate for array x, after
some preprocessing method

Let ,[zx(y) be the gene’s expression level
estimate for array x when array y is not
included in any step of preprocessing

Use convention f, ., =0

(Stevens & Nicholas, PLoS ONE 2012)

20

‘ Jackknife Expression Difference (JED)

= JED(X,y) between arrays x and y for the
gene:

:[‘x_/:lX(y)‘ ’[ly_’[ly(x)
2 - max {ﬁx,ﬂx(y)} 2-max {/[ly ' f‘y(x)}

= By definition, JED(x,x)=1 (strict dependence)

= JED(X,y)=0 when strict numerical
independence: ., =4, and g, =/,

21

(JED)

Expressi

Jackknife

Numerical dependence in most common

preprocessing methods

04

| __l__.;.__L__i

0.0 1

(for 1000 random genes from a public dataset)

GCRMA JED

T
MASS

T T
LIWONG ~ RMA MA FLIER PUMA 0 0.02

RMA JED

‘ Summary

= Preprocessing involves three main steps:

o Background / Normalization / Summarization
= RMA

o Convolution Background Correction

o Quantile Normalization

o Summarization using Median Polish

= Almost all preprocessing methods return expression
levels on log2 scale
(“the approximately right scale”)

= By most reasonable metrics, RMA performs well
(at least well enough to justify using it without losing
too much sleep)

23

