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Abstract

Consider the following inequalities due to Caffarelli, Kohn, and Nirenberg [6]:
 ∫

RN

|x|−bp|u|p dx




2/p

≤ Ca,b

∫
RN

|x|−2a|∇u|2 dx

where, for N ≥ 3, −∞ < a < (N − 2)/2, a ≤ b ≤ a + 1, and p =
2N/(N − 2 + 2(b − a)). We shall answer some fundamental questions con-
cerning these inequalities such as the best embedding constants, the existence
and nonexistence of extremal functions, and their qualitative properties. While
the casea ≥ 0 has been studied extensively and a complete solution is known,
little has been known for the casea < 0. Our results for the casea < 0 re-
veal some new phenomena which are in striking contrast with those for the case
a ≥ 0. Results forN = 1 andN = 2 are also given.c© 2001 John Wiley &
Sons, Inc.

1 Introduction

In [6], among a much more general family of inequalities, Caffarelli, Kohn, and
Nirenberg established the following inequalities: For allu ∈ C∞

0 (R
N),

(1.1)


 ∫

RN

|x|−bp|u|p dx




2/p

≤ Ca,b

∫
RN

|x|−2a|∇u|2 dx

where, forN ≥ 3,

(1.2) −∞ < a <
N − 2

2
, a ≤ b ≤ a + 1 , and p = 2N

N − 2 + 2(b − a)
.
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The casesN = 2 andN = 1 will be treated in a separate section. The conditions
for these cases are, forN = 2,

(1.3) −∞ < a < 0 , a < b ≤ a + 1 , and p = 2

b − a
,

and, forN = 1,

(1.4) −∞ < a < −1

2
, a + 1

2
< b ≤ a + 1 , and p = 2

−1 + 2(b − a)
.

Let D1,2
a (RN) be the completion ofC∞

0 (R
N) with respect to the inner product

(1.5) (u, v) =
∫

RN

|x|−2a∇u · ∇v dx.

Then we see that (1.1) holds foru ∈ D1,2
a (RN). We define

(1.6) S(a,b) = inf
u∈D1,2

a (RN )\{0}
Ea,b(u),

to be the best embedding constants, where

(1.7) Ea,b(u) =
∫

RN |x|−2a|∇u|2 dx( ∫
RN |x|−bp|u|p dx

)2/p
.

The extremal functions forS(a,b) are ground state solutions of the Euler equation

(1.8) − div(|x|−2a∇u) = |x|−bpup−1 , u ≥ 0 , in R
N .

This equation is regarded as a prototype of more general nonlinear degenerate el-
liptic equations from physical phenomena (e.g., [2, 12] and references therein).

Note that the Caffarelli-Kohn-Nirenberg inequalities (1.1) (see also general-
izations in [19] by Lin) contain the classical Sobolev inequality (a = b = 0)
and the Hardy inequality (a = 0, b = 1) as special cases, which have played
important roles in many applications by virtue of the complete knowledge about
the best constants, extremal functions, and their qualitative properties (see e.g.,
[6, 13, 15, 18] and references therein). Thus it is a fundamental task to study the
best constants, existence (and nonexistence) of extremal functions, as well as their
qualitative properties in inequality (1.1) for parametersa andb in the full parameter
domain (1.2).

Much progress has been made for the parameter region

0 ≤ a <
N − 2

2
, a ≤ b ≤ a + 1 ,

(to which we shall refer as the “a-nonnegative region”). In [1, 23], the best constant
and the minimizers for the Sobolev inequality (a = b = 0) were given by Aubin
and Talenti. In [18], Lieb considered the casea = 0, 0 < b < 1, and gave the
best constants and explicit minimizers. In [11], Chou and Chu considered the full
a-nonnegative region and gave the best constants and explicit minimizers. Also
for this a-nonnegative region, Lions in [22] (fora = 0) and Wang and Willem
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(for a > 0) in [25] established the compactness of all minimizing sequences up to
dilations provideda ≤ b < a + 1. The symmetry of the minimizers has also been
studied in [11] and [18]. In fact,all nonnegative solutions inD1,2

a (RN) for the
corresponding Euler equation (1.8) areradially symmetric(in the casea = b = 0,
they are radial with respect to some point) and explicitly given (see [1, 11, 18, 23]).
This was established in [11], where a generalization of the moving plane method
was used (e.g., [5, 10, 14]).

On the other hand, it seems that little is known for parameters in thea-negative
region

−∞ < a < 0 , a ≤ b ≤ a + 1 .

This also applies toN = 1 andN = 2, with b in the corresponding intervals (1.4)
and (1.3). The case−1 < a < 0 andb = 0 was treated recently by Caldiroli
and Musina in [7], who gave the existence of ground states. The goal of this paper
is to settle some of the fundamental questions concerning inequalities (1.1) with
parameters in thea-negative region, such as the best constants, the existence and
nonexistence of minimizers, and the symmetry properties of minimizers. For the
a-negative region we shall reveal new phenomena that are strikingly different from
those for thea-nonnegative region.

To state the results, letSp(R
N) be the best embedding constant fromH1(RN)

into L p(RN), i.e.,

Sp(R
N) = inf

u∈H1(RN )\{0}

∫
RN |∇u|2 + u2 dx( ∫

RN |u|p dx
) 2

p

.

In the theorems stated below, we assumeN ≥ 3. Results forN = 1 andN = 2
will be given in Section 7.
THEOREM 1.1 (Best Constants and Nonexistence of Extremal Functions)

(i) S(a,b) is continuous in the full parameter domain(1.2).
(ii) For b = a + 1, we have S(a,a + 1) = (

N−2−2a
2

)2
, and S(a,a + 1) is not

achieved.
(iii) For a < 0 and b= a, we have S(a,a) = S(0,0) (the best Sobolev constant),

and S(a,a) is not achieved.

THEOREM 1.2 (Best Constants and Existence of Extremal Functions)

(i) For a < b < a + 1, S(a,b) is always achieved.
(ii) For b − a ∈ (0,1) fixed, as a→ −∞, S(a,b) is strictly increasing, and

S(a,b) =
(

N − 2 − 2a

2

)2(b−a)

[Sp(R
N)+ o(1)] .

THEOREM 1.3 (Symmetry Breaking) (i)There is a0 ≤ 0 and a function h(a)
defined for a≤ a0, satisfying h(a0) = a0, a < h(a) < a + 1 for a < a0, and
a + 1 − h(a) → 0 as−a → ∞, such that for any(a,b) satisfying a< a0

and a< b < h(a), the minimizer for S(a,b) is nonradial.
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(ii) There is an open subset H inside the a-negative region containing the set
{(a,a) ∈ R

2 : a < 0} such that for any(a,b) ∈ H with a< b, the minimizer
for S(a,b) is nonradial.

Though the minimizers may be nonradial, we still have the following:
THEOREM 1.4 (Symmetry Property)For a ≤ b < a + 1, any bound state solution
u of (1.8) in D1,2

a satisfying u(x) > 0 for x ∈ R
N \ {0}, possibly after a dilation

u(x) → τ (N−2−2a)/2u(τx), satisfies the“modified inversion” symmetry:

u

(
x

|x|2
)

= |x|N−2−2au(x) .

Moreover, writing|x| = e−t andθ = x/|x|, we have that for fixedθ ,

e− N−2−2a
2 tu(e−tθ)

is even in t and monotonically decreasing in t for t> 0.
REMARK 1.5 Some comments are in order here.

1. In Theorems 1.1 and 1.2, we have given the best constants for(a,b) on the
“boundary” of thea-negative region. SinceS(a,b) is continuous, we also ob-
tain estimates forS(a,b) near the boundary of the parameter domain. From
Theorems 1.2 and 1.3, there are no closed-form minimizers, so it seems to be
very difficult to examine the best constants in the interior of the region.

