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Abstract

This paper is concerned with the existence and qualitative property of stand-
ing wave solutions ψ(t, x) = e−iEt/h̄v(x) for the nonlinear Schrödinger equation

h̄
∂ψ
∂t

+ h̄2

2 �ψ − V (x)ψ + |ψ |p−1ψ = 0 with E being a critical frequency in the
sense that minRN V (x) = E. We show that there exists a standing wave which is
trapped in a neighbourhood of isolated minimum points of V and whose amplitude
goes to 0 as h̄ → 0.Moreover, depending upon the local behaviour of the potential
function V (x) near the minimum points, the limiting profile of the standing-wave
solutions will be shown to exhibit quite different characteristic features. This is in
striking contrast with the non-critical frequency case (infRN V (x) > E) which has
been extensively studied in recent years.

1. Introduction

The evolution of a free non-relativistic quantum particle is described by linear
Schrödinger equations, and this is one of the main results in quantum mechanics.
On the other hand, for a group of identical particles interacting with each other
in ultra-cold states, in particular, Bose-Einstein condensates, their evolution is de-
scribed, via Hartree approximation, to an excellent degree of accuracy by nonlinear
Schrödinger equations (see [Me]). The equation arises in many fields of physics,
in particular, when we describe the propagation of light in some nonlinear optical
materials; the nonlinear Schrödinger equations in nonlinear optics are reduced from
Maxwell’s equations (see [Mi]). The nonlinear Schrödinger equation is typically
of the form

ih̄
∂ψ

∂t
+ h̄2

2
�ψ − V (x)ψ + |ψ |p−1ψ = 0, (1)

where h̄ denotes the Plank constant, i is the imaginary unit. In physical problems,
a cubic nonlinearity, p = 3, is common; in this case, the equation is called the
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Gross-Pitaevskii equation. In this paper we are concerned with the existence of
standing waves of the nonlinear Schrödinger equation (1) for small h̄. For small
h̄ > 0, these standing-wave solutions are referred to as semi-classical states. Here a
solution of the form ψ(x, t) = exp(−iEt/h̄)v(x) is called a standing wave. Then,
a function ψ(x, t) ≡ exp(−iEt/h̄) v(x) is a standing-wave solution of (1) if and
only if the function v satisfies

1
2 h̄

2�v − (V (x)− E)v + |v|p−1v = 0, x ∈ R
N. (2)

If for some ξ ∈ R
N \ {0}, V (x + sξ) = V (x), s ∈ R, equation (1) is invariant

under a Galilean transformation,

ψ(x, t) → ψ(x − ξ t, t) exp(iξ · x/h̄− 1
2 i|ξ |2t/h̄)ψ(x − ξ t, t).

Thus, in this case, standing waves reproduce solitary waves travelling in the direc-
tion of ξ. In this paper, we investigate problem (2) when

inf
x∈RN

V (x) = E.

Under the condition that

inf
x∈RN

V (x) > E,

problem (2) has a ground-state solution (mountain-pass solution) for h̄ > 0 small
(see [R]) when infx∈RN V (x) < lim inf |x|→∞ V (x); furthermore, the following
well-understood problem in R

N plays a crucial role in the construction of solutions
of (2) and is considered the limiting equation for (2) as h̄ → 0:

�u− u+ |u|p−1u = 0.

This problem has a unique ground-state solution w > 0:
On the other hand, for

inf
x∈RN

V (x) < E,

we can show easily that there are no ground-state solutions (mountain-pass solu-
tions) of problem (2) if h̄ > 0 is sufficiently small; moreover, there is no nice
limiting problem as in the case E < infx∈RN V (x). In this sense, we can say that
E = infx∈RN V (x) is a critical frequency (or energy) for the nonlinear Schrödinger
equation (1) or problem (2).

There have been enormous investigations on problem (2) under the
condition

inf
x∈RN

V (x) > E.

Floer & Weinstein proved in [FW] that, for sufficiently small h̄ > 0, there exists
a solution uh̄ of (2) with lim inf h̄→0 maxx∈RN |uh̄(x)| > 0 which is concentrated
around a non-degenerate critical point of V whenN = 1, E < infRN V (x), p = 3
and V is a bounded function. They used a Lyapunov-Schmidt reduction method to
obtain the result. Further investigations and developments have been carried out
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by Oh [O1–O3], Wang [W], Rabinowitz [R], del Pino & Felmer [DF1–DF3],
Ambrosetti, Badiale & Cingolani [ABC], Gui [G], Li [L], Dancer & Yan
[DY], Kang & Wei [KW] and many others. (See also [By4], [Wa] and [CNY] for
a radial potential V .)

In all the above-mentioned works, the authors use the ground-state solution
w of the limiting equation stated above as a building block to construct sin-
gle-bump or multi-bump solutions for (2) with each bump looking like a trans-
lated ground-state solution w. This ground-state solution w enjoys many nice
properties which have been used in an essential way in the above works. Espe-
cially, the Lyapunov-Schmidt reduction method relies upon the uniqueness and
nondegeneracy property of w. The limiting profiles of the perturbed equations
are essentially determined by the ground-state solution w of the limiting equa-
tion.

In contrast, in our analysis of this paper we shall see that for the case of E =
infx∈RN V (x) the situation changes dramatically and depends upon the local beha-
viour ofV near its global minimum whereV = E. Moreover, the limiting equations
have many different forms, of which some are defined on RN with homogeneous
potentials and some are defined on bounded domains which could be of arbitrary
shapes. These new features of the limiting equations provide new phenomena for
the limiting profiles of the solutions of (2). For example, for all solutions obtained
so far under condition infRN V (x) > E, the maximum values of the solutions are
bounded away from zero (in fact, asymptotically they are proportional to the max-
imum value of w). On the other hand, as we will see in this paper, in the case of
E = minx∈RN V (x), there is a solution of (2) whose maximum value goes to 0 as
h̄ → 0; in nonlinear optics, this implies an existence of a standing light with very
small intensity which is trapped in a neighbourhood of stable points of potential V.
In fact, ifA is an isolated component of {x ∈ R

N |V (x) = E},we find a solution vh̄
of (2) such that limh̄→0 ‖vh̄‖L∞(RN) = 0, lim inf h̄→0 h̄

−2/(p−1)‖vh̄‖L∞(RN) > 0
and vh̄ is exponentially small on R

N \ U as h̄ → 0, where A ⊂ U. This is
in striking contrast with the case minx∈RN V (x) > E. Another new phenome-
non that is highly contrary to that for the case minx∈RN V (x) > E is observed
when V is exponentially flat near an isolated zero. For example, for a potential
V which decays exponentially around an isolated zero, there exists a least-energy
solution of (2) in the class of even functions which has at least two local maxi-
mum points h1

h̄, h
2
h̄ satisfying limh̄→0 |h1

h̄ − h2
h̄| = 0 (see Remark 3.3.3). It is well

known that such kinds of phenomena do not occur around a local minimum point
if minx∈RN V (x) > E.

