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1. INTRODUCTION

This paper is concerned with constructing multiple nontrivial solutions of the semilinear
elliptic boundary value problem

(P) −∆u = λu + f (x, u) in Ω, u = 0 on∂Ω,

which has received much attention during the last several decades. HereΩ is a bounded
smooth domain inRN . We make the following assumptions onf :

(f1) f ∈ C1(Ω × R, R).
(f2) f (x, 0) = 0 = fu(x, 0).
(f3) There areC > 0 and 2< p < 2∗ such that|f (x, u)| ≤ C(1 + |u|

p−1) for all x ∈ Ω

andu ∈ R, where 2∗ = 2N/(N − 2) for N ≥ 3 and 2∗ = ∞ for N = 1, 2.
(f4) There areµ > 2 andM > 0 such that

0 < µF(x, u) := µ

∫ u

0
f (x, t) dt ≤ uf (x, u)

for all x ∈ Ω and|u| ≥ M.

Hypotheses(f1)–(f4) are standard conditions used in the paper [1] by Ambrosetti and
Rabinowitz and subsequently by many others in the study of superlinear problems. The
question of interest here is in giving a lower bound on the number of nontrivial solutions.
Denote by 0< λ1 < λ2 < · · · the distinct eigenvalues of the linear eigenvalue problem

(P0) −∆v = λv in Ω, v = 0 on∂Ω.

In [1], for λ < λ1, one positive and one negative solution were obtained by use of the
mountain-pass theorem. Whenf is also odd inu, infinitely many solutions were obtained
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for anyλ by the symmetric mountain-pass theorem. Without the oddness condition, a third
solution forλ < λ1 was constructed by Wang in [18] by using a two-dimensional linking
method and a Morse-theoretic approach. This result has been generalized and proved in
other ways by many authors (see [2–5, 7, 12] and the references therein). The question
is still open as to whether there exist infinitely many solutions without assuming any
symmetry conditions. Whenλ > λ1, in general one nontrivial solution is found in [15,
16] under an additional condition:f (x, u)u ≥ 0. The same conclusion was proved in
[10, 11] without this additional condition whenλ 6= λi and with a local sign condition
on f (x, u)u near zero whenλ = λi for somei. Recently, in a paper of Mugnai [13], it
is proved that forλ < λi and very close toλi , there are three nontrivial solutions. The
conditions in [13] seem to be unduly restrictive since it is required thatµ = p with µ in
(f4) andp in (f3). This requires the nonlinear term to behave exactly like|u|

p−2u for |u|

large. On the other hand, the bifurcation result ([14, 16]) always gives bifurcation at an
eigenvalueλi regardless of the behavior of the nonlinearity in the large.

The purpose of the current paper is two-fold. On one hand, we prove the multiplicity
result of [13] under more natural conditions. On the other hand, our approach is different
in that we make use of a combination of bifurcation analysis and minimax methods, which
have been used separately in [14–16] and [3, 18]. Our method also gives some additional
information.

Before stating our main results we introduce two additional assumptions.

(f5) F (x, u) ≥ 0 for all x andu; anduf (x, u) > 0 for |u| > 0 small.
(f6) uf (x, u) < 0 for |u| > 0 small.

Denote by F+ and F− the positive and negative parts ofF , respectively, i.e.
F±(x, u) = max{±F(x, u), 0}. The main results in this paper are the following two
theorems:

THEOREM 1.1. Assume(f1)–(f5) hold and letk ≥ 1 be fixed. Then there isδ > 0 such
that forλ ∈ (λk+1 − δ, λk+1), equation(P) has at least three nontrivial solutions.

THEOREM 1.2. Assume(f1)–(f4) and (f6) hold and letk ≥ 1 be fixed. Then there is
δ > 0 such that whensup(x,u)∈Ω×R F−(x, u) < δ,

(i) for λ ∈ (λk+1, λk+1 + δ), equation(P) has at least three nontrivial solutions;
(ii) for λ ∈ (λk+1 − δ, λk+1], equation(P) has at least two nontrivial solutions.

REMARK 1.3. The solutions are constructed by a combination of bifurcation arguments,
topological linking and Morse theory. In Theorems 1.1 and 1.2(i) two solutions are small
while the third one stays away from 0 asλ → λk+1. In Theorem 1.2(ii), we have two
solutions which are not near 0.