2. For a special caseb = 0, −1 < a < 0, the existence of a minimizer was
given in [7] by using a quite different method.

3. In the caseb = a, we havep = 2∗, the critical Sobolev exponent. The
situation is quite delicate since fora ≥ 0, S(a,a) is strictly decreasing in
a and is solvable as we mentioned above [11, 25], and fora < 0, we have
S(a,a) = S(0,0) and the nonexistence result in Theorem 1.1.

4. The results in (i) and (ii) of Theorem 1.3 overlap, but neither implies the
other. The importance of (ii) is that symmetry breaking occurs for alla < 0
if b is sufficiently close toa.

5. For Theorem 1.3(i),a0 andh(a) will be given explicitly in the proof in Sec-
tion 6.

Our approach to the problem in this paper is quite different from that used in
the quoted previous papers (see [1, 7, 11, 18, 22, 23, 25]) in which the problem was
worked directly inD1,2

a (RN), and we shall take a detour to convert the problem to
an equivalent one defined onH1(R × S

N−1). While taking advantage of the two
formulations, we shall work mainly with the equivalent one onH1(R × S

N−1).
The reformulation enables us to make use of a combination of analytical tools such
as a compactness argument, rescaling, the concentration compactness principle,
bifurcation analysis, the moving plane method, etc. Moreover, our approach also
gives a different proof of inequalities (1.1) (see Remark 2.4).

The organization of the paper is as follows. In Section 2, we shall introduce a
transformation that transforms our problem inR

N to one on the spaceR × S
N−1

on which we have a family of inequalities corresponding to (1.1) and an Euler
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equation corresponding to (1.8). The two problems will be shown to be equivalent,
and we shall mainly work on the transformed one onR × S

N−1. The advantage
in working on the latter is that the equation is an autonomous one and is defined
in H1(R × S

N−1). Radial solutions (as we shall see, the only bound state radial
solutions are the ground state solutions in the radially symmetric class) will be
examined completely and their energy levels will be computed so that some com-
parison arguments can be done later. In Section 3, we prove Theorem 1.1, first
establishing the continuity ofS(a,b) in (a,b) and then giving the nonexistence
result for the caseb = a with a combination of continuity and comparison argu-
ments. In Section 4, the existence of a minimizer for the casea < b < a + 1 will
be given by using a compactness argument; an asymptotic estimate forS(a,b) as
a → −∞ will be given using a concentration compactness principle. In Section
5, we establish the symmetry-breaking result (Theorem 1.3). First a bifurcation
analysis will be done to claim the symmetry breaking fora away from 0. Fora
close to 0 it is much subtler, and some continuity and comparison arguments will
be employed. Section 6 is devoted to establishing the modified inversion symmetry
(up to a dilation) forall bound state solutions of (1.8) by using the moving plane
method. In Section 7, we treat the casesN = 1 and N = 2. For N = 1 we
have a complete solution for the problem including the identification ofall bound
state solutions. Finally, in Section 8, we state results for a related problem that
can be solved using our results for (1.8), and we also point out some related open
questions in Section 9.

2 An Equivalent Problem and Some Preliminaries

In this section, we start by introducing a family of transformations that will
transform our original problem to one defined on a cylinderR × S

N−1. The two
problems will be shown to be equivalent in a sense that will be precisely specified.
Then some preliminary results on the radial solutions will be given.

2.1 Equivalent Problems onR × S
N−1

To problem (1.1) and equation (1.8) onR
N we shall derive an equivalent mini-

mization problem and corresponding Euler equation onR×S
N−1. We shall use the

notationC = R×S
N−1. While working on both problems to take advantage of the

two formulations, we shall get most of our results on the cylinderC. For integrals
over a domain included inC, by dµ we denote the volume element onC. Also,
by |∇u|2 we understandgi j ui uj and(gi j ) are the components of the inverse matrix
to the metric induced fromRN+1. For points onC we use either the notationy to
identify a point inR

N+1 or (t, θ) to identify a point inR × S
N−1.

To u, a smooth function with compact support inR
N \ {0}, we associatev, a

smooth function with compact support onC, by the transformation

(2.1) u(x) = |x|− N−2−2a
2 v

(
− ln |x|, x

|x|
)
.
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Here forx ∈ R
N \ {0}, with t = − ln |x| andθ = x/|x|, we have(t, θ) ∈ C.

Let us denote byL p
b(R

N) = {u : ∫
RN |x|−bp|u|pdx < ∞} the weightedL p

space. We need the following lemma.
LEMMA 2.1 For a < N−2

2 , a ≤ b ≤ a + 1, and p= 2N
N−2+2(b−a) , it holds that

D1,2
a (RN) = C∞

0 (R
N \ {0})‖·‖,

where‖·‖ is the norm inD1,2
a (RN) given by(1.5). Moreover, Lp

b(R
N) is also given

by the completion of C∞0 (R
N \ {0}) under its norm.

PROOF: By the definition ofD1,2
a (RN), it suffices to show

C∞
0 (R

N) ⊂ C∞
0 (R

N \ {0})‖·‖ .
Let ρ(t) be a cutoff function that is 1 fort ≥ 2 and 0 for 0< t ≤ 1. For a fixed
u ∈ C∞

0 (R
N), we defineuε(x) = ρ(|x|/ε)u(x) ∈ C∞

0 (R
N \ {0}). Then it is easy

to check that‖uε − u‖ → 0 asε → 0. The second part is similar.

Now for u ∈ C∞
0 (R

N \ {0}), by a direct computation we have∫
RN

|x|−2a|∇u|2(x)dx =
∫

RN

|x|−N

(
|∇θv|2 +

(
vt + N − 2 − 2a

2
v

)2
)

dx ;

therefore∫
RN

|x|−2a|∇u|2(x)dx =
∫
C

|∇θv|2 +
(
vt + N − 2 − 2a

2
v

)2

dµ

=
∫
C

|∇θv|2 + v2
t +

(
N − 2 − 2a

2

)2

v2 dµ .

Also, ∫
RN

|x|−bpup(x)dx =
∫

RN

|x|−Nv p dx =
∫
C

v p dµ.

From these and Lemma 2.1, we immediately have the following:
PROPOSITION2.2 The mapping given in(2.1)is a Hilbert space isomorphism from
D1,2

a (RN) to H1(C) where the inner product on H1(C) is

(v,w) =
∫
C

∇v · ∇w +
(

N − 2 − 2a

2

)2

vw dµ .

Now we define an energy functional onH1(C):

(2.2) Fa,b(v) =
∫
C |∇θv|2 + v2

t + (
N−2−2a

2

)2
v2 dµ( ∫

C |v|p dµ
)2/p

.
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If u ∈ D1,2
a (RN) andv ∈ H1(C) are related through (2.1), then

Ea,b(u) = Fa,b(v) .

Moreover, ifu is a solution of (1.8), thenv satisfies

(2.3) −vt t −1θv +
(

N − 2 − 2a

2

)2

v = v p−1 , v > 0 , onC

wheret = − ln|x| and1θ is the Laplace operator on the(N − 1)-sphere. We
collect these observations in the following:
PROPOSITION2.3 With a, b, and p satisfying(1.2), we have

(i) If u ∈ D1,2
a and v ∈ H1(C) are related through(2.1), then Ea,b(u) =

Fa,b(v).
(ii) For S(a,b) defined in(1.6), it holds S(a,b) = infH1(C)\{0} Fa,b(v).

(iii) Solutions of(1.8)and (2.3)are in one-to-one correspondence, being related
through(2.1).

REMARK 2.4 Our approach here gives a new independent proof of the Caffarelli-
Kohn-Nirenberg inequalities for the considered parameters, because by the clas-
sical Sobolev embeddings fromH1(C) into L p(C), Fa,b(v) has a positive lower
bound onH1(C) and the transformation (2.1) gives the desired inequalities on
D1,2

a (RN).
REMARK 2.5 As motivation, we mention that transformations of similar nature
to (2.1) have been used in the past to studyradial solutions(e.g., [18]), which
link two ODEs. For PDEs, this was used recently for the Yamabe problem (a =
b = 0) in [17]. In this paper we have developedthe full-blown versionof the
transformations to deal with solutions of PDEs (1.8), and furthermore we have
established the equivalence of the function spaces involved.