We should note that we are more interested in the asymptotic behaviour of the
least-energy solution while it is not difficult to show the existence of a least-energy
solution even in the case minx∈RN V (x) = E. On the other hand, the existence of
locally minimal energy solutions is rather difficult to demonstrate since the required
solutions are very small and the energy of the solutions can be comparatively small
with a very small perturbation of the required solution.

This paper is organized as follows. In Section 2, we prove the existence of
localized solutions. Their asymptotic behaviour will be investigated in Section 3.
Finally, we discuss some more interesting problems in Section 4.
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2. Existence of localized solutions

We first rewrite (2) in the following form:

ε2�v − V (x)v + vp = 0, v > 0, in R
N

(3)
lim|x|→0

v(x) = 0,

where p ∈ (1, (N + 2)/(N − 2)) for N � 3, and p ∈ (1,∞) for N = 1, 2. We
assume that the potential V satisfies the following conditions:

(V1) V is a continuous non-negative function on R
N ;

(V2) for some γ > 0, lim inf |x|→∞ V (x) > 2γ ;
(V3) the zero set of V,Z ≡ {x ∈ R

N |V (x) = 0} is non-empty.

Let A be an isolated component of Z.We define Aδ = {x ∈ R
N | dist (x,A) � δ},

and Aδε = {x ∈ R
N |εx ∈ Aδ}.We assume that

(A) for some δ > 0, A8δ ∩ (Z \ A) = ∅.
We define an energy functional

 ε(u) ≡ 1

2

∫
RN

ε2|∇u|2 + V u2dx − 1

p + 1

∫
RN

|u|p+1 dx.

Positive critical points of  ε(u) are solutions of (3). This can also be rephrased as
a minimization problem for the energy functional

I ε(u) =
∫

RN

ε2|∇u|2 + V u2 dx

under the constraint
∫
RN |u|p+1dx = 1. A solution of (3) is called a least-energy

solution if it minimizes I ε.
Now we state the main result of this section on the existence of localized solu-

tions.

Theorem 2.1. Suppose that (V1)–(V3) and (A) hold. Then for sufficiently small
ε > 0, there exists a solution vε of (3) such that

(i) limε→0 ε
−N ε(vε) = 0;

(ii) limε→0 ‖vε‖L∞(RN) = 0, lim infε→0 ε
−2/(p−1)‖vε‖L∞(RN) > 0; and

(iii) for each δ′ > 0, there exist constants C, c > 0 such that

vε(x) � C exp
(
−c

ε
dist(x,Aδ

′
)
)
.

On the least-energy solutions for (3), we have the following result similar to
Theorem 2.1.

Theorem 2.2. Suppose that (V1)–(V3) hold. Then, for sufficiently small ε > 0,
there exists a least energy solution vε of (3) which satisfies

(i) limε→0 ε
−N ε(vε) = 0;

(ii) limε→0 ‖vε‖L∞(RN) = 0, lim infε→0 ε
−2/(p−1)‖vε‖L∞(RN) > 0; and
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(iii) for each δ′ > 0, there exist constants C, c > 0 such that

vε(x) � C exp
(
−c

ε
dist

(
x,Zδ′

))
.

In what follows, we will proceed to prove Theorem 2.1. For the proof of
Theorem 2.2, it suffices to take A = Z in Theorem 2.1.

By a rescaling, (3) is transformed to

�u− V (εx)u+ up = 0, u > 0, in R
N,

lim|x|→0
u(x) = 0. (4)

Define Vε(x) = V (εx), x ∈ R
N.We define a norm

‖u‖ε ≡
(∫

RN

|∇u|2 + Vε(x)u
2 dx

)1/2

,

and space Hε as the completion of C∞
0 (RN) with respect to the norm ‖ · ‖ε.

We consider the following minimization problem:

I εA ≡ inf

{∫
RN

|∇u|2 + Vεu
2 dx

∣∣∣ ∫
RN

up+1 dx = 1,

∫
RN\A4δ

ε

up+1 dx � ε3(p+1)/(p−1), u ∈ Hε

}
.

Let us outline our proofs below. We will show that there exists a minimizer uε of
I εA satisfying ∫

RN\A4δ
ε

(uε)
p+1 dx < ε3(p+1)/(p−1).

Then, vε ≡ (I εA)
1/(p−1)uε is a solution of (3), and vε satisfies the properties (i)–(iii)

of Theorem 2.1. The first step is to prove the existence of a minimizer of I εA in
the following Proposition 2.4. The second step is to estimate the minimizer on a
neighbourhood of Z\A and out of Z; this will be done in Lemmas 2.7 and 2.8.
The last step is to prove the properties (i)–(iii), and this will complete the proof of
Theorem 2.1.

First we have

Lemma 2.3. The following equality holds:

lim
ε→0

I εA = 0.

Proof. Let x0 ∈ A. Then, for any a > 0, there exists b ∈ (0, δ) such that V (x) ∈
[0, a) for |x − x0| � b. Then, we see that

I εA � I εa ≡ inf

{∫
B(x0,b/ε)

|∇u|2 + au2 dx

∣∣∣ ∫
B(x0,b/ε)

up+1 dx = 1,

u ∈ C∞
0 (B(x0, b/ε))

}
.
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It is obvious that

lim
ε→0

I εa = Ia ≡ inf

{∫
RN

|∇u|2 + au2 dx

∣∣∣ ∫
RN

up+1 dx = 1, u ∈ H 1,2(RN)

}
.

Through a simple calculation, we see that

Ia = a
1− n

2
p+1
p−1 I1 .

Therefore, since 1 − n
2
p+1
p−1 > 0, it follows that limε→0 I

ε
A = 0. ��

Proposition 2.4. For sufficiently small ε > 0, I εA is attained by some uε ∈ Hε.

Proof. Let {vnε }∞n=1 ⊂ Hε be a minimizing sequence for I εA. We can assume
{vnε }∞n=1 ⊂ C∞

0 (RN) and that vnε converges weakly to some vε in Hε as n → ∞.