The paper is organized as follows. In Section 2 we recall the classical bifurcation results
of [14, 16] and discuss their homological local content. Section 3 gives the existence
of a solution by a linking argument which requiresλ to be close toλk+1. We also get
information on the critical groups of this solution. Section 4 is devoted to the proof of the
main results. We finish Section 4 with a discussion comparing the solutions obtained from
the linking structures associated with two adjacent eigenvalues, and prove that for some
λ-interval these solutions are different.
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2. BIFURCATION SOLUTIONS

In this section we get two small solutions by applying bifurcation theory ([16]) and then
discuss their homological local consequences. First let us recall the bifurcation result
of [16].

THEOREM 2.1 (Theorem 11.35 in [16]).LetE be a Hilbert space andI ∈ C2(E, R) with

∇I (u) = Lu + H(u)

whereL ∈ L(E, E) is symmetric andH(u) = o(‖u‖) as‖u‖ → 0. Consider the equation

(2.2) Lu + H(u) = λ u.

Letµ ∈ σ(L) be an isolated eigenvalue of finite multiplicity. Then either

(i) (µ, 0) is not an isolated solution of(2.2) in {µ} × E, or
(ii) there is a one-sided neighborhoodΛ of µ such that for allλ ∈ Λ \ {µ}, (2.2)has at

least two distinct nontrivial solutions, or
(iii) there is a neighborhoodΛ of µ such that for allλ ∈ Λ \ {µ}, (2.2) has at least one

nontrivial solution.

Now we apply Theorem 2.1 to get two small solutions of equation (P). We have

PROPOSITION2.3. Let f satisfy(f1), (f2) andk ≥ 1. Then there is aδ > 0 such that
equation(P) has at least two nontrivial solutions for

(i) everyλ ∈ (λk+1 − δ, λk+1) if (f5) holds,
(ii) everyλ ∈ (λk+1, λk+1 + δ) if (f6) holds.

PROOF. We prove this result by verifying that case (ii) of Theorem 2.1 occurs under the
given conditions. First, under(f1) and (f2), every eigenvalueλj of (P0) gives rise to a
bifurcation point (λj , 0) of equation (P).

Let (λ, u) ∈ R × E be a solution of equation (P) near(λk+1, 0). Consider the linear
eigenvalue problem

(2.4) −∆v − h(x)v = µv in Ω, v = 0 on∂Ω,

whereh(x) = f (x, u(x))/u(x) for u(x) 6= 0 andh(x) = 0 for u(x) = 0. Its eigenvalues
will be denoted byµ1(u) < µ2(u) ≤ · · · .

Suppose(f5) holds. Thenh(x) > 0 andh(x) > 0 if u(x) 6= 0. Therefore the
standard variational characterization of the eigenvalues of (2.4) showsµi(u) is less than
the correspondingi-th ordered eigenvalueνi of (P0) for eachi ∈ N andµi(u) → νi

as (λ, u) → (λk+1, 0). But u is an eigenfunction of (2.4) with eigenvalueλ. It follows
thatλ < λk+1 and alternative (i) of Proposition 2.3 holds. Likewise (ii) is valid if(f6) is
satisfied. 2

The (weak) solutions of equation (P) correspond to critical points of

I (u) :=
1

2

∫
Ω

(|∇u|
2
− λu2) dx −

∫
Ω

F(x, u) dx, u ∈ E := W
1,2
0 (Ω).
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We will use the following notation. Forj ∈ N,

E(λj ) = ker(−∆ − λj ), Ej =

j⊕
i=1

E(λi), νj = dimE(λj ), j̀ = dimEj .

Thus j̀ =
∑j

i=1 νi . Forc ∈ R,

I c
= {u ∈ E | I (u) ≤ c}, Kc = {u ∈ E | I ′(u) = 0, I (u) = c}.

For later use we give information on the critical group ofI at 0. We say a functional
I ∈ C1(E, R) has alocal linking structureat 0 with respect to a direct sum decomposition
E = Y ⊕ Z (cf. [10, 11]) if there is anr > 0 such that

I (u) ≤ 0 for u ∈ Y with ‖u‖ ≤ r, I (u) > 0 for u ∈ Z with 0 < ‖u‖ ≤ r.

