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1 Introduction

This paper is concerned with nonlinear Schrödinger type equations with potentials

which may be unbounded, decaying and vanishing. These type equations have been

studied recently (e.g., [1, 3, 4, 5, 6, 8, 9, 10, 11, 12, 18, 19, 20, 24, 25, 26])

(1.1) −∆u + V (x)u = f(x, u)

where the dependence on x can tend to infinity or zero somewhere. In contrast

to the case of bounded spatial dependence on potentials which has been studied

extensively (e.g., [7, 12, 14, 15, 22, 27] and references therein) and which requires

basically a standard subcritical nonlinear growth condition

|f(x, u)| ≤ C(1 + |u|p−1), 2 < p < 2∗ =
2N

N − 2
,
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the case of potentials with growth and decay is more subtle in determining the

optimal range of nonlinearity.

In this paper we shall focus on the following model equation

(1.2)




−∆u + V (|x|)u = Q(|x|)up−1, u > 0, in RN

|u(x)| → 0, as |x| → ∞.

We establish the necessary functional framework in which solutions are naturally

studied by variational methods and the existence and qualitative property of solu-

tions can be examined. It turns out that it is the interplay between the growth of

the nonlinearity and the rates of growth and decay for the potentials that deter-

mines the existence and non-existence of solutions. This will be done by studying

the embedding between some weighted Sobolev spaces. We focus on the radially

symmetric case for which stronger results can be established than for the general

cases. To the best of our knowledge this type embedding results have not been

studied in details (see Remarks 3 and 4 on some related results on existence of

solutions by various methods). We refer to [17, 21] for general theory of weighted

Sobolev spaces.

We always assume N ≥ 2. We make the following assumptions.

(V) V (r) ∈ C((0,∞)), V (r)rN−1 ∈ L1(0, 1), V (r) ≥ 0, and there exists a >

−2(N − 1) such that

lim inf
r→∞

V (r)

ra
> 0.

(Q) Q ∈ C((0,∞)), Q(r) > 0, and there exist b0 > −2 and b ∈ R such that

lim sup
r→0

Q(r)

rb0
< ∞, lim sup

r→∞

Q(r)

rb
< ∞.

(VQ) There exist −2 ≥ a0 > −N , b0 > a0 such that

lim inf
r→0

V (r)

ra0
> 0, lim sup

r→0

Q(r)

rb0
< ∞.

We introduce some notations. Let C∞
0 (RN) denote the collection of smooth

functions with compact support and

C∞
0,r(RN) =

{
u ∈ C∞

0 (RN) | u is radial
}
.
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Let D1,2
r (RN) be the completion of C∞

0,r(RN) under

‖u‖ =

(∫

RN

|∇u|2dx

) 1
2

.

Denote

H1
r (RN ; V ) = C∞

0,r(RN)
‖·‖V

,

where

‖u‖V =

(∫

RN

(|∇u|2 + V (|x|)u2)dx

) 1
2

.

Define

Lp(RN ; Q) =

{
u : RN → R | u is measurable,

∫

RN

Q(|x|)|u|pdx < ∞
}

.

Similarly we may define L2(RN ; V ). Then H1
r (RN ; V ) = D1,2

r (RN) ∩ L2(RN ; V ).

If (V) and (Q) are satisfied, we define

p := p(b0) =
2(N + b0)

N − 2
, b0 > −2

p := p(a, b) =





2(2N − 2 + 2b− a)

2N − 2 + a
, b ≥ a > −2

2(N + b)

N − 2
, b ≥ −2,−2 ≥ a > −2(N − 1)

2, a > −2(N − 1), b ≤ max{a,−2}.
If in addition, (VQ) is satisfied, we define

p := p(a0, b0) =
2(2N − 2 + 2b0 − a0)

2N − 2 + a0

, −2 ≥ a0 > −N, b0 > a0.

Theorem 1. Let N ≥ 3. Assume (V) and (Q). Then

(1.3) H1
r (RN ; V ) ↪→ Lp(RN ; Q) for p(b0) ≥ p ≥ p(a, b).