Since, in general, an imbedding Hε ↪→ Lp+1(RN) is not compact, it does not
follow always that

∫
RN v

p+1
ε dx = 1 and

∫
RN\A4δ

ε
v
p+1
ε dx � ε3(p+1)/(p−1). To

overcome this difficulty, we first find a refined minimizing sequence {unε }∞n=1 as
follows, which possesses a nicer property.

We take Rn > 0 such that supp(vnε ) ⊂ B(0, Rn) ≡ {x ∈ R
N ||x| � Rn}. We

can assume that R1 � R2 � R3 . . . , Z4δ
ε ⊂ B(0, R1) and limn→∞ Rn = ∞. We

define the completion of C∞
0 (B(0, Rn)) with respect to the norm ‖ · ‖ε by Hn

ε .
Then, we consider the following minimization problem:

I εA,n ≡ inf

{∫
B(0,Rn)

|∇u|2 + Vεu
2 dx

∣∣∣ ∫
B(0,Rn)

up+1 dx = 1,

∫
B(0,Rn)\A4δ

ε

up+1 dx � ε3(p+1)/(p−1), u ∈ Hn
ε

}
.

It is easy to check that {I εA,n}ε,n is bounded. Since Hn
ε is compactly imbedded in

Lp+1(B(0, Rn)), it is easy to see that there exists a non-negative minimizer unε of
I εA,n. Note that for any k � 1,

lim
n→∞

∫
B(0,Rn)

|∇unε |2 + Vε(u
n
ε )

2 dx �
∫

RN

|∇vkε |2 + Vε(v
k
ε )

2 dx.

Thus, {unε }∞n=1 is a minimizing sequence for I εA.
Sinceunε is a minimizer for I εA,n, there exist Lagrange multipliersαε(n), βε(n) ∈

R such that

�unε − Vεu
n
ε + αε(n)(u

n
ε )
p + βε(n)χB(0,Rn)\A4δ

ε
(unε )

p = 0 in B(0, Rn),

unε > 0 in B(0, Rn),

unε = 0 on ∂B(0, Rn),

where a characteristic function χB is defined by χB(x) = 1 for x ∈ B, χB(x) = 0
for x /∈ B.As in [By1], we can show that βε(n) � 0 � αε(n).

We claim that {αε(n)}n is uniformly bounded for small ε > 0, i.e., there exist
ε0 > 0 and M > 0 such that for all 0 < ε � ε0, αε(n) � M for all n.
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On the contrary, taking a subsequence of {Rn}n if it is necessary, we assume that
there exist positive numbers {εn}n such that limn→∞ εn = 0 and limn→∞ αεn(n) =
∞. For the sake of convenience, we denote αn = αεn(n) and un = unεn . We take
ϕm ∈ C∞

0 (RN) such that

ϕm(x) =
{

1 if dist(x,RN \ A4δ
εn
) � 1/m,

0 if x /∈ A4δ
εn
,

and such that 0 � ϕm � 1, |∇ϕm| � 2m.Then, multiplying both sides of the above
equation by ϕm and integrating by parts, we see that

αn

∫
{x∈RN |dist(x,RN\A4δ

εn
)�1/m}

(un)p+1 dx

�
∫

RN

|∇un|2 + |∇un||∇ϕm|un + Vεn(u
n)2 dx.

Note that infx∈A4δ\A3δ V (x) > 0. Then, from Cauchy’s inequality, it follows that
for each m � 1, there is C > 0 satisfying

αn

∫
{x∈RN |dist(x,RN\A4δ

εn
)�1/m}

(un)p+1 dx � C

∫
RN

|∇un|2 + Vεn(u
n)2 dx

if n is sufficiently large. This implies that for each m � 1,

lim
n→∞

∫
{x∈RN |dist(x,RN\A4δ

εn
)�1/m}

(un)p+1 dx = 0.

We take ψε ∈ C∞
0 (RN) such that

ψε(x) =
{

0, x ∈ A2δ
ε , or x /∈ A5δ

ε ,

1, x ∈ A4δ
ε \A3δ

ε ,

0 � ψε � 1, and ‖∇ψε‖L∞ � 4ε/δ. Then, we see that

lim
n→∞ ‖unψεn‖Lp+1 = 1,

and that {‖unψεn‖εn} is bounded. We note that infx∈A5δ\A2δ V (x) > 0.This implies
that unψεn is bounded inH 1(RN). Then, by the concentration-compactness lemma
of Lions [Lio2, Lemma I.1] (see also [By1, Lemma 3.4]) there is b > 0 such that

lim
n→∞ sup

x∈RN

∫
B(x,b)

(un)p+1 dx � q lim
n→∞ sup

x∈RN

∫
B(x,b)

(unψεn)
p+1 dx > 0.

Thus, we can take xεn ∈ ∂A4δ
εn

and a ∈ (0, 1) such that

lim inf
n→∞

∫
B(xεn ,b)

(unψεn)
p+1 dx � a.
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We take ψd
ε ∈ C∞

0 (RN) such that

ψd
ε (x) =

{
0, dist(x, ∂A4δ

ε ) � 2d,
1, dist(x, ∂A4δ

ε ) � d,

0 � ψd
ε � 1, and ‖∇ψd

ε ‖L∞ � 4/d. From the Poincaré inequality, we see that for
some D > 0, independent of d and n,∫

B(xεn ,b)

(ψd
εn
un)2 dx � Dd2

∫
B(xεn ,b)

|∇ψd
εn
un|2 dx.

Note that∫
B(xεn ,b)

|∇ψd
εn
un|2 dx

=
∫
B(xεn ,b)

|∇un|2(ψd
εn
)2 + ∇ψd

εn
· ∇unψd

εn
un + (un)2|∇ψd

εn
|2 dx

� 2
∫
B(xεn ,b)

|∇un|2 dx + (un)2|∇ψd
εn

|2 dx

� 2
∫
B(xεn ,b)

|∇un|2 dx

+ 8

d2 |B(xεn, b)|
p−1
p+1

(∫
{x∈B(xεn ,b)| dist(x,∂A4δ

εn
)�2d}

(un)p+1 dx

) 2
p+1

,

and that for each d > 0,

lim
n→∞

∫
{x∈B(xεn ,b)| dist(x,∂A4δ

εn
)�2d}

(un)p+1 dx = 0.

Thus, it follows that

lim
n→∞

∫
B(xεn ,b)

(un)2 dx = 0.

