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Abstract

For nonlinear Schrödinger equations in the entire space we present new results on invariant
sets of the gradient flows of the corresponding variational functionals. The structure of the
invariant sets will be built into minimax procedures to construct nodal type bound state solutions
of nonlinear Schrödinger type equations.
© 2004 Elsevier Inc. All rights reserved.
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1. Introduction

The principal project of this paper is to investigate the structure of invariant sets of
the associated gradient flows for nonlinear Schrödinger equations in the entire space,
and in conjunction with minimax method to construct nodal type bound state solutions.
In particular, we shall study how the structure of global invariant sets depends upon
the local behavior of the flow near the trivial critical point 0. The novelty of our work
is to discover a new family of invariant sets when there is a hyperbolic structure near
the trivial critical point 0. As applications we shall provide multiplicity results of nodal
type bound state solutions for nonlinear Schrödinger type equations. More precisely,
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as a model problem we consider the existence of nodal (sign-changing) solutions for
nonlinear time-independent Schrödinger equations of the form

−�u+ V�(x)u = f (x, u) in RN, (1.1)

which satisfyu(x) → 0 as |x| → ∞. This type of equations arise also from study
of standing wave solutions of time-dependent nonlinear Schrödinger equations. The
potential functionV�(x) := �g(x)+ 1 satisfies the following conditions:

(V1) g ∈ C(RN,R) satisfiesg�0 and� := int(g−1(0)) is nonempty.
(V2) There existM0 > 0 and r0 > 0 such that

lim|y|→∞ m
(
{x ∈ RN : |x − y|�r0} ∩ {x ∈ RN : g(x)�M0}

)
= 0,

wherem denotes the Lebesgue measure onRN .
(V3) � = g−1(0) and �� is locally Lipschitz.

As � → ∞, V� has a steep potential well, and we are interested in finding solutions
trapped in the potential well. Under the above conditions, the linear operator−�+V�
may have a finite number of eigenvalues below the infimum of the essential spectrum
[3]. Obviously, these eigenvalues (bound states to the linear problem), except the first
one, have nodal eigenfunctions. We shall show that under suitable asymptotically lin-
ear perturbationsf (x, u), the nonlinear problem (1.1) has multiple bound state nodal
solutions resembling the nodal structure of the linear problem.

In order to state our conditions onf we introduce the following eigenvalue problem
on � (cf. [25, Proposition A.1]):

−�u+ u = �u in �
u = 0 on ��.

}
(1.2)

Let the eigenvalues of this problem be denoted by 0< �1 < �2 < �3 < · · · , which will
occasionally be written as 0< �1 < �2��3� · · · , counting their multiplicity. Using
the convention�0 := −∞, we make the following assumptions onf:

(f0) f ∈ C(RN × R,R).
(f1) f (x, s) is odd in s.
(f2) There exists anm ∈ N0 := {0,1,2, . . .} such that uniformly inx ∈ RN ,

�m < lim inf|s|→0

f (x, s)

s
� lim sup
|s|→0

f (x, s)

s
< �m+1.

(f3) There exists ann ∈ N0, n �= m such that uniformly inx ∈ RN ,

�n < lim inf|s|→∞
f (x, s)

s
� lim sup
|s|→∞

f (x, s)

s
< �n+1.
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(f4) There exists ac0 > 0 such that|f (x, s)|�c0|s| for all (x, s).
(f5) There exists anL�0 such thatf (x, s)+ Ls is increasing ins.

Let dim(�i ) denote the dimension of the eigenspace associated with the eigenvalue�i .
Set

dk :=
k∑
i=1

dim(�i ) and d0 := 0.

Theorem 1.1. Assume(V1)–(V3) and (f0)–(f5). Then there exists a� > 0 such that
for all ���, Eq. (1.1) has at least|dm − dn| pairs of nodal solutions provided
min{m, n}�1, and at least|dm − dn| − 1 pairs of nodal solutions ifmin{m, n} = 0.

Remark 1.2. In the case min{m, n} = 0, there is also a pair of signed solutionsu > 0,
−u < 0.

