STAT 5200 Handout \#17: Nesting and Crossing Examples (Ch. 12)
Example I is a simple nested factorial design. Example II is a bit more complicated.
Example I: Factory Layout
An industrial engineer conducts an experiment to evaluate different approaches to the insertion of electronic components on printed circuit boards. He has designed 3 assembly fixtures and 2 workplace layouts. Operators are required to perform the assembly. The layouts are in different locations in the manufacturing plant and it is not possible to use the same operators in both layouts, so 4 operators are randomly selected and assigned to each layout. Each operator produces 2 component boards with each fixture at the layout to which he or she has been assigned. The treatment combinations in the design are run in a completely random order.

1. Draw the Hasse diagram for this experiment. [Identify the factors in this experiment, which ones are fixed and which ones are random, and which factors are nested and which factors are crossed.]

Model Construction:

Factor	\# Levels	Fixed or Random	Crossed/Nested/none
L = Layout	2	fixed	Crossed with F
F = Fixture	3	fixed	crossed with $L \quad$ (and O)
O= Operator $(8$ opeRators)	4	random	nested in L
E Error [replication]	2	random	

- No O \times L interaction because:

Operator nested in Lay out (not crossed)

- $\mathrm{F} \times \mathrm{O}$ interaction is nested in L because:
O is nested in L, so D is actually $O(L)$ is actually $F \times O(L)$
- Error DF are calculated after everything else above it in Hasse diagram
N - (HDF for model, hel. M)
$=D F$ for Error

2. Write down a model for analyzing this experiment, clearly identifying all the distributional assumptions.

$$
\begin{aligned}
& Y_{i j}=\mu+L_{i=1,2}+F_{j=1,3}+L F_{i j}+O(L)_{k(i)}+F O(L)_{j k(i)} \\
& \underbrace{i=1.2 \quad j=1.3} \quad k=1 . .4 \\
& \text { Fixed } \\
& O(L)_{k(i)} \text { sid } N\left(0, \sigma_{0}^{2}\right) \\
& \underbrace{l}_{\text {Random }}+\varepsilon_{l(i j k)}^{l=1,2}<1 \\
& F O(L)_{j k(i)} \text { ind } N\left(0, \sigma_{\text {fo }}^{2}\right) \quad \varepsilon_{i j k l} \text { ind } N\left(0, \sigma^{2}\right)
\end{aligned}
$$

3. Compute the expected mean squares for all terms in the model.
4. Derive the F-ratios (and sampling distributions) for the fixed effects.

$$
\begin{aligned}
& F_{L}=\frac{m s_{L}}{m s_{0}} \sim F_{1,6} \\
& F_{F}=\frac{m s_{F}}{m s_{F O}} \sim F_{2,12} \\
& F_{L F}=\frac{m s_{L F}}{m s_{F_{0}}} \sim F_{2,12}
\end{aligned}
$$

Recall "error"
(denominator) term is next random term below in Hesse diagram (or, look at EMS ratios that equal 1 under H_{o})
5. Construct the method-of-moments estimate of the Operator variance component

$$
E\left[m S_{0}\right]=E M S_{0}
$$

$$
\begin{aligned}
& E M S_{0}=\underbrace{\sigma^{2}+2 \sigma_{F_{0}}^{2}}+6 \sigma_{0}^{2} \\
& E M S_{F_{0}}=\sigma^{2}+2 \sigma_{F 0}^{2} \\
& S_{0}\left(E M S_{0}-E M S_{F 0}\right) / 6=\sigma_{0}^{2} \text { to estimate } \\
& \text { o real data or full output here, just for reference }) \\
& 00
\end{aligned}
$$

SAS Code: (no real data or full output here, just for reference)

```
/* STAT 5200
        simple nested factorial model
            factory layout (electronic components) data
                */
```

/* Read in data (here, with dummy Y values)*/
data ec; input F L 0 rep Y @@; cards;

$\left.\begin{array}{rllllllllllllllllllll}3 & 1 & 1 & 1 & 2 & & 3 & 1 & 1 & 2 & 2 & & 3 & 1 & 2 & 1 & 6 & 3 & 1 & 2 & 2\end{array}\right)$
proc mixed data=ec method=type3;
class FL O ;
$\operatorname{model} \mathrm{y}=\mathrm{L} \mid \mathrm{F} ; \longleftarrow$ Fixed
random O (L) $F * O(L) ; \leftarrow$ Random
title 'Sample code, just to check EMS';
run;

The Mixed Procedure

Source	DF	Sum of Squares	Mean Square
\mathbf{L}	1	22.687500	22.687500
\mathbf{F}	2	2.000000	1.000000
$\mathbf{F} * \mathbf{L}$	2	2.000000	1.000000
$\mathbf{O}(\mathbf{L})$	6	46.958333	7.826389
$\mathbf{F} * \mathbf{O}(\mathbf{L})$	12	53.666667	4.472222
Residual	24	167.500000	6.979167