Recall that theq-th critical groupof I at its isolated critical pointu is defined as

Cq(I, u) := Hq(I c
∩ U, I c

∩ U \ {u}).

Herec = I (u) andHq(A, B) is theq-th relative singular homology group of the topol-
ogical pair(A, B) with coefficients in a fieldF. We have

PROPOSITION2.5. If (f5) is satisfied, thenCq(I, 0) = δq,`k+1F whenλ ∈ [λk+1, λk+2).
If (f6) is satisfied, thenCq(I, 0) = δq,`k

F whenλ ∈ (λk, λk+1].

PROOF. The nondegenerate cases are easily seen. Atλ = λk+1, u = 0 is an isolated
degenerate solution of equation (P) with Morse index`k and nullity νk. When (f5) is
satisfied,I has a local linking at 0 with respect to the decompositionE = Ek+1 ⊕ E⊥

k+1.
When(f6) is satisfied, we see thatF(x, u) ≤ 0 for |u| small and thenI has a local linking
at 0 with respect to the decompositionE = Ek ⊕ E⊥

k . Proposition 2.2 in [17] then gives
the conclusions of Proposition 2.5. 2

3. MINIMAX SOLUTIONS

In this section we construct a large solution of equation (P) by applying a homological
linking argument and give some estimate of its Morse index. This is done for cases(f5)

and(f6).

LEMMA 3.1. Let f satisfy(f1)–(f3) andk ≥ 1. Then there exist constantsβ1, r1 > 0,
depending onλ < λk+2, such that

(3.2) I (u) ≥ β1 for u ∈ E⊥

k+1 with ‖u‖ = r1.

PROOF. By (f2) and(f3), for ε > 0, there isCε > 0 such that

F+(x, t) ≤
ε

2
t2

+ Cε|t |
p.
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Thus foru ∈ E⊥

k+1,

I (u) ≥
1

2

(
1 −

λ + ε

λk+2

)
‖u‖

2
− Cε

∫
Ω

|u|
p dx.

Let α ∈ (0, 1) be such that
1

p
=

α

2∗
+

1 − α

2
.

Then by the Gagliardo–Nirenberg inequality, for someC1 > 0 independent ofλ < λk+2,∫
Ω

|u|
p dx ≤ C1‖u‖

αp

( ∫
Ω

u2 dx

)(1−α)p/2

.

Since ∫
Ω

u2 dx ≤
1

λk+2

∫
Ω

|∇u|
2 dx, ∀u ∈ E⊥

k+1,

one has ∫
Ω

|u|
p dx ≤ C1λ

−(1−α)p/2
k+2 ‖u‖

p, ∀u ∈ E⊥

k+1.

Therefore, settinĝC = CεC1 gives

(3.3) I (u) ≥
1

2

(
1 −

λ + ε

λk+2

)
‖u‖

2
− Ĉλ

−(1−α)p/2
k+2 ‖u‖

p.

Let ‖u‖ = r and

g(r) =
1

2

(
1 −

λ + ε

λk+2

)
r2

− Ĉλ
−(1−α)p/2
k+2 rp.

It is easy to see thatg achieves its maximum onR at

r1 = r1(k, λ) :=

(
λk+2 − (λ + ε)

pĈ λ
1−(1−α)p/2
k+2

)1/(p−2)

with the maximum given by

(3.4) g(r1) =

(
1

2
−

1

p

)
(pĈ)−2/(p−2)

(
λk+2 − (λ + ε)

λα
k+2

)p/(p−2)

=: β1 = β1(k, λ).

Hence (3.3) and (3.4) show (3.2) holds. The proof is complete.2

Next take an eigenfunctionϕk+2 corresponding toλk+2. Set Vk+1 = Ek+1 ⊕

span{ϕk+2} and let

Q1 = {u ∈ Vk+1 | ‖u‖ ≤ R1, u = v + tϕk+2, v ∈ Ek+1, t ≥ 0},

whereR1 > 0 will be given below. We have
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LEMMA 3.5. Let f satisfy(f4), (f5) andk ≥ 1. Then there existsR1 > 0 independent
of λ < λk+2, δ1 > 0 andσ1 ∈ R such that

I (u) ≤ σ1 < β1 for u ∈ ∂Q1, ∀λ ∈ (λk+1 − δ1, λk+1).