From Hölder’s inequality, the Sobolev inequality and the fact that the set
{‖ψεnun‖εn}n is bounded, we obtain

lim
n→∞

∫
B(xεn ,b)

|ψεnun|p+1 dx = 0.

This is a contradiction.
Since a set {αε(n)}n is uniformly bounded for small ε > 0 and

∫
RN (u

n
ε )
p+1 dx =

1, it follows that {‖unε‖L∞(RN)}n is uniformly bounded for small ε > 0 (see [By2,
Proposition 3.5]). From condition (V3), we can take R = R(ε) > 0 such that
V (x) � γ for |x| � R/2, and such that A4δ

ε ⊂ B(0, R/2). Note that �unε −
Vεu

n
ε +αε(n)(u

n
ε )
p−1unε � 0 in B(0, Rn), and that {‖αε(n)(unε )p−1‖L∞(RN)}n is

bounded. Then, since ∫
RN\A4δ

ε

(unε )
p+1 dx � ε3(p+1)/(p−1),
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we see from [GT, Theorem 9.26] that

‖unε‖L∞(RN\B(0,R)) � Cε3/(p−1),

whereC is a positive constant, independent of n.Then, for sufficiently small ε > 0,

‖αε(n)(unε )p−1‖L∞(RN\B(0,R)) � γ /2.

Then, from the maximum principle, we deduce that for some constant C > 0,

unε (x) � C exp(−γ (|x| − R)/4), |x| � R. (5)

We assume that unε converges weakly to some uε inHε as n → ∞. Then, we know
that ∫

RN

|∇uε|2 + Vε(uε)
2 dx � lim inf

n→∞

∫
RN

|∇unε |2 + Vε(u
n
ε )

2 dx = I εA.

From (5), we see that

lim
n→∞

∫
RN

(unε )
p+1 dx =

∫
RN

(uε)
p+1 dx

and

lim
n→∞

∫
RN\A4δ

ε

(unε )
p+1 dx =

∫
RN\A4δ

ε

(uε)
p+1 dx.

This implies that uε is a minimizer of I εA. This completes the proof of Proposition
2.4. ��

Sinceuε ∈ Hε is a non-negative minimizer of I εA, there are Lagrange multipliers
α(ε), β(ε) ∈ R such that

�uε − Vεuε + α(ε)upε + β(ε)χεu
p
ε = 0 in R

N,

where

χε(x) =
{

0, x ∈ A4δ
ε ,

1, x /∈ A4δ
ε .

By the same argument as in the proof of Proposition 2.4 (see also [By1]), we see
that β(ε) � 0 � α(ε). By using similar arguments to these used in the proof of
Proposition 2.4, we have the following lemma whose proof is omitted.

Lemma 2.5. The set {α(ε)}ε is bounded.

We have the following decay property of uε.

Lemma 2.6. The following equality holds:

lim
ε→0

‖uε‖L∞(RN\Z2δ
ε )

= 0.
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Proof. We can show the boundedness of {‖uε‖L∞(RN\Zδ
ε )

}ε by bootstrap arguments
or the Moser iteration technique (see [By2, Proposition 3.5] or [GT]). Note that
inf{V (x)| x ∈ R

N\Zδ} > 0. Thus, combining an elliptic estimate [GT, Theorem
9.20], the Sobolev inequality and Lemma 2.4, we see that for some c, C > 0,

lim
ε→0

‖uε‖L∞(RN\Z2δ
ε )

� c lim
ε→0

(∫
RN\Zδ

ε

|∇uε|2 + u2
ε dx

)1/2

� cC‖uε‖ε = 0.

��
Then, we have the following exponential decay of uε.

Lemma 2.7. For some c, C > 0,

uε(x) � C exp(−c dist(x,Z2δ
ε )).

Proof. Let 3c = inf{V (x)| x ∈ R
N\Z2δ} > 0. Since β(ε) � 0 � α(ε), from

Lemmas 2.5 and 2.6, it follows that for sufficiently small ε > 0,

�uε(x)− (Vε(x)− c)uε � 0, x ∈ R
N\Z2δ

ε .

We find a set Bε containing Z2δ
ε such that ∂Bε is smooth and max{|x − y| |x ∈

Bε, y ∈ Z2δ
ε } � 1.We consider a problem

�U − 2cU = 0 in R
N\Bε,

U = 1 in ∂Bε,
lim|x|→∞U(x) = 0.

Then, there exists a unique positive solutionU of above equation such that for some
C′ > 0,

U(x) � C′ exp(−c dist(x,Bε)), x ∈ R
N\Bε.

Thus, by the maximum principle [PW], we deduce that for some C > 0,

uε(x) � C exp(−c dist(x,Z2δ
ε )).

��
Since V is 0 on Z\A, we cannot apply directly maximum principles to get good
decay estimates on a neighbourhood of Z\A. On the other hand, from the second
constraint

∫
RN\A4δ

ε
up+1 dx � ε3(p+1)/(p−1), we can obtain a good decay estimate

comparing uε with the first eigenfunction on a neighbourhood of Z\A.
Lemma 2.8. For some constant C, c > 0,

‖uε‖L∞(Z3δ
ε \A4δ

ε )
� C exp(−cδ/ε).
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Proof. We find the first eigenfunction 5 and the first eigenvalue λ1 of −� on
int(Z4δ) with the homogeneous Dirichlet boundary condition. We can assume that
5(x) � 1 for x ∈ Z3δ, and that M ≡ max{5(x)| x ∈ Z4δ} < ∞. For a, b > 0,
we define 5ε(x) ≡ a exp(− b

ε
)5(εx). Then, we see that

�5ε + ε2λ15ε = 0 in int(Z4δ
ε ),

5ε � a exp

(
−b

ε

)
on ∂

(
Z3δ
ε

)
.

Since
∫
RN\A4δ

ε
u
p+1
ε dx � ε3(p+1)/(p−1) and �uε − Vεuε + α(ε)u

p
ε � 0 in R

N, we
see from [GT, Theorem 9.26] that

‖uε‖L∞(Z4δ
ε \A4δ

ε )
� Cε3/(p−1),

whereC is a positive constant, independent of small ε > 0.Thus, for some constants
C1, C2, C3 > 0, it follows that

�uε + C1ε
3uε � 0 in int(Z4δ

ε \A4δ
ε ),

uε � C1 exp

(
−C2

ε

)
on ∂(Z3δ

ε \A4δ
ε ).

Therefore, by the comparison principles [PW], we deduce that for some constant
C, c > 0,

‖uε‖L∞(Z3δ
ε \A4δ

ε )
� C exp(−cδ/ε).