Remark 1.3. Though the existence result is stated and will be proved in detail only for
the model Eq. (1.1) with the nonlinearity given above, the approach we shall take will
be useful for more general types of nonlinearities. The understanding of invariant sets
for gradient flows has been the center issue in dealing with nodal solutions. The key
new ingredient we provide here is the construction and the structure of a new family
of invariant sets of the associated gradient flows (this is done in Section 4), which, to
our knowledge, is the first nontrivial construction of invariant sets near a saddle critical
point. By using a combination of invariant sets method and minimax method as is done
in this paper, many multiplicity results on nodal solutions for bounded domains like in
[1,4,14] can be generalized to nonlinear Schrödinger equations in the entire space, for
example, superlinear problems with a saddle point at 0, asymptotically linear problems
with resonance, nonlinear eigenvalue problems, etc. We leave the precise statements to
interested readers.

We finish the section with some historical comments on related work and methods
involved, and outlining in more detail our approach.

In the case wheref is assumed to be superlinear, nonlinear Schrödinger type equations
have received a lot of attention in the past. It is only recently that nonlinear Schrödinger
type equations with asymptotically linear terms have been studied. In[22,23] Stuart
and Zhou studied radially symmetric problem. More general situations were considered
in [8,11,12,15,26]. In most of these papers, the potential function is either periodic
or autonomous at infinity. Asymptotically linear problems with potentials in this paper
have been studied in[24,25], in which multiple solutions were constructed without
giving nodal information about the solutions. On the other hand, results like Theorem
1.1 for problems in bounded domains have been given in[14].

In this paper, we shall construct nodal solutions for Eq. (1.1) by building upon
the general idea of combining invariant sets with minimax method (which has been
very successful for bounded domain problems, e.g.,[1,4,14,18]) and by developing
new techniques which will overcome difficulties for unbounded domain problems. To
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describe our basic idea and approach, let us introduce some notations. It is well known
that weak solutions of (1.1) correspond to critical points of

I�(u) := 1

2

∫
RN
(|∇u|2+ V�u

2) dx −
∫
RN
F (x, u) dx,

in H� := {u ∈ H 1(RN) : ‖u‖� < ∞}. HereF(x, u) := ∫ u0 f (x, s) ds and ‖ · ‖� is the
norm induced by the inner product

(u, v)� :=
∫
RN
(∇u · ∇v + V�uv) dx.

The main idea of this paper is to construct certain invariant sets of the gradient flow
associated to the energy functionalI� so that all positive and negative solutions are
contained in these invariant sets and that minimax procedures can be used to construct
nodal critical pointsof the energy functional outside these invariant sets. As a byproduct
we give more information of the dynamical nature of the gradient flow. This type
of idea has been used successfully for elliptic problems on bounded domains (c.f.
[1,4,9,13,14,18]). In general, the cone of positive (and negative) functions in the Sobolev
space is invariant under the gradient flow. However, these cones have empty interior,
and it is very difficult to build a deformation in relation to these cones and to construct
critical points outside of these cones using a minimax method. In bounded domains, the
dense subspaceC1

0(�̄) of H 1
0 (�) has been used, since the cone of positive (and negative)

functions inC1
0(�̄) have nonempty interior. We remark also that an interesting approach

without using the cones structure was used in[6] for bounded domain problems but
may not be suitable for getting multiple nodal critical points for even functionals (see
[5] for more references). For problems inRN , there is no known replacement for
C1

0(�̄) sinceC1
0(R

N) has no interior points either. This has been the major obstacle
for generalizing many results on nodal solutions from the bounded domain case to the
entire space case. For a superlinear problem, this has been done recently[2]. However,
it turns out that the existence of these invariant sets depend in a subtle way on the
behavior of the functional near 0. In[2], under the condition that 0 is a strict local
minimum critical point, it was shown that a neighborhood, in the Sobolev space norm,
of the cone of positive (and negative) functions is an invariant set. When 0 is a saddle
point (as in most of the cases of this paper)no neighborhood of the positive and
negative cones can be invariant sets anymore. The main project of this paper is to
develop new techniques to construct invariant sets for the case of 0 being a saddle
point. Obviously, our construction can be used for more general type of problems.

The paper is organized as follows. Section 2 contains some preliminary technical
results. Section 3 is devoted to the construction of a minimal positive solution and a
maximal negative solution to (1.1). This is essential for the construction of invariant
sets containing all positive and negative solutions to (1.1), so all the solutions obtained
outside of these invariant sets by minimax procedures are nodal solutions. In Section
4, we construct new invariant sets which depend upon the local behavior of the energy
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functional I� near 0. Results in Sections 3 and 4 are also interesting for their own
sake, and will be used in Section 5 for the proof of the existence results, Theorems
5.5 and 5.8, which together give Theorem1.1.