2.2 Invariance of the Problem (1.8)

In order to study the symmetry property of solutions, we examine the invariance
of the problem under the transformation (2.1). As in the case of the Yamabe prob-
lem (a = b = 0), the group of transformations that leaves problem (1.8) invariant
is noncompact. The group of translations inR

N is a symmetry group for (1.8) only
in the casea = b = 0. On the other hand, the dilations

(2.4) uτ (x) = τ
N−2−2a

2 u(τx) , τ > 0 ,

leave the problem invariant for alla andb; i.e., if u is a solution of (1.8), so isuτ .
This still holds forN = 2 andN = 1, but forN = 1 the situation is a bit different
and there is a two-parameter family of dilations (see (7.3)). The group that leaves
(2.3) invariant, corresponding to dilations inR

N , is the group of translations in the
t-direction. Ifv andvτ in H1(C) are related tou anduτ in D1,2

a (RN) through (2.1),
then

vτ (t, θ) = v(t − ln τ, θ) .
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Finally, the following modified inversion invariance of (1.8),

(2.5) ū(x) = |x|−(N−2−2a)u

(
x

|x|2
)
,

translates on the cylinder to the following obvious symmetry of (2.3),

v̄(t, θ) = v(−t, θ) .

2.3 Radial Solutions

Let D1,2
a,R(R

N) be the subspace ofD1,2
a (RN) consisting of radial functions. De-

fine

(2.6) R(a,b) = inf
u∈D1,2

a,R(R
N )\{0}

Ea,b(u) .

By Proposition 2.3(i) we also have

R(a,b) = inf
u∈H1

R(C)\{0}
Fa,b(u) ,

whereH1
R(C) consists of functions independent ofθ . We shall find the exact value

of R(a,b) and the exact form of the radial solutions that achieve these constants
whena ≤ b < a+1. We remark here that our method applies for thea-nonnegative
region also and in fact gives a new approach for thea-nonnegative region; the
results we get agree with [11] and [18] in this region.

In order to study the radial solutions of (1.8), we shall need the exact form of
particular positive solutions for the following nonlinear second-order ODE:

(2.7) −vt t + λ2v = v p−1 , v > 0 , in R

with p > 2. The problem can be associated to the Hamiltonian system

d

dt
v = w ,

d

dt
w = λ2v − v p−1 .

We have the Hamiltonian

H(v,w) = 1

2
w2 − λ2

2
v2 + 1

p
v p .

All solutions correspond to level curves ofH(v,w). Up to translations, there is
only one homoclinic solutionv that is on the levelH(v,w) = 0. The levels below
this one will givev positive, periodic, and bounded away from zero. For the levels
above,v changes sign so we lose positivity. The only positive solutions that are in
H1(R) are translates of

(2.8) v(t) =
(
λ2 p

2

) 1
p−2
(

cosh

(
p − 2

2
λt

))− 2
p−2

.
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A direct calculation gives that for thev above,

(2.9)

∫
R
v2

t + λ2v2 dt( ∫
R
v p dt

)2/p
= 2p

λ(p+2)/p

(p − 2)(p−2)/p

(
02
( p

p−2

)
0
( 2p

p−2

)
) p−2

p

.

Now, when searching for radial solutions, equation (2.3) becomes

(2.10) vt t −
(

N − 2 − 2a

2

)2

v + v p−1 = 0 , v > 0 , onR ,

which corresponds to equation (2.7) withλ = N−2−2a
2 . According to (2.8), the

homoclinic solutions of (2.10) are translates of

v(t) =
(

N(N − 2 − 2a)2

4(N − 2(1 + a − b))

) N−2(1+a−b)
4(1+a−b)

(
cosh

(N − 2 − 2a)(1 + a − b)

N − 2(1 + a − b)
t

)− N−2(1+a−b)
2(1+a−b)

.

(2.11)

The radial solution inRN for (1.8) corresponding to thisv is

(2.12) u(x) =
(

N(N − 2 − 2a)2

N − 2(1 + a − b)

) N−2(1+a−b)
4(1+a−b) 1(

1 + |x| 2(N−2−2a)(1+a−b)
N−2(1+a−b)

) N−2(1+a−b)
2(1+a−b)

.

All radial solutions inR
N for (1.8) are dilations of thisu. Note that by substituting

in (2.9)

λ = N − 2 − 2a

2
and p = 2N

N − 2(1 + a − b)
,

we estimate the energy of any radial solution inH1(C),

R(a,b) = Ea,b(u) = Fa,b(v) ,

R(a,b) = Nω
2(1+a−b)

N
N−1 (N − 2 − 2a)

2(N−(1+a−b))
N

2
2(1+a−b)

N (N − 2(1 + a − b))
N−2(1+a−b)

N (1 + a − b)
2(1+a−b)

N
02

(
N

2(1+a−b)

)
0
(

N
1+a−b

)



2(1+a−b)
N

.

(2.13)

PROPOSITION2.6 Up to a dilation(2.4), all radial solutions of(1.8)are explicitly
given in(2.12), and R(a,b) is given in(2.13).
REMARK 2.7 In the casea > 0, this is the best constant as found in [11], i.e.,
R(a,b) = S(a,b). Also, fora = 0 and 0≤ b < 1, it is the best constant found by
Lieb in [18]. In the casea ≥ 0, up to a dilation (and also a translation in the case
a = b = 0), (2.12) gives all bound state solutions of (1.8) that achieve equality in
the Caffarelli-Kohn-Nirenberg inequality (see [11, 18]).
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3 Best Constants and Nonexistence of Extremal Functions

To prove Theorem 1.1(i), we need a couple of lemmas.
LEMMA 3.1 Let a0 <

N−2
2 , a0 ≤ b0 ≤ a0 + 1. Then

lim sup
(a,b)→(a0,b0)

S(a,b) ≤ S(a0,b0) .

PROOF: For anyε > 0, there is a nonnegative functionv ∈ C∞
0 (C) such that

Fa0,b0(v) ≤ S(a0,b0)+ ε

2
.

Note that as(a,b) → (a0,b0), v p(x) → v p0(x) for all x. For anyp ∈ [2,2∗],
v p(x) ≤ w(x) wherew(x) = v2(x) if v(x) < 1 andw(x) = v2∗

(x) if v(x) ≥ 1.
Clearlyw is integrable; therefore by the dominated convergence theorem we have

lim
(a,b)→(a0,b0)

∫
C

v p dµ =
∫
C

v p0 dµ .

From this, and becauseλ is continuous ina, we get there isδ > 0 such that
|(a,b)− (a0,b0)| < δ implies

S(a,b) ≤ Fa,b(v) ≤ Fa0,b0(v)+ ε

2
≤ S(a0,b0)+ ε .

Let ε → 0.

LEMMA 3.2 Let (pn) ⊂ [2,2∗] be a sequence convergent to p. If a sequence(un)

is uniformly bounded by M in H1(C), then

(i) if p ∈ (2,2∗), we have

lim
n→∞

∫
C

∣∣|un|pn − |un|p
∣∣ dµ = 0 ;

(ii) if p = 2 or p = 2∗, we have

lim sup
n→∞

∫
C

(|un|pn − |un|p)dµ ≤ 0 .

PROOF: We first prove (i). By the mean value theorem, there are functionsξn

defined onC with values betweenpn and p such that∫
C

∣∣|un|pn − |un|p
∣∣ dµ =

∫
C

∣∣ln |un||un|ξn(x)(pn − p)
∣∣ dµ .
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Sincep ∈ (2,2∗), let ε > 0 such that[p − ε, p + ε] ⊂ (2,2∗). Let nε be such that
for n ≥ nε we have|pn − p| < ε; therefore∫

C

∣∣|un|pn − |un|p
∣∣ dµ ≤

|pn − p|

 ∫

|un|>1

ln |un||un|p+ε dµ +
∫

0<|un|<1

ln
1

|un| |un|p−ε dµ


 .