PROOF. It follows from (f4) that

F(x, t) ≥ C|t |µ, ∀|t | ≥ M,

for some positive constantC independent ofλ. For u ∈ Vk+1, write u = y + z, where
y ∈ Ek andz ∈ E(λk+1) ⊕ span{ϕk+2}. Then

(3.6) I (u) ≤
1

2

(
1 −

λ

λk

)
‖y‖

2
+

1

2

(
1 −

λk

λk+2

)
‖z‖2

− C‖u‖
µ
Lµ + C.

Sinceµ > 2 andVk+1 is finite-dimensional, (3.6) shows there existsR1 > 0 independent
of λ such that

I (u) ≤ 0 for u ∈ Vk+1 with ‖u‖ = R1.

Now fixing suchR1 > 0, notice that

∂Q1 = {u = v + tϕk+2 | v ∈ Ek+1, (‖v‖ ≤ R1, t = 0) or (‖u‖ = R1, t ≥ 0)}.

Forv ∈ Ek+1 with ‖v‖ ≤ R1, write v = w + z, wherew ∈ Ek andz ∈ E(λk+1). Then

I (v) =
1

2

∫
Ω

(|∇w|
2
− λw2) dx +

1

2

∫
Ω

(|∇z|2 − λz2) dx −

∫
Ω

F(x, v) dx(3.7)

≤
1

2

(
1 −

λ

λk+1

)
‖z‖2

≤
1

2

(
1 −

λ

λk+1

)
R2

1.

Here we only used the assumptionF(x, t) ≥ 0 in (f5). If we takeδ1 = β1λk+1/R
2
1 and

σ1 = β1/2, the conclusion of Lemma 3.5 follows from (3.7). 2

REMARK 3.8. If (f4) is strengthened to

(f ′

4) There isµ > 2 such that

0 < µF(x, u) := µ

∫ u

0
f (x, t) dt ≤ uf (x, u), ∀x ∈ Ω, u 6= 0,

we can get a sharper estimate forσ1 in the last lemma. In fact, using similar arguments to
the above we have

I (u) ≤ σ ′

1, ∀u ∈ ∂Q,

where

σ ′

1 = σ ′

1(k, λ) =
µ − 2

2µ
(Cµ)−2/(µ−2)

|Ω|(λk+1 − λ)µ/(µ−2)

in whichC is such thatF(x, t) ≥ C|t |µ, following from (f ′

4).
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Set
S1 := {u ∈ E⊥

k+1 | ‖u‖ = r1}.

It follows from Lemmas 3.1 and 3.5 that∂Q1 andS1 link homologically ([6]) since we can
chooseR1 > r1. Define

c1 := inf
τ∈Γ1

sup
u∈|τ |

I (u)

where
Γ1 = {τ | τ is a singular̀ k+1 + 1-chain with∂τ = ∂Q1}.

It is well known ([16]) that the functionalI satisfies the Palais–Smale condition. By
Theorem 1.5 of Chapter II in [6] we have

LEMMA 3.9. Assume(f1)–(f5) hold. Thenc1 ≥ β1 > 0 is a critical value ofI and there
is au2 ∈ Kc1 such that

(3.10) C`k+1+1(I, u2) 6= 0.

Next we consider(f6) instead of(f5) for f near 0. Set

Q2 = {u ∈ Vk+1 | ‖u‖ ≤ R2, u = v + tϕk+2, v ∈ Ek+1, t ≥ 0},

whereR2 > 0 will be given below. We have

LEMMA 3.11. Let f satisfy(f3), (f4) and (f6), andk ≥ 1. There existsR2 > 0 inde-
pendent ofλ, δ2 > 0 andσ2 ∈ R such that whensup(x,t)∈Ω×R F−(x, t) < δ2,

(3.12) I (u) ≤ σ2 < β1 for u ∈ ∂Q2, ∀λ ∈ (λk+1 − δ2, λk+1 + δ2).