��
Proof of Theorem 2.1. From Lemmas 2.7 and 2.8, we see that∫

RN\A4δ
ε

up+1
ε dx < ε3(p+1)/(p−1).

That is, uε is a local minimizer of the constrained problem related to (4). Thus, de-
finingUε ≡ α(ε)1/(p−1)uε,we haveUε satisfying (4). Moreover, defining vε(x) =
Uε(εx),we see that vε satisfies (3). It is easy to see thatα(ε) = I εA, and that (vε) =
ε−N(I εA)(p+1)/(p−1). Thus, Theorem 2.1(i) follows.

The first part of Theorem 2.1(ii) comes from the fact that

lim
ε→0

‖Uε‖ε = lim
ε→0

∫
RN

(Uε)
p+1 dx = lim

ε→0
(I εA)

(p+1)/(p−1) = 0

and [By2, Proposition 3.5] or [GT, Theorem 9.26].
To show the second part of Theorem 2.1(ii), i.e., lim infε→0 ε

−2/(p−1)‖vε‖L∞ >

0, let us define wε ≡ ε−2/(p−1)vε. Then, it suffices to show lim infε→0 ‖wε‖L∞ >

0. It is easy to see

�wε − 1

ε2Vwε + (wε)
p = 0 in R

N.
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Multiplying the above equation through by wε and integrating by parts, we obtain∫
RN

|∇wε|2 + 1

ε2V (wε)
2 dx � ‖(wε)p−1‖L∞

∫
RN

(wε)
2 dx.

We take φ ∈ C∞
0 (RN) such that φ(x) = 1 for x ∈ Z4δ. Then, we see that for some

constant C, c > 0, independent of small ε > 0,∫
RN

(wε)
2 dx

� 2
∫

RN

φ2(wε)
2 + (1 − φ)2(wε)

2 dx

� C

∫
RN

|∇(φwε)|2 dx + C

∫
RN

1

ε2V (wε)
2 dx

� 2C
∫

RN

|∇wε|2 + |∇φ|2(wε)2 dx + C

∫
RN

1

ε2V (wε)
2 dx

� 2C
∫

RN

|∇wε|2 + 2Cc
∫

RN

1

ε2V (wε)
2 dx + C

∫
RN

1

ε2V (wε)
2 dx. (6)

This together with the previous inequality implies that for some constant C > 0,
independent of ε > 0,

‖(wε)p−1‖L∞ � qC.

This proves Theorem 2.1(ii).
Theorem 2.1(iii) comes from Lemmas 2.4–2.8 and the comparison princi-

ples. ��

3. Asymptotic profiles for localized solutions

As we have seen in Section 2, the localized solution vε has a small peak: its
maximum value goes to 0 as ε → 0. This is quite in contrast with the case where
the potential V is bounded away from 0. In this section, we will investigate the
asymptotic profile of localized solutions yielding more fine properties of these so-
lutions. As we will prove, the asymptotic behaviour of localized solutions given in
Theorem 2.1 depends in a very delicate way on some local properties of V around
A. We distinguish three cases here: (i) The flat case, where the interior ofA, int(A),
is non-empty. (ii) The finite case, where A is a single point and V behaves like a
finite-order polynomial nearA. (iii) The infinite case, whereA is a single point and
V is exponentially flat near A. Though these three cases do not cover all possible
local behaviours of V around A, they are the most typical models. Finer analysis
is needed for more complicated cases.

To find asymptotic profiles for each case, it is essential to take appropriate nor-
malizations so that the normalized problem has a non-trivial limiting problem. The
normalization is closely related to a decay property of V around A.

Notation: we say that a family of functions {uε}ε subconverges in a space X
as ε → 0 if for each sequence {εn}∞n=1 with limn→∞ εn = 0, there exists a subse-
quence {εni }∞i=1 of {εn}∞n=1 such that uεni converges in X as i → ∞.
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3.1. The flat case

In this subsection, we consider a case in which the set of interior points of
A, int(A), is not empty, and A = int(A). Let int(A) = ∪i∈JAi, where {Ai}i∈J
are connected components of int(A). For each i ∈ J, we consider the following
problem

�u+ up = 0 in Ai,

u > 0 in Ai, (7-i)

u = 0 on ∂Ai,

Each problem (7-i) has a least-energy solution Ui. Now, let vε be a localized solu-
tion given in Theorem 2.1. We scale it as vε(x) ≡ ε2/(p−1)wε(x). Then, it follows
that

�wε − 1

ε2V (x)wε + wpε = 0 in R
N.

Then, it is easy to see that

1

2

∫
RN

|∇wε|2 + V

ε2 (wε)
2 dx − 1

p + 1

∫
RN

(wε)
p+1 dx

� inf
i∈J

{
1

2

∫
Ai

|∇Ui |2dx − 1

p + 1

∫
Ai

(Ui)
p+1 dx

}
. (8)

Thus, from Theorem 2.1(iii), we deduce that set {∫
RN |∇wε|2 + (wε)

2 dx}ε is
bounded. We can assume that for some w ∈ H 1,2(RN), wε subconverges weakly
in H 1,2(RN) and pointwise to w as ε → 0. Then, from Theorem 2.1(iii), we see
that w(x) = 0 for x /∈ A, and that wε subconverges to w in Lp+1(RN) as ε → 0.
Thus, for any test function ϕ ∈ C∞

0 (int(A)),

0 = lim
ε→0

∫
RN

∇wε · ∇ϕ + 1

ε2Vwεϕ − (wε)
pϕ dx =

∫
RN

∇w · ∇ϕ − wpϕ dx.

Thus, we see that

�w + wp = 0 in int(A),

w � 0 in A, (9)

w = 0 on ∂A.

Since ∪i∈JAi is bounded, it is rather easy to see that for someC, c > 0, independent
of i ∈ J,

1

2

∫
Ai

|∇Ui |2 dx − 1

p + 1

∫
Ai

(Ui)
p+1 dx � C|Ai |−c,

where |Ai | means the N -dimensional volume of Ai. Then, since
∑

i∈J |Ai | < ∞,

it follows that there exist only finite members j ∈ J such that
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1

2

∫
Aj

|∇Uj |2 dx − 1

p + 1

∫
Aj

(Uj )
p+1 dx

= inf
i∈J

{
1

2

∫
Ai

|∇Ui |2 dx − 1

p + 1

∫
Ai

(Ui)
p+1 dx

}
≡ F,

From Theorem 2.1(ii) and (8), we deduce that for some least-energy solution Uj
of (7-j ) satisfying 1

2

∫
Aj

|∇Uj |2 dx − 1
p+1

∫
Aj
(Uj )

p+1 dx = F ,

w = Uj on Aj and w = 0 on int(A)\Aj .
Moreover, from elliptic estimates, we see that for each compact setD ⊂ int(A), the
convergence of wε is uniform on D. Thus, for each δ > 0, wε subconverges uni-
formly to w on R

N \ (∂A)δ as ε → 0, where (∂A)δ ≡ {x ∈ R
N |dist(x, ∂A)} < δ.