The key now is to show that the two integrals on the right-hand side are bounded
asn → ∞. There is a constantC depending only onp such that

ln u ≤ Cu2∗−p−ε for all u > 1

and

ln
1

u
≤ C

up−ε−2
for all 0< u < 1 .

With

Sp(C) = inf
u∈H1(C)\{0}

∫
C |∇u|2 + u2 dµ(∫

C |u|p dµ
)2/p ,

we obtain∫
|un|>1

ln |un||un|p+ε dµ ≤ C
∫

|un|>1

|un|2∗
dµ ≤ C

(
M

S2∗(C)

) 2∗
2

.

We also have that∫
0<|un|<1

ln
1

|un| |un|p−ε dµ ≤ C
∫

0<|un|<1

|un|2 dµ ≤ C
M

S2(C)
.

This concludes the proof of (i).
For part (ii), we use the same method as above after we make the estimates as

follows: For p = 2,∫
C

|un|pn − |un|2 dµ ≤
∫

|un|>1

|un|pn − |un|2 dµ ,

and forp = 2∗,∫
C

|un|pn − |un|2∗
dµ ≤

∫
0<|un|<1

|un|pn − |un|2∗
dµ .

REMARK 3.3 In the casesp = 2 or p = 2∗, one can construct sequences(un)

bounded inH1(C) such that|un|L p = 1 for all n, while |un|L pn → 0 aspn → p.
Thus Lemma 3.2(ii) is sharp.
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PROOF OFTHEOREM 1.1(i): According to Lemma 3.1, it suffices to show that

lim inf
(a,b)→(a0,b0)

S(a,b) ≥ S(a0,b0) .

Assume there is a sequence(an,bn) → (a0,b0) such that

(3.1) lim
n→∞ S(an,bn) < S(a0,b0) .

Then there areε > 0 and functions(vn) ⊂ H1(C) such that∫
C

|vn|pn dµ = 1

and
S(a0,b0)− ε ≥ Fan,bn(vn) .

Clearly,(vn) is bounded inH1(C). From Lemma 3.2, we get

Fan,bn(vn)+ o(1) ≥ Fa0,b0(vn) ≥ S(a0,b0) .

This and (3.1) give the desired contradiction.

REMARK 3.4 A similar proof shows thatR(a,b) is continuous in(a,b) in the full
parameter region, including the upper boundary{b = a + 1} for which no radial
solutions exist.

PROOF OFTHEOREM 1.1(ii): Clearly, Fa,a+1(v) ≥ ((N − 2 − 2a)/2)2 for all
v ∈ H1(C). On the other hand, one can easily construct a sequence(vn) ⊂ H1(C)
of radial functions such thatFa,a+1(vn) → ((N − 2 − 2a)/2)2. Therefore,

S(a,a + 1) =
(

N − 2 − 2a

2

)2

.

For nonexistence of minimizers, one notes that forλ ≥ 1, the equation

−1v + λ2v = v

has no nonzero solution inH1(C). For 0 < λ < 1, i.e., (N − 4)/2 < a <

(N − 2)/2, assume thatS(a,a + 1) is achieved by some functionv ∈ H1(C). By
the maximum principle,v > 0 everywhere. Denote byf (t) the average ofv on the
spherest = const. Thenf is a positive function inH1(R) and satisfies the ODE

− ftt + λ2 f = f .

The only nonnegative solution isf ≡ 0. Therefore for alla < N−2
2 , the infimum

S(a,a + 1) is not achieved.

PROOF OFTHEOREM 1.1(iii): The casea = b = 0 is well known (the Yam-
abe problem inRN). In this case, the minimizerS(0,0) is achieved only by func-
tions

Uµ,y(x) = C
µ(N−2)/2(

µ2 + |x − y|2)(N−2)/2
, µ > 0 , y ∈ R

N .
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Note that fora ∈ (−N/2, (N − 2)/2), Uµ,y ∈ D1,2
a . For y 6= 0 by a direct

computation we get fora ∈ (−N/2, (N − 2)/2)

S(0,0) = lim
µ→0

Ea,a(Uµ,y) .

Due to this fact one concludes that fora ∈ (−N/2, (N − 2)/2),

(3.2) S(a,a) ≤ S(0,0) .

On the other hand, by the expression (2.2), for anyv ∈ H1(C) \ {0}, Fa,a(v) >

F0,0(v) ≥ S(0,0). Hence,S(a,a) = S(0,0) for all a ∈ (−N/2,0). Next, we fix
a1 ∈ (−N/2,0). For anya ≤ −N/2 fixed and anyε > 0, there isv ∈ H1(C) such
that

Fa1,a1(v) ≤ S(0,0)+ ε

2(λ(a)2 − λ(a1)2)(λ(a1)2 − λ(0)2)
,

whereλ(a) = (N − 2 − 2a)/2. Together withS(0,0) ≤ F0,0(v) ≤ Fa1,a1(v), we
conclude ∫

C v
2dµ( ∫

C |v|2∗ dµ
)2/2∗ ≤ ε

2(λ(a)2 − λ(a1)2)
.

Then

Fa,a(v) = Fa1,a1(v)+ (λ(a)2 − λ(a1)
2)

∫
C v

2dµ( ∫
C |v|2∗ dµ

)2/2∗ ≤ S(0,0)+ ε .

That is,S(a,a) = S(0,0) for all a ≤ 0.
Next we showS(a,a) is not achieved fora < 0. If the conclusion is not

true, for somea < 0 andv ∈ H1(C) we get S(a,a) = Fa,a(v). But using
Fa,a(v) > F0,0(v) ≥ S(0,0), we get a contradiction toS(a,a) = S(0,0).

4 Best Constants and Existence of Extremal Functions

In this section we prove the existence of a minimizer fora < 0 anda < b <
a + 1. We also give an asymptotic estimate ofS(a,b) as−a → ∞, while b − a ∈
(0,1) is a fixed constant.

We shall need the following lemma. It is analogous to a result onR
N due to

P. L. Lions [21]. The proof is similar to the proof of lemma 1.21 in [26]. We omit
the proof here.
LEMMA 4.1 Let r > 0 and2 ≤ q < 2∗. If (wn) is bounded in H1(C) and if

sup
y∈C

∫
Br (y)∩C

|wn|q dµ → 0 as n→ ∞ ,

thenwn → 0 in L p(C) for 2< p < 2∗. Here Br (y) denotes the ball inRN+1 with
radius r centered at y.
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PROOF OFTHEOREM 1.2(i): Leta < 0 anda < b < a + 1 be fixed. Consider
a minimizing sequence(wn) ⊂ H1(C) such that∫

C

|wn|p dµ = 1 for all n ≥ 1

and ∫
C

|∇wn|2 +
(

N − 2 − a

2

)2

w2
n dµ → S(a,b) asn → ∞.

According to Lemma 4.1,

δ = lim inf
n→∞


sup

y∈C

∫
Br (y)∩C

w2
n dµ


 > 0 .

Eventually by passing to a subsequence, we may assume there are(yn) ⊂ C and
y0 ∈ C fixed such that the sequencevn(x) = wn(x − yn) has the property∫

Br (y0)∩C

|vn|2 dµ >
δ

2
.

Clearly, ∫
C

|vn|p dµ = 1 for all n ≥ 1

and ∫
C

|∇vn|2 +
(

N − 2 − a

2

)2

v2
n dµ → S(a,b) asn → ∞ .

Without loss of generality we can assume

vn ⇀ v weakly in H1(C) ,

vn → v in L2
loc(C) ,

vn → v almost everywhere inC .

According to the Brezis-Lieb lemma [3], we have

1 = |v|p
L p + lim

n→∞ |vn − v|p
L p .
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Hence

S(a,b) = lim
n→∞

∫
C

|∇vn|2 +
(

N − 2 − a

2

)2

v2
n dµ

=
∫
C

|∇v|2 +
(

N − 2 − a

2

)2

v2 dµ

+ lim
n→∞

∫
C

|∇vn − v|2 +
(

N − 2 − a

2

)2

(vn − v)2 dµ

≥ S(a,b)
(
|v|2L p + (1 − |v|p

L p)
2
p

)
.