PROOF. With the sameR1 > 0 as given in Lemma 3.5, we have

I (u) ≤ 0 for u ∈ Vk+1 with ‖u‖ = R1.

Checking the proof there, we seeR1 > 0 can be chosen to be the same if we make
sup(x,u)∈Ω×R F−(x, u) smaller. Now setR2 := R1. Notice that

∂Q2 = {u = v + tϕk+2 | v ∈ Ek+1, (‖v‖ ≤ R2, t = 0) or (‖u‖ = R2, t ≥ 0)}.

Let M̂ = sup(x,u)∈Ω×R F−(x, u). Forv ∈ Ek+1 with ‖v‖ ≤ R2, writing v = w+z, where
w ∈ Ek andz ∈ E(λk+1), we have

I (v) =
1

2

∫
Ω

(|∇w|
2
− λw2) dx +

1

2

∫
Ω

(|∇z|2 − λz2) dx −

∫
Ω

F(x, v) dx(3.13)

≤
1

2

(
1 −

λ

λk

)
‖w‖

2
+

1

2

(
1 −

λ

λk+1

)
‖z‖2

+ M̂|Ω|

≤
1

2

(
λ − λk+1

λk+1

)
R2

2 + M̂|Ω|.

Take

δ2 =
β1λk+1

R2
2 + |Ω|λk+1

and σ2 =
β1

2
.

If M̂ < δ2, then (3.13) shows that (3.12) holds. 2
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It follows from Lemmas 3.1 and 3.11 that∂Q2 andS1 link homologically ([6]) since
we can chooseR2 > r2. Define

c2 := inf
τ∈Γ2

sup
u∈|τ |

I (u)

where
Γ2 = {τ | τ is a singular̀ k+1 + 1-chain with∂τ = ∂Q2}.

Now applying Theorem 1.5 of Chapter II in [6] again, we have

LEMMA 3.14. Assume(f1)–(f4) and(f6) hold. Thenc2 ≥ β1 > 0 is a critical value of
I and there is au2 ∈ Kc2 such that

(3.15) C`k+1+1(I, u2) 6= 0.

4. PROOFS OF THE MAIN RESULTS AND FURTHER REMARKS

We begin by giving the proofs of our main results, using the partial results of the previous
sections.

PROOF OF THEOREM 1.1. By Proposition 2.3(i), equation (P) has two nontrivial
solutions which are small. By Lemma 3.9, equation (P) has a solution with positive energy
bounded away from 0 forλ nearλk+1. Hence these three solutions are different. 2

PROOF OFTHEOREM 1.2. For case (i), the proof is similar to that of Theorem 1.1. By
Proposition 2.3(ii) and Lemma 3.14, we obtain two small solutions from the bifurcation
result and one large one from the linking argument. As above, these three solutions are
different.

We prove case (ii) next. It follows from Lemma 3.14 thatI has a critical pointu2 with
I (u2) ≥ β1 > 0 andC`k+1+1(I, u2) 6= 0. AssumeI has only two critical points 0 andu2.
Denote byS∞ the unit sphere inE. Choosea0 < 0. Following the same arguments as in
[18], we have

(4.1) Hq(I a0) ∼= Hq(S∞), Hq(E, I a0) = 0, ∀q = 0, 1, 2, . . . .

Then it is easy to see thatCq+1(I, u2) ∼= Cq(I, 0) for all q. But this is impossible since by
Proposition 2.5,Cq(I, 0) ∼= δq,`k

F for anyλ ∈ (λk, λk+1]. The proof is complete. 2

We conclude this section with further discussion on the linking structure used to
construct the solutions in Theorems 1.1 and 1.2 which stay away from zero. Under
(f1)–(f4), whenλ 6= λi , it is well known that there is a solution given by the linking
method. Of course, the linking structure used depends on whereλ is located. For
λ ∈ (λi, λi+1) the same linking structure is used. In Section 3, we proved that the
solution constructed by using the linking associated with(λk+1, λk+2) is still valid for
λ ∈ (λk+1 − δ, λk+1] producing one of the larger solutions in the main theorems. Next, we
examine the difference between the solutions constructed by using the linking associated
with (λk, λk+1) and(λk+1, λk+2). By showing they are different and by getting information
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on their local critical groups, we can give a different proof of Theorem 1.1. This proof
provides some different information on the solutions although it requires a slightly stronger
condition.