Source	Expected Mean Square	Error Term	Error DF	$\begin{array}{r} F \\ \text { Value } \end{array}$	$\operatorname{Pr}>\mathbf{F}$
L	$\begin{aligned} & \operatorname{Var}(\text { Residual })+2 \operatorname{Var}(\mathrm{~F} * \mathrm{O}(\mathrm{~L}))+ \\ & 6 \operatorname{Var}(\mathrm{O}(\mathrm{~L}))+\mathrm{Q}(\mathrm{~L}, \mathrm{~F} * \mathrm{~L}) \end{aligned}$	MS(O(L))	6	2.90	0.1395
F	$\begin{aligned} & \operatorname{Var}(\text { Residual })+2 \operatorname{Var}\left(\mathrm{~F}^{*} \mathrm{O}(\mathrm{~L})\right)+ \\ & \mathrm{Q}\left(\mathrm{~F}, \mathrm{~F}^{*} \mathrm{~L}\right) \end{aligned}$	MS(F*O(L))	12	0.22	0.8029
F*L	$\begin{aligned} & \operatorname{Var}(\text { Residual })+2 \operatorname{Var}(\mathrm{~F} * \mathrm{O}(\mathrm{~L}))+ \\ & \mathrm{Q}(\mathrm{~F} * \mathrm{~L}) \end{aligned}$	MS(F*O(L))	12	0.22	0.8029
O(L)	$\begin{aligned} & \operatorname{Var}(\text { Residual })+2 \operatorname{Var}(\mathrm{~F} * \mathrm{O}(\mathrm{~L}))+ \\ & 6 \operatorname{Var}(\mathrm{O}(\mathrm{~L})) \end{aligned}$	MS(F*O(L))	12	1.75	0.1927
$\mathrm{F} * \mathrm{O}(\mathrm{L})$	$\operatorname{Var}($ Residual $)+2 \operatorname{Var}\left(\mathrm{~F}^{*} \mathrm{O}(\mathrm{L})\right.$)	MS(Residual)	24	0.64	0.7874
Residual	Var(Residual)				

Example II: Speech Recognition

A researcher wants to evaluate the hypothesis that people are better able to identify the age of a speaker who is approximately the same age as themselves. She has a large group of Speakers that are divided into 3 Agegroups (30-45, 45-60, and 60+), and by gender.

There are 5 Speakers per combination of Agegroup and Gender. She has another group of people who are Listeners, also divided into the same Agegroups and by gender. There are 6 Listeners per Agegroup and Gender combination. Each Listener listens to each Speaker exactly once and estimates the age of the Speaker. The response variable is the estimated age of the speaker minus the true age of the speaker. The researcher wants to know how this difference depends on Agegroup and Gender (of Speaker and Listener).
(Could do same steps 1-4 as in Example I.)

Model Construction

Factor	\# Levels	Fixed/Random	Comment
GS = Gender of Speaker	2	Fixed	
AS = Agegroup of Speaker	3	Fixed	Factorial structure of these four factors
GL = Gender of Listener	2	Fixed	
AL = Agegroup of Listener	3	Fixed	Nested within GS/AS combination; crossed with GL, AL, and L
S = Speaker	5	Random	Nested within GL/AL combination; Crossed with GS, AS, and S
L = Listener	6	Random	

NOTES:

- DF for Speaker is (\# levels Speaker -1$) \times(\#$ combinations of GS/AS crossing) because S is really $S(G S \times A S)$
- DF for Listener is (\# levels Listener -1$) \times(\#$ combinations of GL/AL crossing) because S is really $\mathrm{L}(\mathrm{GL} \times \mathrm{AL})$
- $\mathrm{AL} \times \mathrm{S}$ interaction is really $\mathrm{AL} \times \mathrm{S}(\mathrm{GS} \times \mathrm{AS})$
- $\mathrm{GL} \times \mathrm{S}$ interaction is really $\mathrm{GL} \times \mathrm{S}(\mathrm{GS} \times \mathrm{AS})$
- $\mathrm{AS} \times \mathrm{L}$ interaction is really $\mathrm{AS} \times \mathrm{L}(\mathrm{GL} \times \mathrm{AL})$
- $\mathrm{GS} \times \mathrm{L}$ interaction is really $\mathrm{GS} \times \mathrm{L}(\mathrm{GL} \times \mathrm{AL})$
- $\mathrm{AL} \times \mathrm{GL} \times \mathrm{S}$ interaction is really $\mathrm{AL} \times \mathrm{GL} \times \mathrm{S}(\mathrm{GS} \times \mathrm{AS})$
- $\mathrm{AS} \times \mathrm{GS} \times \mathrm{L}$ interaction is really $\mathrm{AS} \times \mathrm{GS} \times \mathrm{L}(\mathrm{GL} \times \mathrm{AL})$
- $\mathrm{AS} \times \mathrm{GS} \times \mathrm{AL} \times \mathrm{GL}$ interaction term will require an approximate F-test
- Here there is only one observation per combination of S and L, so error term is interaction with fullest set of subscripts. [i.e., $\mathrm{E}=\mathrm{S} \times \mathrm{L}(\mathrm{AS} \times \mathrm{GS} \times \mathrm{AL} \times \mathrm{GL})$ due to lack of $\mathrm{S} \times \mathrm{L}$ replication]