Sincev 6≡ 0, we obtain|v|L p = 1, and so∫
C

|∇v|2 +
(

N − 2 − a

2

)2

v2 dµ = S(a,b) .

Let b − a ∈ (0,1) be fixed so thatp ∈ (2,2∗) is also fixed. We shall consider
the asymptotic behavior ofS(a,b) as−a → ∞.

PROOF OFTHEOREM 1.2(ii): We use a rescaling argument. Lethλ : R
N+1 →

R
N+1 be the scaling maphλ(x) = λx. DenoteCλ = hλ(C) and forv ∈ H1(C),

defineu ∈ H1(Cλ) by u(λx) = v(x). For definiteness, onH1(Cλ)we use the norm
‖u‖2 = ∫

Cλ
|∇u|2 + |u|2 dµ. We have∫

C

|∇v|2 + λ2v2 dµ = λ2−N
∫
Cλ

|∇u|2 + u2 dµ

and ∫
C

|v|p dµ = λ−N
∫
Cλ

|u|p dµ .

Therefore,

Fa,b(v) = λ2(b−a)

∫
Cλ

|∇u|2 + u2 dµ( ∫
Cλ

|u|p dµ
) 2

p

.

Now it suffices to show that

I (λ) := inf
u∈H1(Cλ)\{0}

∫
Cλ

|∇u|2 + u2 dµ( ∫
Cλ

|u|p dµ
)2/p

→ Sp(R
N)

asλ → ∞.
First we have that

(4.1) lim sup
λ→∞

I (λ) ≤ Sp(R
N) .
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We get this through a cutoff procedure. Letr > 0; then for fixedλ large and
y ∈ Cλ, we have a projectionψ = ψy,r,λ from Br (0) ⊂ R

N to ψ(Br (0)) ⊂ Cλ
defined as follows: IdentifyRN with the tangent space toCλ at y ∈ Cλ, and letψ
to be the projection fromBr (0) into Cλ along directions parallel toνy, the exterior
normal toCλ at y. Thenψ is a diffeomorphism on its image and for fixedr , the
Jacobian matrix ofψ tends uniformly to the identity matrix asλ → ∞.

Denote byw ∈ H1(RN) a function with support inBr (0) ⊂ R
N . For y ∈ Cλ,

let uλ(ψy,r,λ(x)) = w(x) and 0 outsideψy,r,λ(Br (0)); then

(4.2)
∫
Cλ

|∇uλ|2 + u2
λ dµ =

∫
RN

|∇w|2 + w2 dx + o(1)

and

(4.3)
∫
Cλ

|uλ|p dµ =
∫

RN

|w|pdx + o(1)

whereo(1) → 0 asλ → ∞ uniformly in y.
In R

N , it is known that the infimumSp(R
N) is achieved by a positive function

w, radially symmetric about some point, which satisfies

−1w + w = wp−1 in R
N .

To prove (4.1), letε > 0 and letr > r0 > 0, sufficiently large, so that for a cutoff
functionρ(x), which is identically 1 inBr0(0) and 0 outsideBr (0), we have∫

RN |∇(ρw)|2 + (ρw)2 dx( ∫
RN (ρw)p dx

)2/p
< Sp(R

N)+ ε

2
.

Then from (4.2) and (4.3), there isλ large enough such that when we consider

u(x) = (ρw)(ψ−1(x)) ∈ H1(Cλ) ,

we get ∫
Cλ

|∇u|2 + u2 dµ( ∫
Cλ

up dµ
)2/p

<

∫
RN |∇(ρw)|2 + (ρw)2 dx( ∫

RN (ρw)p dx
)2/p

+ ε

2
.

From the two inequalities we conclude that

I (λ) ≤
∫
Cλ

|∇u|2 + u2 dµ( ∫
Cλ

up dµ
)2/p < Sp(R

N)+ ε .

Therefore,
lim sup
λ→∞

I (λ) ≤ Sp(R
N)+ ε .

We now prove

(4.4) lim inf
λ→∞ I (λ) ≥ Sp(R

N) .
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If (4.4) does not hold, there areε0 > 0 and a sequence(λn) which tends to∞ such
that

I0 := lim
n→∞ I (λn) ≤ Sp(R

N)− ε0 .

Then there are functionsun ∈ H1(Cn) (hereCn = Cλn) such that∫
Cn

|un|p dµ = 1 and I (λn) ≤
∫
Cn

|∇un|2 + u2
n dµ ≤ Sp(R

N)− ε0 .

Now we need a more detailed concentration-compactness lemma than the one
in [21] and along the lines of lemmas 4.1 and 4.2 in [24]. The result in [24] is for
theH1(RN) setting, but the proof carries over to our situation, too. We omit it here.
For r > 0 andyn,i ∈ Cn, let�n,i (r ) beψyn,i ,r,λn(Br (0)).
LEMMA 4.2 Let λn → ∞ and un ∈ H1(Cn) be uniformly bounded(with norm
given by‖u‖2 = ∫

Cn
|∇u|2 + |un|2 dµ). Assume

∫
Cn

|un|p dµ = 1. Then there is
a subsequence(still denoted by(un)), a nonnegative, nonincreasing sequence(αi )

satisfying
∑∞

i=1 αi = 1, and sequences(yn,i )i ⊂ Cn associated with eachαi > 0
satisfying

(4.5) lim inf
n→∞ |yn,i − yn, j | = ∞ for any i 6= j

such that the following property holds: If αs > 0 for some s≥ 1, then for any
ε > 0 there exist R> 0, for all r ≥ R and all r′ ≥ R, such that

(4.6) lim sup
n→∞

s∑
i=1

∣∣∣∣∣∣∣αi −
∫

�n,i (r )

|un|p dµ

∣∣∣∣∣∣∣
+

∣∣∣∣∣∣∣
(

1 −
s∑

i=1

αi

)
−

∫
Cn\⋃s

i =1�n,i (r ′)

|un|p+1 dµ

∣∣∣∣∣∣∣ < ε .

In Lemma 4.2, fixs> 0 with αs > 0 such that

(4.7)
s∑

i=1

αi >

(
I0

Sp(RN)

) p
2

.

Forαs > ε > 0, let R> 0 and(yn,i )i ⊂ Cn such that for allr, r ′ > R, we have

(4.8) lim
n→∞

s∑
i=1

∣∣∣∣∣∣∣αi −
∫

�n,i (r )

|un|p dµ

∣∣∣∣∣∣∣
+

∣∣∣∣∣∣∣
(

1 −
s∑

i=1

αi

)
−

∫
Cn\⋃s

i =1�n,i (r ′)

|un|p dµ

∣∣∣∣∣∣∣ < ε .
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We now consider a cutoff functionρ onR
N that is identically 1 insideBR(0) and 0

outsideB2R(0) and|∇ρ| ≤ 2
R at any point. For 1≤ i ≤ s, defineψ = ψyn,i ,2R,λn as

before, and letwn,i (x) = ρ(x)un(ψ(x)) designate functions with compact support
in R

N . By a direct computation, we get∫
RN

|∇wn,i |2 + w2
n,i dx ≤

∫
�n,i (2R)

|∇un|2 + u2
n dµ+ o(1)+ C

R

with C independent ofn, ε, andR, ando(1) → 0 asn → ∞. Also,∫
RN

|wn,i |p dx ≥
∫

�n,i (R)

|un|p dµ+ o(1) .

Since ∫
RN

|∇wn,i |2 + w2
n,i dx ≥


 ∫

RN

|wn,i |p dx




2
p

Sp(R
N) ,

we obtain∫
�n,i (2R)

|∇un|2 + u2
n dµ+ o(1)+ C

R
≥


 ∫
�n,i (R)

|un|p dµ+ o(1)




2
p

Sp(R
N) .

Therefore,

∫
C

|∇un|2 + u2
n dµ ≥


 s∑

i=1

∫
�n,i (R)

|un|p dµ




2
p

Sp(R
N)+ o(1)− sC

R
.