Furthermore, if b ≥ max{a,−2}, the embedding is compact for p > p > p, and if

b < max{a,−2}, the embedding is compact for p > p ≥ 2. If in addition, (VQ)

is satisfied, p(b0) can be replaced by max{p(b0), p(a0, b0)}, and the conclusions still

hold.
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Theorem 2. Let N = 2. Assume (V) and (Q). Then

(1.4) H1
r (R2; V ) ↪→ Lp(R2; Q), for ∞ > p ≥ p.

Furthermore, if b ≥ a, the embedding is compact for ∞ > p > p, and if b < a, the

embedding is compact for ∞ > p ≥ 2.

Theorem 3. Let N ≥ 2. Assume (V) and (Q) or assume (V), (Q) and (VQ)

with the corresponding p and p defined such that p > p > p. Then equation (1.2)

has a ground state solution u ∈ H1
r (RN ; V ), namely

∫

RN

|∇u|2 + V (|x|)u2

(∫

RN

Q(|x|)up

) 2
p

= inf
v∈H1

r (RN ;V )
v 6=0

∫

RN

|∇v|2 + V (|x|)v2

(∫

RN

Q(|x|)|v|p
) 2

p

.

Moreover, when a > −2, there exist C, c > 0 such that

u(x) ≤ C exp
(
−c|x| 2+a

2

)
.

For a ≤ −2, there exists C > 0 such that u(x) ≤ C|x|−N−2
2 .

Remark 1. We show under (V),

‖u‖2
V =

∫

RN

(|∇u|2 + V (|x|)u2)dx

is a norm. Checking the proofs, the above three theorems remain valid as long as
∫

BR

|∇u|2 + V (|x|)u2 ≥ λR

∫

BR

u2

for some λR > 0 for R >> 1, even V (r) is negative somewhere. Also for the

existence of solutions of (1.2), Q can be allowed to be zero somewhere (in this case∫
Q(|x|)|u|p is not necessarily a norm anymore). Theorem 3 still holds as long as

Q(|x|) 6≡ 0.

Remark 2. For a > −2, we prove exponential decay of the solutions and thus

these solutions are in H1(RN). For −2(N − 1) < a ≤ −2, we do not know whether

the solutions have exponential decay.
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Remark 3. Problems like (1.2) have been studied recently in [1, 25] without

assuming radial symmetry. Comparing with these, our results give existence of

ground state solutions for a wider range of nonlinearity (in terms of the range

of p). For example, in [1] the authors consider −∆u + V (x)u = Q(x)up−1 and

give the existence of a ground state in the weighted Sobolev space assuming that
A1

1+|x|α ≤ V (x) ≤ A2, 0 < Q(x) ≤ k
1+|x|β for positive constants A1, A2, k and α ∈

(0, 2), β ≥ 0, and that p# < p < 2∗, where p# := 2∗ − 4β
α(N−2)

for 0 < β < α, and

p# = 2 otherwise. In our notation a := −α ∈ (−2, 0), b0 = 0, b = −β ≤ 0 and

p# = 2∗ − 4b
a(N−2)

, if a < b < 0 and p# = 2, otherwise. Our result gives a radial

ground state for p = 2(2N−2+2b−a)
2N−2+a

< p < 2∗ if b > a, and for 2 < p < 2∗ otherwise.

Note it always holds p < p#. It is proved in [1] that in general for p < p#, a ground

state does not exist. Our result gives a ground state in the radially symmetric class.

Similar comparison can be done with the results in [25] where a ≥ 0, b ≥ 0 was

considered without assuming radial symmetry and the range for the nonlinearity

in terms of p is more restricted.

Remark 4. For equations like (1.2) with radial potentials, our results contain

many existing results established by a variety of methods. Our results not only

unify and generalize the existing results but also establish a unified framework. We

follow the approach used by Sintzoff and Willem in [24] which considers ground

states for homogeneous potentials with a ≥ 0, b ≥ 0. The result [12] by Ding-Ni

is regarded as the case a = a0 = 0, b0 = 0, b > 0 and [12] used an approximation

methods from bounded domains. We also mention the classical work [7, 27] on

existence of ground states in radial classes for autonomous case or bounded spatial

dependence. Related work can be found in [14, 15, 18, 19]. Souplet and Zhang in

[26] give the existence of a radial solution for a ∈ (−2, 0) and Q(|x|) ≡ 1 by using

the parabolic flow method without giving the least energy property. Our results

extend and generalize these work on existence theory and also provide a unified

functional framework for studying more general nonlinearity. Our approach is

uniform in dealing with all the parameters of growth and decay, avoiding various ad

hoc devices used in above mentioned papers for establishing existence of solutions.
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2 The proofs of main Theorems

We start with stating a few known results and giving a few preliminary lemmas

which we need. We use Ci to denote various constants independent of the functions,

and for any set A ⊂ RN , Ac denotes the complement of A.