Therefore we obtain the following result.

Theorem 3.1. The following equality holds:

lim
ε→0

ε−2(p+1)/(p−1) ε(vε) = 1

2

∫
Aj

|∇Uj |2 dx − 1

p + 1

∫
Aj

(Uj )
p+1 dx.

Moreover, ε2/(1−p)vε subconverges pointwise to some least-energy solution Uj of
(7-j ) on Aj and to 0 on R

N\Aj . For each δ > 0, the convergence is uniform on
{x ∈ R

N |dist(x, ∂A) � δ}.

3.2. The finite case

If a non-negative potential V is analytic at 0 and V (0) = 0, then

V (x) = P2m(x)+ o(|x|2m) as |x| → 0,

where P2m is a homogeneous polynomial of order 2m. In this case, as we will
see later, a decay rate of ‖vε‖L∞ depends on 2m and P2m. In this section, we will
investigate asymptotic behaviour of vε for certain potential functions which are
asymptotically homogeneous at zero.

Definition 3.2.1. For m ∈ (0,∞), a continuous function P : R
N\{0} → (0,∞) is

called an m-homogeneous positive function if P(x) > 0 for x �= 0 and P(tx) =
tmP (x) for t ∈ [0,∞), x ∈ R

N.

This is a generalization of a homogeneous polynomial P2m of order 2m satisfy-

ing P2m(x) > 0 for x �= 0.We define a norm ‖u‖P ≡
( ∫

RN |∇u|2 +Pu2 dx
)1/2

,

and a space H the completion of C∞
0 (RN) with respect to the norm ‖ · ‖P . Then,

by (6) and Sobolev inequalities, we see that the space H is continuously imbedded
into the space Lp+1(RN). Moreover, we have the following result.
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Proposition 3.2.2. There exists a minimizerUP of the following minimization prob-
lem:

IP ≡ inf

{∫
RN

|∇u|2 + Pu2 dx

∣∣∣ ∫
RN

up+1 dx = 1, u ∈ H

}
.

Proof. Let {un}n be a minimizing sequence of IP .We can assume that compactness,
dichotomy or vanishing occurs for {(un)p+1}n (see [Lio1, Lio2] and [Str]). From
Proposition 3.2.2 and [Lio2, Lemma I.1], we see that vanishing does not occur
for {(un)p+1}. It is a standard procedure to show that dichotomy does not oc-
cur. Thus, there exist {xn}n ⊂ R

N such that for any ε > 0, there exists R > 0
satisfying

∫
B(xn,R)

(un)
p+1 dx � 1 − ε. Note that lim|x|→∞ P(x) = ∞. Thus, if

limn→∞ |xn| = ∞, limn→∞
∫
B(xn,R)

(un)
2 dx = 0. For some s ∈ (0, 1),

∫
B(xn,R)

(un)
p+1 dx �

(∫
B(xn,R)

(un)
2 dx

)s (∫
B(xn,R)

(un)
2N/(N−2) dx

)1−s
.

Then, from the Sobolev imbedding lemma and Proposition 3.2.2, it follows that
limn→∞

∫
B(xn,R)

(un)
p+1 dx = 0. This is a contradiction since

∫
B(xn,R)

(un)
p+1 dx

� 1 − ε. Thus, we see that lim supn→∞ |xn| < ∞. We can assume that wn con-
verges weakly to some w0 ∈ H as n → ∞. Then, it is easy to see that ‖w0‖2

P �
limn→∞ ‖wε‖2

P = IP . Moreover, from the boundedness of {xn}, we deduce that∫
RN w

p+1
0 dx = 1. Therefore, w0 is a minimizer of IP . ��

We see that a scaled functionw ≡ (IP )
1

p−1w0 satisfies the following equation:

�w − Pw + wp = 0 in R
N. (10)

Now we see an asymptotic profile and an energy estimate of vε.

Theorem 3.2.3. Let x0 be an isolated zero point of V. Suppose that V (x + x0) =
P(x) + Q(x), where P is an m-homogeneous positive function and lim|x|→0
|x|−m|Q(x)| = 0. Let vε be a localized solution of (3) around x0 given in Theorem
2.1. Then,

lim
ε→0

ε
− 2m
m+2

p+1
p−1 − 2N

m+2 ε(vε) = I

p+1
p−1
P (1/2 − 1/(p + 1)).

Moreover, a rescaled function ε− 2
p−1

m
m+2 vε(ε

2
m+2 x) subconverges to a least-energy

solution w of (10) uniformly on R
N.

Proof. We define
wε(x) = ε

− 2
p−1

m
m+2 vε(ε

2
m+2 x + x0).

Then, we see that

ε
− 2m
m+2

p+1
p−1 − 2N

m+2 ε(vε)

=
∫

RN

1

2
|∇wε|2 + 1

2
(P (x)+ ε− 2m

m+2Q(ε
2

m+2 x))(wε)
2 − 1

p + 1
(wε)

p+1 dx,

(11)
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and that

�wε(x)− (P (x)+ ε− 2m
m+2Q(ε

2
m+2 x))wε + wpε = 0. (12)

For a least-energy solution w of (10), it is easy to see that for some C, c > 0,
w(x) � C exp(−c|x|), x ∈ R

N. Then, we see that

lim sup
ε→0

∫
RN

1

2
|∇wε|2 + 1

2
(P (x)+ ε− 2m

m+2Q(ε
2

m+2 x))(wε)
2 − 1

p + 1
(wε)

p+1 dx

�
∫

RN

1

2
|∇w|2 + 1

2
P(x)w2 − 1

p + 1
wp+1 dx = I

p+1
p−1
P

(
1

2
− 1

p + 1

)
.