From(4.8) we get

∫
C

|∇un|2 + u2
n dµ ≥

(
s∑

i=1

αi − ε

) 2
p

Sp(R
N)+ o(1)− sC

R
.

Lettingn → ∞ and thenR → ∞, we obtain

I0 ≥
(

s∑
i=1

αi − ε

) 2
p

Sp(R
N) .

Now, letε → 0 to get

I0 ≥
(

s∑
i=1

αi

) 2
p

Sp(R
N) ,
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which contradicts (4.7).

5 Symmetry Breaking

For symmetry breaking, we have Theorem 1.3(i) and (ii). The results of (i)
and (ii) will be proved using different ideas. For Theorem 1.3(i), the idea is to
use bifurcation techniques and to show that for certain(a,b), by perturbing the ra-
dial solutionva given in (2.11), there are directions in which the energy decreases.
SinceS(a,b) is achieved, the minimizer cannot be radial. This approach has been
used for other problems, for example, for bifurcation of positive solutions on an-
nular domains in [20]. On the other hand, for Theorem 1.3(ii), we shall employ
an idea in [4] by Brezis and Nirenberg (in which they studied a problem with a
nearly critical exponent on annular domains) to compare the radial least energy
andS(a,b). A continuity argument then gives the conclusion.

We first give the proof of Theorem 1.3(i). We work inH1(C) here. The lin-
earization of (2.3) at the radial solutionva decomposes by separation of variables
into infinitely many ODEs. Denote byαk = k(N − 2 + k) the kth eigenvalue of
−1θ on S

N−1. For k ≥ 0, we denote byµk and fk the first eigenvalue and the
corresponding (positive) eigenfunction in the eigenvalue problem ofµ,

− f tt + λ2 f + αk f − (p − 1)v p−2
a f = µ f .

This eigenvalue problem is well defined sinceva(t) → 0 as|t | → ∞. First, we
show that there area0 and a functiona < h(a) < a + 1 defined fora < a0 such
thata < a0 anda < b < h(a) imply µ1 < 0. Indeed,

µk = inf
f ∈H1(R)\{0}

∫
R

f 2
t + λ2 f 2 + αk f 2 − (p − 1)v p−2

a f 2 dt∫
R

f 2 dt
.

We useva as a test function, and since∫
C

v2
a,t + λ2v2

a dµ =
∫
C

v p
a dµ ,

we obtain

(5.1) µk ≤ −(p − 2)

∫
C v

p
a dµ∫

C v
2
a dµ

+ αk .

Sinceα0 = 0, clearly we haveµ0 < 0. We also haveα1 = N − 1, and by a direct
calculation using (2.11), (5.1) gives

(5.2) µ1 ≤ − N(1 + a − b)(N − 2 − 2a)2

(N − 2(1 + a − b))(N − (1 + a − b))
+ N − 1 .

Note that the right-hand side in (5.2) is negative for

(5.3) a < a0 := N − 2

2
− N − 1

2

√
N − 2

N
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and

(5.4) a ≤ b < h(a) := 1 + a − 2N

l (a)+√
l 2(a)− 8

,

where

l (a) = (N − 2 − 2a)2

N − 1
+ 3 .

Henceµ1 is negative fora andb in this range. Note also thata + 1 − h(a) → 0
asa → −∞. Thea0 andh(a) above will be shown to have the property stated in
Theorem 1.3(i).

Definewk = φk(θ) fk, whereφk is an eigenfunction of−1θ on S
N−1 with

eigenvalueαk. (φ0(θ) is just a positive constant andφ1(θ) is a first harmonic.) We
get

(5.5) −1wk + λ2wk − (p − 1)v p−2
a wk = µkwk .

We now have the following:
LEMMA 5.1 For s small, there isδ = δ(s) such thatδ(0) = δ′(0) = 0 and∫

C

|va + δ(s)w0 + sw1|p dµ = 1 .

If, in addition, (a,b) is such thatµ1 < 0 (which holds for a< a0 and a ≤ b <
h(a)), then for s sufficiently small,

(5.6) F(va + δ(s)w0 + sw1) < F(va) .

PROOF OFTHEOREM 1.3(i): By the above lemma, fors small|va + δ(s)w0 +
sw1|L p = 1. Then (5.6) showsS(a,b) < R(a,b). SinceS(a,b) is achieved, the
minimizer is nonradial.

PROOF OFLEMMA 5.1: Set

G(δ, s) =
∫
C

|va + δw0 + sw1|p dµ .

We haveG(0,0) = 1 and∂G
∂δ
(0,0) = p

∫
C v

p−1
a w0 dµ > 0, sincew0 > 0. By the

implicit function theorem, there is an opens-interval around 0 whereδ = δ(s) is
differentiable and

(5.7) G(δ(s), s) = 1 .

Furthermore, by a direct computation andφ1(−θ) = −φ1(θ), we have

∂G

∂s
(0,0) = p

∫
C

v p−1
a w1 dµ = p

∫
C

v p−1
a φ1(θ) f1 dµ = 0.

Differentiating (5.7) we get

(5.8)
∂G

∂δ
(δ(s), s)δ′(s)+ ∂G

∂s
(δ(s), s) = 0 .
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Hence
∂G

∂δ
(0,0)δ′(0)+ ∂G

∂s
(0,0) = 0 ,

which impliesδ′(0) = 0. To show (5.6) we needδ′′(0). Differentiating (5.8) with
respect tos again and settings = 0, we get

∂G

∂δ
(0,0)δ′′(0)+ ∂2G

∂s2
(0,0) = 0 .

We have

∂2G

∂s2
(0,0) = p(p − 1)

∫
C

up−2
a w2

1 dµ and
∂G

∂δ
(0,0) = p

∫
C

up−1
a w0 dµ .

Thus,

δ′′(0) = − p(p − 1)
∫
C v

p−2
a w2

1 dµ

p
∫
C v

p−1
a w0 dµ

.

Now,

F(va + δ(s)w0 + sw1) =

F(va)+ s2
∫
C

|∇w1|2 + λ2w2
1 dµ+ 2δ(s)

∫
C

∇va · ∇w0 + λ2vaw0 dµ

+ 2s
∫
C

∇va · ∇w1 + λ2vaw1 dµ+ δ2(s)
∫
C

|∇w0|2 + λ2w2
0 dµ

+ 2sδ(s)
∫
C

∇w0 · ∇w1 + λ2w0w1 dµ .

Sinceva is radial,∫
C

∇va · ∇w1 + λ2vaw1 dµ =
∫
C

v p−1
a w1 dµ = 0 ;

therefore the fourth term is 0. Also, the fifth and the sixth terms are higher order.
Hence

F(va + δ(s)w0 + sw1) =
F(va)+ s2

∫
C

|∇w1|2 + λ2w2
1 dµ+ 2δ(s)

∫
C

∇va∇w0 + λ2vaw0 dµ+ o(s2) .

From (5.5) we get∫
C

|∇w1|2 + λ2w2
1 dµ = (p − 1)

∫
C

v p−2
a w2

1 dµ+ µ1

∫
C

w2
1 dµ.
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Sinceva is a solution of (2.3), we have∫
C

∇va · ∇w0 + λ2vaw0 dµ =
∫
C

v p−1
a w0 dµ.

Using the equalities above and

δ(s) = −s2 (p − 1)
∫
C v

p−2
a w2

1 dµ

2
∫
C v

p−1
a w0 dµ

+ o(s2) ,

we obtain fors sufficiently small

F(va + δ(s)w0 + sw1) = F(va)+ s2µ1

∫
C

w2
1 dµ+ o(s2) < F(va) .

The proof of Lemma 5.1 is complete.

PROOF OFTHEOREM 1.3(ii): First we note that by a direct computation using
(2.13) we always have for alla < 0

R(a,a) > S(a,a) = S(0,0) .