Lemma 1. a.) Assume (V). Then there exists C > 0 such that for all u ∈
C∞

0,r(RN),

(2.1) |u(x)| ≤ C||u||H1
r (RN ;V )|x|−

2(N−1)+a
4 , |x| >> 1.

b.) Assume (VQ). Then there exists r0 > 0 and C > 0 such that for all u ∈
C∞

0,r(Br0(0)),

(2.2) |u(x)| ≤ C||u||H1
r (RN ;V )|x|−

2(N−1)+a0
4 , 0 < |x| < r0.

(2.1) and (2.2) are improvements of Strauss Radial Lemma ([27]) and were

proved for a homogeneous potential V with a ≥ 0 in [24]. Using (V) and (VQ) the

proof here is similar and we omit it.

Lemma 2. Let N ≥ 3, 2 ≤ p < ∞, p =
2(N + c)

N − 2
for some −2 ≤ c < ∞. Then

there exists C > 0 such that for all u ∈ D1,2
r (RN)

(2.3)

(∫

RN

|x|c|u|pdx

) 2
p

≤ C

∫

RN

|∇u|2dx.

This result was due to [13], and was reproved by somewhat different arguments

in [16, 23].

Lemma 3. Let N ≥ 2, 1 ≤ p ≤ ∞. Then for any ∞ > R > r > 0 with R >> 1,

the following embedding is compact

(2.4) H1
r (BR\Br; V ) ↪→ Lp(BR\Br; Q).
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Proof. Note first for R > r > 0 with R >> 1, the norm of H1
r (BR\Br; V ) is

equivalent to the norm of H1
r (BR\Br) = {u ∈ H1(BR\Br) | u is radial}. By Ascoli

Theorem, H1
r (BR\Br) is compactly embedded into Lp(BR\Br) for all 1 ≤ p ≤ ∞.

Finally, we note that Lp(BR\Br) is embedded into Lp(BR\Br; Q). ¤

Lemma 4. The functional ||u||V =

√∫

RN

(|∇u|2 + V (|x|)u2)dx defines a norm

so H1
r (RN ; V ) is well-defined. Moreover, for R >> 1,

(2.5) H1
r (BR; V ) ↪→ H1(BR),

where H1
r (BR; V ) =

{
u
∣∣
BR
| u ∈ H1

r (RN ; V )
}
.

Proof. If ||u||V = 0, then

∫
|∇u|2 = 0 and u is a constant. It follows from (V),

lim infr→∞ V (r)r−a > 0, one has u = 0.

Next, let R1 > 0 be such that (suppV )c ⊂ BR1 . For R ≥ R1 + 1, we claim

H1
r (BR; V ) ↪→ H1(BR). For every u ∈ H1

r (BR, V ), we have

∫

BR\BR1

u2 ≤ C1

∫

BR

V u2.

Choose a cut-off function ϕ ∈ C∞0 (BR) satisfying ϕ(x) ≡ 1 for |x| ≤ R1. Then, by

Poincaré inequality
∫

BR1

u2 ≤
∫

BR

(ϕu)2 ≤ C2

∫

BR

|∇(ϕu)|2

≤ C3

(∫

BR

|∇u|2 +

∫

BR\BR1

u2

)

≤ C4

∫

BR

|∇u|2 + V u2.

¤
We need the Hardy inequality.

Lemma 5. Let N ≥ 3. For all u ∈ D1,2(RN)

(2.6)

∫

RN

|∇u|2 ≥
(

N − 2

2

)2 ∫

RN

u2

|x|2 .
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Lemma 6. ([28]) Let N = 2. For all u ∈ D1,2
0 (B1)

∫

B1

|∇u|2 ≥ 1

4

∫

B1

|x|−2

(
ln

1

|x|
)−2

u2.