(13)

From Theorem 2.1(iii), for each δ′ > 0, there existC, c > 0 such that for |ε 2
m+2 x| �

δ′,

wε(x) � Cε
− 2
p−1

2
m+2 exp(−cε− m

m+2 |x|). (14)

Since lim|x|→0 |x|−m|Q(x)| = 0, there exists δ0 > 0 such that for |ε 2
m+2 x| � δ0,

|εx|− 2m
m+2 |Q(ε 2

m+2 x))| � 1
2 min{P(x)

∣∣∣ |x| = 1}.

Then, for |ε 2
m+2 x| � δ0,

P (x)+ ε− 2m
m+2Q(ε

2
m+2 x) � 1

2P(x). (15)

Thus, we deduce from elliptic estimates [GT], (13) and (14) that ‖wε‖L∞ is uni-
formly bounded for small ε > 0. Since lim|x|→∞ P(x) = ∞, it follows from
(13) and (15) that limR→∞

∫
R�|x|�δ0ε

− 2
m+2

(wε)
2 dx = 0 uniformly with respect

to small ε > 0. Thus, from elliptic estimates [GT] and (14), we see that

lim|x|→∞wε(x) = 0 uniformly with respect to small ε > 0.

Then, by the comparison principle and (14), we see that for some C, c > 0,

wε(x) � C exp(−c|x|) uniformly with respect to small ε > 0. (16)

From (12) and (14), we deduce that for some C, c > 0,∫
RN

|∇wε|2 +
(
P(x)+ ε− 2m

m+2Q(ε
2

m+2 x)
)
(wε)

2 dx

=
∫

RN

1

p + 1
(wε)

p+1 dx

=
∫

|ε 2
m+2 x|�δ0

(wε)
p+1 dx +

∫
|ε 2
m+2 x|�δ0

(wε)
p+1 dx

�
∫

|ε 2
m+2 x|�δ0

(wε)
p+1 dx + C exp(−cε−(p+1)). (17)
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In a manner similar to (6), we can deduce from (15) that for some C > 0,∫
|ε 2
m+2 x|�δ0

(wε)
2 dx � C

∫
RN

|∇wε|2 + (P (x)+ ε− 2m
m+2Q(ε

2
m+2 x))(wε)

2 dx.

(18)

Thus, we see from (17) and (18) that for some C, c > 0,∫
RN

|∇wε|2 + (P (x)+ ε− 2m
m+2Q(ε

2
m+2 x))(wε)

2 dx

� C‖wε‖p−1
L∞

∫
RN

|∇wε|2 + (P (x)+ ε− 2m
m+2Q(ε

2
m+2 x))(wε)

2 dx

+C exp(−cε−(p+1)). (19)

We claim that lim infε→0 ‖wε‖L∞ > 0.
In fact, if lim infε→0 ‖wε‖L∞ = 0,we deduce from (11) and (19) that for some

constants C, c > 0,

ε
− 2m
m+2

p+1
p−1 − 2N

m+2 ε(vε) � C exp(−cε−(p+1)).

Then, from the elliptic estimates [GT], we see that ‖vε‖L∞ decays exponentially
as ε → 0. This contradicts Theorem 2.1(ii).

Now, from the elliptic estimates [GT] and (16), we see that wε subconverges
uniformly to a least-energy solution w of (10). Then, the energy estimate of vε
comes from (13). This completes the proof. ��

3.3. The infinite case

In this subsection, we will investigate the asymptotic behaviour of a localized
solution around x0 when V (x) is typically of the form exp(−1/|x − x0|m). In fact,
we shall consider a more general situation where the level sets of V can be non-
convex sets, but strictly star-shaped. More precisely, let A be a bounded domain in
R
N.We assume that there exists a continuous map r : R

N\{0} → (0,∞) satisfying

x/t ∈ R
N\A, t ∈ (0, r(x)),

x/t ∈ ∂A, t = r(x),

x/t ∈ A, t ∈ (r(x),∞).

It is easy to see that such an A should be a strictly star-shaped domain. Then, for
any x ∈ R

N\{0}, we can find a unique pair (r(x), s(x)) ∈ (0,∞) × ∂A with
x = r(x)s(x).

Definition 3.3.1. A continuous function b : R
N → [0,∞) is called an A quasi-

homogeneous function if

(i) b(r(x)s(x)) depends only on r(x);
(ii) b(r) is strictly increasing with respect to r ∈ [0,∞); and
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(iii)

lim
r→0

b(cr)

b(r)

{
< 1 for c < 1,
> 1 for c > 1.

Moreover, a continuous function a : R
N\{0} → (0,∞) is called an asymptotically

(A, b) quasi-homogeneous function if there is an A quasi-homogeneous function
b satisfying lim|x|→0

a(x)
b(x)

= 1.

Let V (x0) = 0.We can assume that x0 = 0.We assume that for |x| � 1,

V (x) = exp

(
− 1

a(x)

)
,

where a is an asymptotically (A, b) quasi-homogeneous function. We define a
function

g(ε) = 1

b−1
( −1

log ε2

) ,
and

wε(x) = (εg(ε))
−2

(p−1) vε

(
x

g(ε)

)
.

Then, it follows that

�wε(x)− (εg(ε))−2 V

(
x

g(ε)

)
wε(x)+ wpε (x) = 0;

thus, for |x| � g(ε),

�wε(x)− (εg(ε))−2 exp


− 1

a
(

x
g(ε)

)

wε(x)+ wpε (x) = 0. (20)

If b is an A quasi-homogeneous function, it is not difficult to show from (ii), (iii)
in Definition 3.3.1 above that for some α > 0, limr→0 b(r)/r

α = 0. Then, we can
also show that

lim
ε→0

g(ε) = ∞ and lim
ε→0

g(ε)/| log ε|1/α = 0. (21)

From (21), we deduce that for any C > 0,

lim
ε→0

1

(g(ε))2
exp


 C

b
(

1
g(ε)

)

 = lim

ε→0

1

(εCg(ε))2
= ∞.

Note that

(εg(ε))−2 exp


− 1

a
(

x
g(ε)

)



= 1

(g(ε))2
exp


log

1

ε2 − 1

b
(
r(x)
g(ε)

) b
(
r(x)
g(ε)

)
a
(

x
g(ε)

)



= 1

(g(ε))2
exp


 1

b
(

1
g(ε)

)

1 −

b
(

1
g(ε)

)
b
(
r(x)
g(ε)

) b
(
r(x)
g(ε)

)
a
(

x
g(ε)

)



 .
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Thus, we see from Definition 3.3.1(iii) that for each compact set B ⊂ A,

lim
ε→0

max
x∈B (εg(ε))

−2 exp


− 1

a
(

x
g(ε)

)

 = 0. (22)

Moreover, from Definition 3.3.1(iii), there exists a sufficiently small D ∈ (0, 1)
such that for any d > 1,

lim
ε→0

min


(εg(ε))−2 exp


− 1

a
(

x
g(ε)

)

 ∣∣∣∣ r(x) � d, |x| � Dg(ε)


 = ∞. (23)

We consider the following limiting problem:

�w + wp = 0 in A,

w > 0 in A, (24)

w = 0 on ∂A.