We argue that for anya0 < 0, there isε0 > 0 such that for all|(a,b)−(a0,a0)| < ε0

with a < b, S(a,b) is achieved by a nonradial function. As(a,b) → (a0,a0), we
have thatR(a,b) → R(a0,a0) > S(a0,a0) = S(0,0). On the other hand, from
Theorem 1.1(i) we have thatS(a,b) → S(a0,a0) as(a,b) → (a0,a0). Therefore
for anya0 < 0, there isε0 > 0 such thatS(a,b) < R(a,b) if |(a,b)− (a0,a0)| <
ε0 with a ≤ b. By Theorem 1.2(i),S(a,b) is achieved, and due to the strict
inequality, the minimizer forS(a,b) is nonradial.

6 Symmetry of Solutions

We use the moving plane method [14] to show that fora ≤ b < a + 1 any
positive solution of (2.3) on the cylinderC is symmetric about somet = const,
so up to a translation in thet-direction, the solution is even int and satisfies the
monotonicity property. Together with the discussion in Section 2, we get that any
solution of (1.8) satisfyingu(x) > 0 for x ∈ R

N\{0}, up to a dilation (2.4), satisfies
the modified inversion symmetry in Theorem 1.4. Our argument follows closely
the method in [10] though we have a differential equation defined on a manifold
C, while in [10] equations inRN were treated.

Let v be a positive solution of (2.3). Forµ < 0 andx = (t, θ) ∈ C, denote
xµ = (2µ− t, θ) ∈ C, the reflection ofx relative to the hyperplanet = µ. We let

wµ(x) = v(xµ)− v(x) ,

a function defined on the region6µ = {(t, θ) ∈ C : t < µ}. Clearly,w(x) = 0 for
anyx ∈ Tµ = ∂6µ = {(t, θ) ∈ C : t = µ}. We have the following:
LEMMA 6.1 There is R0 > 0 independent ofµ such that ifwµ has a negative local
minimum at(t0, θ0), then|t0| ≤ R0.
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PROOF: First, by elliptic regularity theory and the fact that∫
τ≤t≤τ+1

v2∗
dµ → 0 as|τ | → ∞ ,

we havev(t, θ) → 0 as|t | → ∞. Then we takeR0 to be such that

v(t, θ) <

(
λ2

p − 1

) 1
p−2

for all |t | ≥ R0. Sincev is a solution of (2.3),wµ satisfies

(6.1) −1wµ + λ2wµ − a(x)wµ = 0

in 6µ, where

a(x) = (p − 1)
∫ 1

0
[u(x)+ s(u(xµ)− u(x))]p−2 ds.

Assumex0 = (t0, θ0) ∈ 6µ is a minimum such thatwµ(x0) < 0 and|t0| > R0.
Then

v(xµ0 ) < v(x0) <

(
λ2

p − 1

) 1
p−2

.

Therefore,

(6.2) a(x0) < λ2 .

Since1wµ(x0) ≥ 0, we obtain

λ2wµ(x0)− a(x0)wµ(x0) ≥ 0 ,

which meansλ2 ≤ a(x0), contradicting (6.2).

We shall need the following:

Maximum Principle.If wµ is nonnegative solution of (6.1) andwµ is zero at
some point in6µ, thenwµ ≡ 0.

Hopf Lemma.If wµ is positive on6µ, then∂wµ/∂t < 0 at any point onTµ.

PROOF OFTHEOREM 1.4: Since fort → −∞ we havewµ(t, θ) → 0 and
w(x) = 0 for all x ∈ Tµ, Lemma 6.1 implieswµ(x) ≥ 0 for x ∈ 6µ with all
µ ≤ −R0. Letµ0 be the largestµ with the property thatwµ is nonnegative on6µ.
Clearly suchµ0 exists sincev(t, θ) → 0 ast → ∞. We argue that

wµ(x) > 0 for x ∈ 6µ , µ < µ0 ,(∗)

wµ0 ≡ 0 on6µ0 .(∗∗)

Sincewµ ≥ 0 for all µ < µ0, it follows thatvt ≥ 0 for all t ≤ µ0. To prove
(∗), assume there isδ > 0 such that for some(t0, θ0), we havet0 < µ0 − δ and
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wµ0−δ(t0, θ0) = 0. By the maximum principle it follows thatwµ0−δ ≡ 0. This
implies thatv(µ0 − 2δ, θ0) = v(µ0, θ0). Since∂v/∂t ≥ 0, it follows that

∂v

∂t
(t, θ0) = 0 for all t ∈ [µ0 − 2δ, µ0] .

Therefore
∂wµ0−2δ

∂t
(µ0 − 2δ, θ0) = 0 .

By the Hopf lemma we getwµ0−2δ ≡ 0. Continuing in this fashion, we obtain that
v is independent oft , which is not possible. Therefore,∂wµ/∂t < 0 on Tµ for
µ < µ0 and thenvt > 0 on6µ.

For (∗∗), assumewµ0 6≡ 0. By the maximum principle and the Hopf lemma,
wµ0 > 0 on6µ0 and∂wµ0/∂t < 0 on Tµ0. From the definition ofµ0, there is a
sequenceµk ↘ µ0 and there are pointsxk ∈ 6µk , absolute minima forwµk , such
thatwµk(xk) < 0. By Lemma 6.1 we have that(xk) is a bounded sequence; hence
(by passing to a subsequence) we can assume it converges to some pointx0. It
follows thatx0 ∈ Tµ0 andwµ0,t(x0) = 0, which is a contradiction.

Eventually after a translation in thet-direction, we can assumeµ0 = 0. There-
forev is even int and monotonically decreasing fort > 0.

Translations int on C correspond to dilations inRN ; hence up to a dilation
u(x) → τ

N−2−2a
2 u(τx), positive solutions of (1.8) have the modified inversion sym-

metry as given in Theorem 1.4.

7 The CasesN = 1 and N = 2

7.1 The CaseN = 1

In one dimension, equation (1.8) becomes

(7.1) −(|x|−2au′)′ = |x|−bpup−1 , u ≥ 0 , in R.

We have a rather complete answer for the problem. In fact, we can identify all
solutions of (7.1). We look for solutionsu that are critical points for the energy in
D1,2

a (R)

Ea,b(u) =
∫

R
|x|−2a|u′|2 dx( ∫

R
|x|−bp|u|p dx

)2/p
.

The parameter range is

a < −1

2
, a + 1

2
< b ≤ a + 1 , and p = 2

−1 + 2(b − a)
.

We first observe thatEa,b(u) is invariant under the following rather nonstandard
dilations: for(τ−, τ+) ∈ (0,∞)2

(7.2) u(x) → uτ−,τ+(x) =

τ

− 1+2a
2− u(τ−x) , x < 0 ,

τ
− 1+2a

2+ u(τ+x) , x > 0 .
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That is, dilations can be made independently forx < 0 andx > 0 so thatEa,b(u)
is still invariant.

Note that forN = 1 the cylinderC = R × S
0 = R ∪ R is the union of two

real lines. We denote the two components byC− andC+ corresponding toR− and
R+ in R, respectively. The coordinates forC− andC+ arey = (t,−1) ∈ C− and
y = (t,1) ∈ C+. For simplicity, we write them ast1 (for (t,−1)) andt2 (for (t,1)).
To be more precise, for a functionw(y) defined onC we writew(y) = w1(t1)when
y = t1 ∈ C− andw(y) = w2(t2) wheny = t2 ∈ C+. To a functionu ∈ D1,2

a (R),
we associate a functionw (corresponding to a pair ofw1, w2) defined onC by

(7.3)
u(x) = (−x)(1+2a)/2w1(− ln(−x)) for x < 0 ,

u(x) = x(1+2a)/2w2(− ln x) for x > 0 ,

andt1 = − ln |−x| for x < 0 andt2 = − ln x for x > 0. Then equation (7.1) is
equivalent to the system of autonomous equations: fori = 1,2,

(7.4) −d2wi

dt2
i

+
(

1 + 2a

2

)2

wi = |wi |p−2wi .

Critical points ofEa,b(u) on D1,2
a (R) now correspond to critical points of a new

energy functional onH1(C)

Fa,b(w) =
∫
C |∇w|2 + (

1+2a
2

)2|w|2 dµ( ∫
C |w|p dµ

)2/p , w ∈ H1(C) .