Proof of Theorem 1. We distinguish several cases.

Case 1. First we assume (V) and (Q) with a ≥ −2. For the embedding, it

suffices to show

Sr(V, Q) := inf
u∈H1

r (RN ;V )

∫

RN

|∇u|2 + V u2

(∫

RN

Q|u|p
) 2

p

> 0.

If this is false, there exist (un) ⊂ H1
r (RN ; V ) such that

∫
Q|un|p ≡ 1,

∫
(|∇un|2 +

V u2
n) = o(1). Writing p =

2N

N − 2
+

2c

N − 2
, by p ≤ p, we have c ≤ b0. For any

r > 0 small enough, Q(x) ≤ C0|x|b0 , |x| ≤ r, for some C0 > 0. By Lemma 2,

∫

Br

Q|un|p ≤ C0

∫

Br

|x|b0|un|p ≤ C0r
b0−c

∫

Br

|x|c|un|p(2.7)

≤ C0r
b0−c

(∫

RN

|∇un|2
) p

2

= o(1) · rb0−c.

On the other hand, there exists R0 > 0, for some C1, C2 > 0,

Q(x) ≤ C1|x|b for |x| ≥ R0

V (x) ≥ C2|x|a for |x| ≥ R0.

Then by Lemma 1 a., for R > R0

∫

Bc
R

Q|un|p ≤ C1

∫

Bc
R

|x|b|un|p(2.8)

= C1

∫

Bc
R

|x|b−a|un|p−2|x|a|un|2

≤ C1R
b−a−(p−2)(N−1

2
+a

4
) · C−1

2

∫

Bc
R

V (x)u2
n

= C3R
b−a−(p−2)(N−1

2
+a

4
) · o(1).
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Together with Lemma 3, we get

∫

RN

Q|un|p → 0, a contradiction.

Next, we consider compactness. Assume first p > p > p. Let (un) ⊂ H1
r (RN ; V )

be such that ||un|| ≤ C. Without loss of generality, we may assume un ⇀ 0. We

claim un → 0 in Lp(RN ; Q). As in (2.7), we get

(2.9)

∫

Br

Q|un|p ≤ C0r
b0−c||un||pH1

r (RN ;V )

and as in (2.8), we get

(2.10)

∫

Bc
R

Q|un|p ≤ C3R
b−a−(p−2)(N−1

2
+a

4
)||un||2H1

r (RN ;V ).

Since b0− c > 0, b− a− (p− 2)

(
N − 1

2
+

a

4

)
< 0, together with Lemma 3, we get

∫

RN

Q|un|p → 0, as n →∞.

Finally, we consider the compactness for the case b < a and p = 2. Similar to

(2.10) we have

(2.11)

∫

Bc
R

Q|un|2 ≤ C3R
b−a||un||2H1

r (RN ;V ).

By Lemma 5,

(2.12)

∫

Br

Q|un|2 ≤ C0

∫

Br

|x|−2u2
n|x|2+b0 ≤ C1r

2+b0

∫

RN

|∇un|2.

Since b0 > −2 and b < a we get

∫

RN

Q|un|p → 0, as n →∞. Case 1 is finished.

Case 2. We assume (V) and (Q) with −2(N−1) < a ≤ −2. Checking the proofs

above when b ≥ −2, we see (2.7), (2.9) still hold and we need to get estimates like

(2.8) and (2.10). Writing p = 2N+2c
N−2

we get c ≥ b. Then for R > R0, we use Lemma

2 to get
∫

Bc
R

Q|un|p ≤ C1

∫

Bc
R

|x|b|un|p(2.13)

= C1

∫

Bc
R

|x|b−c|x|c|un|p

≤ C3R
b−c · ||∇un||p2.

Using b− c ≤ 0 we get the estimate as for (2.8) and (2.10).
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When b < −2 we need to prove compactness for p = 2. Let φ be a cut-off

function such that φ(r) = 1 for r ≥ 2R0 and φ(r) = 0 for r ≤ R0. Then by Lemma

5, ∫

Bc
R

Q|un|2 ≤ C1R
b+2||∇(φun)||22 ≤ C2R

b+2||∇un||22.

Since (2.12) still holds and b < −2, the remaining part of the proof is the same as

before. Case 2 is done.