Take an eigenfunctionϕk+1 corresponding toλk+1 and letVk = Ek ⊕ span{ϕk+1}. By
arguments as in Section 3, we have

LEMMA 4.2. Letf satisfy(f1)–(f4). There existsR > 0 independent ofλ ∈ (λk, λk+1)

such that
I (u) ≤ 0 for u ∈ Vk with ‖u‖ = R,

and there existβλ = β(λ) > 0 andrλ = r(λ) > 0, dependent onλ ∈ (λk, λk+1), such that

I (u) ≥ βλ for u ∈ E⊥

k with ‖u‖ = rλ.

Now for fixedR > 0 given in Lemma 4.2, define

Qλ := {u ∈ Vk | u = v + tϕk+1, v ∈ Ek, t ≥ 0, ‖u‖ ≤ R},

Sλ := {u ∈ E⊥

k | ‖u‖ = rλ}.

It follows from Lemma 4.2 that∂Qλ andSλ link since we can chooseR > rλ for any
λ ∈ (λk, λk+1). By Theorem 1.2 of Chapter II in [6],∂Qλ andSλ also link homologically.
Therefore we can define

cλ := inf
τ∈Γ

sup
u∈|τ |

I (u)

where
Γ = {τ | τ is a singular̀ k + 1-chain with∂τ = ∂Qλ}.

Thencλ ≥ βλ > 0 is a critical value ofI for λ ∈ (λk, λk+1) and there isuλ ∈ Kcλ such
that

(4.3) C`k+1(I, uλ) 6= 0.

A similar argument to that in [1] shows thatuλ is bounded inE uniformly in λ ∈

(λk, λk+1). By standard elliptic regularity arguments,uλ is bounded inC1(Ω) uniformly
in λ ∈ (λk, λk+1). We give the asymptotic behavior of the solutionuλ asλ → λ−

k+1. For
this purpose we assume

(f7) uf (x, u) ≥ 2F(x, u) ≥ 0 for all x andu and the first inequality is strict for|u| > 0
small.

Note that(f7) is slightly stronger than(f5). Under(f7) we have

LEMMA 4.4. cλ ≤ supu∈Qλ
I (u) → 0, anduλ → 0 in C0(Ω̄) asλ → λ−

k+1.

PROOF. It is easy to seecλ → 0 asλ → λ−

k+1. By regularity for a subsequenceτn →

λ−

k+1, we may assumeuτn → u in C0(Ω̄) asn → ∞. We only need to showu = 0. Since

2cτn = 2I (uτn) − 〈I ′(uτn), uτn〉 =

∫
Ω

(f (x, uτn)uτn − 2F(x, uτn)) dx,

lettingn → ∞, the conclusion follows from(f7). 2
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Using the fact thatuλ is small, we get an estimate for the Morse index ofuλ for λ near
λk+1. Denote bym(uλ) andn(uλ) the Morse index and nullity ofuλ, respectively. Then

LEMMA 4.5. There isδ1 > 0 such that

m(uλ) ≥ `k, n(uλ) ≤ νk+1, ∀λ ∈ (λk+1 − δ1, λk+1).

We summarize the above results:

PROPOSITION4.6. Let f satisfy (f1)–(f4) and (f7). For λ ∈ (λk, λk+1), there is a
solutionuλ of equation(P) satisfyingI (uλ) > 0, C`k+1(I, uλ) 6= 0, I (uλ) → 0 and
uλ → 0 (in C0(Ω)) asλ → λ−

k+1. Furthermore, there isδ1 > 0 such that

Cq(I, uλ) = 0, ∀q 6∈ [`k, `k+1], ∀λ ∈ (λk+1 − δ1, λk+1).

Now forλ close toλk+1 from the left, we can construct two solutions of equation (P) by
using the linking associated with(λk, λk+1) and(λk+1, λk+2). As λ → λ−

k+1, one solution
tends to 0 and the other stays away from 0. Hence we have the following result.