It is easy to see that both integrals in the numerator and the denominator are de-
coupled as two integrals forw1 andw2. Each of the two ODEs of (7.4) has the
zero solution, and according to (2.7) withλ = −(1 + 2a)/2, the only (positive)
homoclinic solutions are translates of

v(t) =
(

(1 + 2a)2

4(1 − 2(1 + a − b))

) 1−2(1+a−b)
4(1+a−b)

(
cosh

(1 + 2a)(1 + a − b)

1 − 2(1 + a − b)
t

)− 1−2(1+a−b)
2(1+a−b)

.

(7.5)

The minimizers ofFa,b(w) are achieved byw, for which one of two componentsw1

orw2 is identically zero and the other is a translate ofv(t) given above. According
to (2.9), the infimum is

S(a,b) = (−1 − 2a)2(b−a)

22(1+a−b)(−1 + 2(b − a))−1+2(b−a)(1 + a − b)2(1+a−b)
02

(
1

2(1+a−b)

)
0
(

1
1+a−b

)



2(1+a−b)

.

(7.6)
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We observe that asb ↘ a + 1
2, we obtainS(a,b) → −1 − 2a. Note that when

bothw1 andw2 are nonzero and are (possibly different) translates ofv(t) in (7.5)
we get the energyFa,b(w) to be higher

R(a,b) = 22(1+a−b)S(a,b),

which is the least energy in the radial class. On this energy level, there is a two-
parameter family of positive solutions according to the two parameters that control
by how muchw1 andw2 are translated from (7.5). Correspondingly,u(x) defined
in (7.3) is a two-parameter family of solutions for (7.1), which after a dilation given
by (7.2) for some(τ−, τ+) ∈ (0,∞)2 is radial inR.

Summarizing all these, we can state the main results forN = 1 now.
THEOREM 7.1 (Best Constants and Nonexistence of Extremal Functions)

(i) S(a,b) is continuous in the full parameter domain.
(ii) For b = a + 1, we have S(a,a + 1) = (

1+2a
2

)2
, and S(a,a + 1) is not

achieved.
(iii) For b → (

a + 1
2

)+
, we get S(a,b) → −1 − 2a.

THEOREM7.2 (Best Constants and Existence of Extremal Functions)For a+ 1
2 <

b < a + 1, S(a,b) is explicitly given in(7.6), and up to a dilation of the form(7.2)
it is achieved at a function of the form(7.3) with eitherw1 = 0 andw2 given by
(7.5), or vice versa. Consequently, the minimizer for S(a,b) is never radial.
THEOREM 7.3 (Bound State Solutions and Symmetry)Up to a dilation(7.2), the
only solution of(7.1)besides the ground state solutions is of the form of(7.3)with
bothw1 andw2 given by(7.5). Consequently, all bound state solutions of(7.1),
possibly after a dilation given in(7.2), satisfy the modified inversion symmetry.
REMARK 7.4 Due to the degeneracy, the ground state solutions are discontinuous
at 0 and identically zero in eitherR− or R+.

7.2 The CaseN = 2
In this case the parameter range is

−∞ < a < 0 , a < b ≤ a + 1 , and p = 2

b − a
.

With no changes in the proofs for the caseN ≥ 3, we have the following results.
THEOREM 7.5 (Best Constants and Nonexistence of Extremal Functions)

(i) S(a,b) is continuous in the full parameter domain.
(ii) For b = a + 1, we have S(a,a + 1) = a2, and S(a,a + 1) is not achieved.

THEOREM 7.6 (Best Constants and Existence of Extremal Functions)

(i) For a < b < a + 1, S(a,b) is always achieved.
(ii) For b − a ∈ (0,1) fixed, as a→ −∞, S(a,b) is strictly increasing, and

S(a,b) = (−a)2(b−a)[Sp(R
2)+ o(1)] .

One notes in (5.3) that forN = 2 we havea0 = 0. Therefore we also have the
following:
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THEOREM 7.7 (Symmetry Breaking)There is a function h(a) defined for a< 0,
satisfying a< h(a) < a + 1 for a < 0 and a+ 1 − h(a) → 0 as−a → ∞, such
that for any(a,b) satisfying a< 0 and a< b < h(a), the minimizer for S(a,b) is
nonradial.
THEOREM 7.8 (Symmetry Property)For a < b < a + 1, the minimizer of S(a,b),
possibly after a dilation u(x) → τ−au(τx), satisfies the modified inversion sym-
metry:

u

(
x

|x|2
)

= |x|−2au(x) .

8 A Related Variational Problem

In this section we shall consider a related problem that can be solved by using
our method and the results we obtained in the previous sections. For 0≤ a <

(N − 2)/2, special cases of the following problem were considered in [22] and
[25]:

For N ≥ 3, we consider the following problem:

(8.1) − div(|x|−2a∇w)+ γ |x|−2(1+a)w = |x|−bpwp−1 , u ≥ 0 , in R
N ,

where

a <
N − 2

2
, a ≤ b < a + 1 , γ > −

(
N − 2 − 2a

2

)2

,

p = 2N

N − 2 + 2(b − a)
.

The solutions inD1,2
a (RN) of this problem are critical points of

Ea,b,γ (u) =
∫

RN |x|−2a|∇u|2 + γ |x|−2(1+a)u2 dx( ∫
RN |x|−bp|u|p dx

)2/p .

PROPOSITION8.1 The solutions inD1,2
a (RN) of (8.1) are in one-to-one corre-

spondence to solutions inD1,2
ā (RN) of

− div(|x|−2ā∇u) = |x|−b̄ pup−1 , u ≥ 0 , in R
N ,

where

ā = a + λ−
√
λ2 + γ , b̄ = b + λ−

√
λ2 + γ , λ = N − 2 − 2a

2
.

This correspondence is given by

u(x) = |x|λ−
√
λ2+γw(x) .

Direct computations verify the proof, which we omit here.
Due to this proposition, we can put equation (8.1) in the same frame of work as

in (1.8), and we can translate all of our results for (1.8) to get corresponding results
for (8.1). We note that even in thea-nonnegative region, forγ sufficiently large
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the minimizer ofEa,b,γ (u) is nonradial. All of our main theorems are adapted in
the obvious way. We leave the statements of these results to the reader.
REMARK 8.2 Proposition 8.1 also holds forN = 1 andN = 2 with a andb in the
corresponding regions.
REMARK 8.3 For 0≤ a < N−2

2 , special cases of (8.1) were considered in [22]
(a = b = 0 and−S(0,1) < γ < 0) and [25] (a ≤ b < a + 1 and−S(a,a + 1) <
γ < 0, a < b < a + 1 with γ > 0, and 0< a = b with 0 < γ � 1), but only
compactness of minimizing sequences was given.

9 Final Remarks and Questions

We finish the paper with some remarks and related open questions.
First, we have given the best constants on the boundary of thea-negative region.

In view of Theorem 1.3, it seems that there are no closed form minimizers. An
interesting question here is, what are the best constants in the interior of thea-
negative region?

Another question is, in view of Theorem 1.3, what are the optimal parameter
values at which the symmetry breaking exactly occurs, namely, the optimal form
of h(a)?

Our analysis indicates that the radial solutions get more and more unstable as
a → −∞, and this suggests there should be more and more nonradial solutions.
We have studied this in [9]. Some of the results in this paper as well as those of [9]
have been announced in [8].

Finally, an interesting question is related to the casesN = 1 andN = 2. With
regard to the Caffarelli-Kohn-Nirenberg inequalities, what are the optimal spaces
for N = 1 with b = a + 1

2 and forN = 2 with b = a?
After this paper was submitted, M. Willem kindly informed us of his preprint

[27] and another reference [16] that contain related results to our Theorem 1.1(iii)
and 1.2(ii) by using different methods.

Acknowledgment. The authors would like to thank L. Nirenberg for his en-
couragement and pointing out some references in the preparation of the paper.
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