Case 3. We assume (V), (Q), and (VQ) are satisfied. Checking the proofs above

we need to get estimates similar to (2.7)–(2.12). We observe that depending on a,

(2.8), (2.10) or (2.13) still hold. We need to get estimates near 0. By (VQ) there

is r0 > 0 such that for some C0 > 0, V (r) ≥ C0r
a0 for 0 < r < r0. We choose a

cut-off function φ such that φ(r) = 1 for 0 ≤ r ≤ r0

2
, and φ(r) = 0 for r ≥ r0. Then

by Lemma 1 b., for r < r0/2

∫

Br

Q|un|p ≤ C0

∫

Br

|x|b0|φun|p

≤ C0r
b0−a0−(N−1

2
+

a0
4

)(p−2)||φun||p−2
H1

r (RN ;V )

∫

Br0

|x|a0|un|2

≤ C1r
b0−a0−(N−1

2
+

a0
4

)(p−2)||un||pH1
r (RN ;V )

.

Since b0 − a0 − (N−1
2

+ a0

4
)(p − 2) > 0 we get the desired estimate like (2.7) and

(2.9). For (2.12) we note

∫

Br

Q|un|2 ≤ C0

∫

Br

|x|a0u2
n|x|b0−a0 ≤ C1r

b0−a0||un||2H1
r (RN ;V ).

Since b0 > a0, the remaining part of the proof is the same as before. Case 3 is

proved. ¤

Proof of Theorem 2. Checking the proof of Theorem 1, the term on Bc
R can be

treated similarly as in (2.8) and (2.10). If b0 > 0, p ≥ 2, by Lemma 4,

∫

Br

Q(|x|)|un|p ≤ C0r
b0

∫

Br

|un|p ≤ C0r
b0

∫

B1

|un|p

≤ C1r
b0||un||

p
2

H1
r (R2;V ).

If b0 ∈ (−2, 0], p ≥ 2, we choose δ > 0 such that b0 − δ > −2. Choose a cut-off
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function ϕ ∈ C∞
0 (B1), such that ϕ(x) ≡ 1 for |x| ≤ 1

2
. Then by Lemma 6

∫

Br

Q|un|p

≤ C0

∫

Br

|x|b0−δ

(
ln

1

|x|
)b0−δ

(unϕ)−b0+δ|x|δ
(

ln
1

|x|
)δ−b0

|un|p+b0−δ

≤ C1r
δ

(
ln

1

r

)δ−b0
(∫

B1

|x|−2

(
ln

1

|x|
)−2

(unϕ)2

)−b0+δ
2 (∫

Br

|un|
2(p+b0−δ)
2+b0−δ

) 2+b0−δ
2

≤ C2r
δ

(
ln

1

r

)δ−b0

||un||
p
2

H1
r (R2;V ).

Finally, for b < a, we consider p = 2. Again, if b0 > 0, by Lemma 4,
∫

Br

Q|un|2 ≤ C0r
b

∫

Br

u2 ≤ C0r
b0

∫

RN

|∇un|2 + V u2
n.

If b0 ∈ (−2, 0], we choose δ > 0, b0 − δ > −2. Then by Lemma 6,

∫

Br

Q|un|2 ≤ C0r
δ

(
ln

1

δ

)2 ∫

Br

|x|−2

(
ln

1

|x|
)−2

u2
n

≤ C1r
δ

(
ln

1

δ

)2 ∫

R2

|∇un|2 + V u2
n.

¤

Proof of Theorem 3. The existence of a ground state solution follows from the

compact embedding immediately.

Next we show the decay property in case a > −2. Let C1 > 0, R1 > 0 be such

that

V (|x|) ≥ C1|x|a, for |x| ≥ R1.

Consider ϕ(r) = exp(−cr
2+a
2 ) with c =

√
2C1

2 + a
> 0. Then a direct computation

shows there is R2 > 0, for |x| > R2,

−∆ϕ + V (|x|)ϕ ≥ C1

2
|x|aϕ.

By Lemma 1 a., there is R3 > 0, for |x| ≥ R3,

Q(x)|u(x)|p−2 ≤ C1

2
|x|a.
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Then we get −∆(u − ϕ) + (V (|x|) − C1

2
|x|a)(u − ϕ) ≤ 0, for |x| ≥ R3. From this

we get

u(x) ≤ ϕ(x) for |x| ≥ R3.