From (22), we deduce that

lim sup
ε→0

{
1

2

∫
RN

|∇wε|2 + (εg(ε))−2V

(
x

g(ε)

)
(wε)

2 dx

− 1

p + 1

∫
RN

(wε)
p+1 dx

}

� 1

2

∫
RN

|∇w|2 dx − 1

p + 1

∫
RN

wp+1 dx ≡ I (A),

where w is a least-energy solution of (24). Then, from the elliptic estimates [GT],
we see that if d > 1, ‖wε‖L∞({x∈RN | r(x)�d}) is bounded uniformly for small ε > 0.
Moreover, from the elliptic estimates [GT] and (23), we deduce that

lim
ε→0

‖wε‖L∞({x∈RN | r(x)>d, |x|�Dg(ε)}) = 0.

From Theorem 2.1(iii), we see that for any C > 0,

lim
ε→0

sup{wε(x)
∣∣∣ |x| � Cg(ε)} = 0.

Thus, ‖wε‖L∞ is uniformly bounded for small ε > 0. Moreover, as in the finite
case, we see that ‖wε‖L∞ is uniformly bounded away from 0 for small ε > 0.
Therefore, by arguments similar to those used in preceding cases, we obtain the
following result.

Theorem 3.3.2. Let x0 be an isolated zero point of V. Suppose that V (x + x0) =
exp(− 1

a(x)
) for |x| < 1, where a is an asymptotically (A, b) quasi-homogeneous

function. Define

g(ε) = 1

b−1
( −1

log ε2

) .
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Let vε be a localized solution of (3) around x0 given in Theorem 2.1. Then,

lim
ε→0

(εg(ε))
− 2(p+1)

(p−1) g(ε)−N ε(vε) = I (A).

Moreover, for d > 0, a rescaled function (εg(ε)−
2

p−1 vε(
x
g(ε)

) subconverges to w

uniformly on {x ∈ R
N |dist(x, ∂A) � d} as ε → 0, where w is a least-energy

solution of (24) and

w(x) =
{
w(x) for x ∈ A,

0 for x /∈ A.

Remark 3.3.3. We consider the problem

�w + wp = 0 in Aλ,

w > 0 in Aλ, (25)

w = 0 on ∂Aλ,

where Aλ ≡ B((−1 + λ, 0, . . . , 0), 1) ∪ B((1 − λ, 0, . . . , 0), 1). We can find a
least-energy solution wλ of (25) in the class of even functions. Then, it is easy to
see that for sufficiently small λ > 0, wλ has exactly two maximum points. Note
that for small λ > 0, Aλ is a strictly star-shaped domain. Then, we can easily
find an Aλ quasi-homogeneous function b which is even, that is, b(x1, . . . , xN) =
b(|x1|, . . . , |xN |). Now, we let V (x) = exp(− 1

b(x)
) and vε be a least-energy solu-

tion of (3) in the class of even functions. Then, as in Theorem 3.3.2, we can show

that for each d > 0, a rescaled function (εg(ε))−
2

p−1 vε(
x
g(ε)

) converges to wλ uni-
formly on {x ∈ Aλ|dist(x, ∂A) � d} as ε → 0. Thus, we see that vε has at least
two local maximum points h1

ε �= h2
ε such that |h1

ε−h2
ε | � 4

g(ε)
→ 0 as ε → 0.This

phenomenon is in high contrast with the case infx∈RN V (x) > 0; in that case, any
single-bump solution and any locally least-energy solution concentrating around
local minimum points of V has at most one local maximum point (e.g., [W]).

3.4. Asymptotic profiles for least-energy solutions

In this section, we discuss more fine asymptotic profiles for the least-energy
solutions given in Theorem 2.2. As we have seen in the preceding subsections,
the faster the potential V decays at a zero, the smaller the energy of a localized
solution around the zero is. Thus, we can say that as ε → 0 the least-energy solu-
tions concentrate around the fastest decaying zeros of V . For instance, when int(Z)
is not empty, the least-energy solution vε concentrates around a certain connect-
ed component Aj of int(Z), and its normalization ε−2/(p−1)vε(x) converges to a
least-energy solution Uj of problem (7-j ) on Aj as in Subsection 3.3.1. Here, the
energy ofUj should be a minimum among the energies of least-energy solutionsUi
of problem (7-i) on Ai when Ai’s are connected components of int(Z). Moreover,
if int(Z) is empty and each zero of V is of either the finite case or the infinite case,
as ε → 0, the least-energy solutions vε concentrate around the fastest decaying
zeros of V and its normalizations, depending on the decay order of the zero, con-
verge to a least-energy solution of problems (10) or (24) as in Subsections 3.3.2 and
3.3.3. Furthermore, if there are at least two points at which V has the fastest decay
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rate, the least-energy solutions concentrate around a point among the points of the
fastest decay rate where the smallest energy is attained among the least-energy
solutions of normalized limiting problems as in Subsections 3.2 or 3.3. As in the
case of localized solutions, it seems that we need more fine analysis to find a finer
asymptotic profile of the least-energy solutions for arbitrary types of zeros of V.

4. Some remarks

We have established an asymptotic profile for localized minimal solutions con-
structed in Theorem 2.1. (We note that in Section 3, the subconvergence for the
asymptotic profile can be replaced by the convergence if the normalized limiting
problem has a unique positive solution.) The surprising new phenomenon here is
that, depending upon the local behaviour of V near a zero set A of V , we obtain
a variety of limiting problems which exhibit quite different features. This is in
striking contrast with the situation of inf V > 0 under which, as we surveyed in
the introduction, there is only one limiting problem. However, the three cases we
consider in Section 3 do not cover all possible types of local behaviours ofV around
a zero set. Thus, it will be very interesting to investigate the asymptotic behaviour
of the localized solutions in more complicate situations.

In the flat and the infinite cases, the limiting problems may have many positive
solutions depending on the geometry of bounded domain A (see [By2-3] and [D]).
Thus, we expect that there can be a rich variety of localized solutions concentrating
around the zero set of V depending on the geometry of the set.
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