THEOREM 4.7. Let f satisfy (f1)–(f4) and (f7). There isδ > 0 such that forλ ∈

(λk+1 − δ, λk+1), the solutions of equation(P) constructed by using linking associated
with (λk, λk+1) and(λk+1, λk+2) both exist and are different.

Finally, we give a different proof of Theorem 1.1 (under (f7)) by showing the existence
of a third nontrivial solution via a Morse-theoretic approach.

Let λ ∈ (λk+1 − δ, λk+1) and letuλ, u2 be the solutions constructed above with
0 < I (uλ) < I (u2). Assume thatI has only three critical points{0, uλ, u2}. Choose
a0, a1, a2 ∈ R such thata0 < 0 < a1 < I (uλ) < a2 < I (u2). Then by the deformation
and excision properties of homology (see e.g. [6]), we have

Cq(I, 0) ∼= Hq(I a1, I a0), Cq(I, uλ) ∼= Hq(I a2, I a1), Cq(I, u2) ∼= Hq(E, I a2).

LEMMA 4.8. For all q = 0, 1, 2, . . . ,

Cq(I, 0) ∼= δq,`k
F, Hq(I a1) ∼= δq,`k

F, Hq(E, I a1) ∼= δq,`k+1F.

PROOF. The first result follows from 0 being a nondegenerate critical point ofI with
Morse index`k. The others follow from (4.1) and the exact sequence of the triple
(E, I a1, I a0). 2

LEMMA 4.9.
Cq+1(I, u2) ∼= Cq(I, uλ) for q ≥ `k + 2,

Cq(I, u2) ∼= Cq−1(I, uλ) for q ≤ `k,

and we have an exact sequence

0 → C`k+2(I, u2) → C`k+1(I, uλ)

→ H`k+1(E, I a1) → C`k+1(I, u2) → C`k
(I, uλ) → 0.
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PROOF. This lemma is obtained by using the exact sequence of the triple(E, I a2, I a1)

and Lemma 4.8. 2

NEW PROOF OFTHEOREM 1.1. In the caseνk+1 ≥ 2, `k+1 = `k + νk+1 ≥ `k + 2, by
Lemma 4.9 and (3.10), we get

C`k+1(I, uλ) ∼= C`k+1+1(I, u2) 6= 0.

However, by Lemma 4.5, we haveCq(I, uλ) = 0 for q /∈ [`k, `k+1] and the Morse index
of uλ is either`k or `k + 1. If it is `k, then by the shifting theorem ([6]) we have

C`k+1(I, uλ) ∼= C`k+νk+1(I, uλ) ∼= Cνk+1(Ĩ , uλ) 6= 0

whereĨ is the restriction ofI to the kernel ofI ′′(uλ). Thereforeuλ is a local maximum
point of Ĩ and we getCq(I, uλ) ∼= δq,`k+1F. This contradicts (4.3). If the Morse index is
`k + 1, we can use the shifting theorem to getCq(I, uλ) ∼= δq,`k+1F, still a contradiction
for `k+1 > `k + 1.

Next assumeνk+1 = 1; then`k+1 = `k + 1. SinceC`k+1(I, uλ) 6= 0 we have
Cq(I, uλ) ∼= δq,`k+1F. By Lemma 4.9,

0 → C`k+2(I, u2) → C`k+1(I, uλ) → H`k+1(E, I a1) → C`k+1(I, u2) → 0.

Since the map fromC`k+1(I, uλ) to H`k+1(E, I a1) is injective (cf. [3] for a proof), we get
C`k+2(I, u2) = 0, a contradiction with Lemma 3.9. The proof is complete. 2
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(1991), 43–57.

Received 2 May 2006,
and in revised form 22 June 2006.

P. H. Rabinowitz
Department of Mathematics

University of Wisconsin
MADISON, WI 53706, USA

rabinowi@math.wisc.edu

J. B. Su
School of Mathematical Sciences

Capital Normal University
BEIJING 100037, People’s Republic of China

sujb@mail.cnu.edu.sn

Z.-Q. Wang
Department of Mathematics and Statistics

Utah State University
LOGAN, UT 84322, USA
zhi-qiang.wang@usu.edu


	Introduction
	Bifurcation solutions
	Minimax solutions
	Proofs of the main results and further remarks