Finally, when −2(N − 1) < a ≤ −2, the decay property follows directly from

Lemma 1 b.. ¤

3 Further results and remarks

We finish the paper with some discussions on further results and relations with

other work.

3.1 With the embedding theorems established in this paper, we can study the

existence of solutions for more general equations like (1.1). This would follow

from some rather standard techniques. For simplicity, let us state a result for the

following equation with the proof omitted

(3.1)




−∆u + V (|x|)u = Q(|x|)f(u), in RN

|u(x)| → 0, as |x| → ∞.

We assume (V) and (Q), or assume (V), (Q) and (VQ) with the corresponding

p and p are defined as in Section 1 such that p < p. We assume f ∈ C(R,R),

f(0) = 0; there exists C > 0, p < p1 ≤ p2 < p such that

|f(u)| ≤ C(|u|p1−1 + |u|p2−1);

and there exists µ > 2 such that

0 < µF (u) ≤ uf(u), ∀u ∈ R.

Here F (u) =

∫ u

0

f(s)ds. Then we have

Theorem 4. Under the above conditions, equation (3.1) has a positive solution.

If in addition, f is odd in u, (3.1) has infinitely many solutions. All these solutions

are in H1
r (RN ; V ), and satisfy the decay property in Theorem 3.

Again, the result still holds for V slightly negative and Q vanishing somewhere.
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3.2 When Q(r) is exponentially flat near zero, b0 can be taken arbitrarily large.

Thus we obtain solution for (1.2) for all p > p. For a problem in a bounded

domain this was observed in [18]. In a recent paper [2], the authors consider

−ε2∆u + V (|x|)u = up, x ∈ RN and under the condition that a weighted potential

has local maximum or local minimum they constructed radially symmetric solutions

for all p > 1 as long as ε is sufficiently small. Note that the solution given in [2]

in general is not ground state solution in the radially symmetric class. A related

result to [2] is given in [10] which allows the potentials to be zeroes somewhere.

3.3 Our results can be used to deduce existence of nonradial positive solutions for

(3.2)




−∆u + V (|x|)u = Q(|x|)up−1, u > 0, in BR

u = 0, on ∂BR

for R sufficiently large. This follows from the idea used in [12] (see also [15, 24])

and it is rather standard by now. Let us sketch the process a bit here.

Define H1(RN ; V ) as the completion of C∞
0 (RN) with respect to

||u||2V =

∫

RN

|∇u|2 + V (|x|)u2,

and define

S(V, Q) = inf

{∫
|∇u|2 + V (|x|)u2 | u ∈ H1(RN ; V ),

∫
Q(|x|)|u|p = 1

}

Sr(V, Q) = inf

{∫
|∇u|2 + V (|x|)u2 | u ∈ H1

r (RN ; V ),

∫
Q(|x|)|u|p = 1

}
.

Then S(V,Q) ≤ Sr(V, Q). We can also define S(BR; V,Q) and Sr(BR; V, Q) using

H1
0 (BR; V ) and H1

0,r(BR; V ). It is easy to show

lim
R→∞

S(BR; V,Q) = S(V,Q)

lim
R→∞

Sr(BR; V, Q) = Sr(V, Q).

If for some p, S(V, Q) < Sr(V,Q), we then get that for large R, S(BR; V,Q) <

Sr(BR; V,Q). Then it follows that (3.2) has both radial and nonradial solutions.

For example, following the arguments as in [1], we can show that when 0 > b > a,

S(V, Q) = 0 for p < p# :=
2N

N − 2
− 4b

a(N − 2)
and for p >

2N

N − 2
. On the other

13



hand, our result shows Sr(V, Q) > 0 for p ≤ p ≤ p. Note p < p#, p >
2N

N − 2
for

b0 > 0. Then we obtain that when p < p < p# or 2N
N−2

< p < p, for R >> 1, (3.2)

has both radial and nonradial solutions. Similar results can be stated for general

cases, we leave it to interested readers.

Acknowledgements. Wang is grateful to Professor A. Ambrosetti for some discussions

on related issues. Su thanks Utah State University and Wang thanks Université Catholique
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