2. Preliminaries

In the following, BR will denote the ball inRN centered at zero with radiusR,
BcR := RN\BR. The spaceLp(RN) will be denoted byLp. We first state the following
useful technical result:

Lemma 2.1 (Van Heerden and Wang[25] ). Assume(V1)–(V2). Then, for any � > 0
there existR > 0 and � > 0 such that

‖u‖2
L2(BcR)

��‖u‖2
�,

for all u ∈ H� and ���.

For any given elements�1, . . . ,�k of H�, we set

U�(�1, . . . ,�k) := inf
u∈H�
{‖u‖2

� : ‖u‖L2 = 1, (u,�i )� = 0 for i = 1, . . . , k}.

For k ∈ N, we define the spectral values of−�+ V� by the kth Rayleigh quotient

��
k = sup

�1,...,�k−1∈H�

U�(�1, . . . ,�k).

For anym ∈ N, [3, Corollary 2.2] asserts that for� sufficiently large, the operator
−�+ V� has at leastdm =∑m

i=1 dim(�i ) eigenvalues��
1, . . . ,�

�
dm

. The corresponding

eigenfunctions are denoted bye�1, . . . , e
�
dm

with ‖e�k‖L2 = 1. As a consequence of[24,
Lemma 2.5], we conclude that:

Lemma 2.2. Assume(V1)–(V3). Then��
k → �k as �→∞ for all k ∈ N.

Proof. Fix any k ∈ N. First we have��
k��k as a simple minimax description of the

eigenvalues (see[20, Section XIII.1], for instance). According to[24, Lemma 2.5], the
limit �∗k := lim�→∞ ��

k is an eigenvalue of (1.2). The proof of[24, Lemma 2.5]shows
the weak limit ek := lim�→∞ e�k in H� is an eigenfunction of (1.2) corresponding
to �∗k and ‖ek‖L2 = 1. Thus e�k converges toek strongly in L2 as � → ∞. For
any i, j ∈ {1, . . . , k} with i �= j , (e�i , e

�
j )L2 = 0 implies (ei, ej )L2(�) = 0. As a

consequence,�∗k��k. This together with��
k��k gives the result. �
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Set

Ek := span{e1, . . . , edk }, E0 := {0}

and

Ek(�) := span{e�1, . . . , e�dk }, E0(�) := {0}.

Let E⊥k and (Ek(�))⊥ denote the orthogonal complement ofEk and Ek(�) in H�,
respectively.

Recall that(un) ∈ H� is a Palais–Smale ((PS) for short) sequence ofI� if I�(un) is
bounded andI ′�(un)→ 0. I� is said to satisfy the (PS)-condition if any such sequence
contains a convergent subsequence. The following lemma is a more general version
of a result in [24,25], and the proof here is different from, and simpler than that in
[24,25].

Lemma 2.3. Assume(V1)–(V3), (f0),(f3) and (f4). Then there exists a� > 0 such
that the functionalI� satisfies the(PS)-condition for all ���.

Proof. We only consider the casen�1; the casen = 0 is similar and simpler. Take
�n < b1�b2 < �n+1 and T > 0 such that for|u|�T , b1�f (x, u)/u�b2. By Lemma
2.2, we can take�1 > 0 such that for���1

min

{
b1

��
dn

− 1, 1− b2

��
dn+1

}
�a > 0

for somea > 0. By Lemma2.1, there exist�2 > 0 andR0 > 0 such that for���2,

‖u‖2
L2(BcR0

)
��0‖u‖2

�, u ∈ H�, (2.1)

where

0< �0 < min

{(
a

2(�+ c0)

)2

, 1

}
(2.2)

and � = b1b2/(b2− b1) and c0 is from (f4).
Now let (un) be a (PS) sequence forI� with �� max{�1,�2}. Let Zn := {x :
|un(x)|�T }. Writing un = vn + wn with vn ∈ En(�) andwn ∈ (En(�))⊥ and taking
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inner product ofI ′�(un) and vn − wn, we see that

o(1) · ‖un‖�
= ‖vn‖2

� − ‖wn‖2
� −

∫
Zn

f (x, un)

un
(v2
n − w2

n) dx −
∫
Zc
n

f (x, un)(vn − wn)

�‖vn‖2
� − ‖wn‖2

� − b1

∫
Zn

v2
n + b2

∫
Zn

w2
n −

∫
Zc
n

f (x, un)(vn − wn)

= ‖vn‖2
� − ‖wn‖2

� − b1

∫
RN
v2
n + b2

∫
RN
w2
n + b1

∫
Zc
n

v2
n − b2

∫
Zc
n

w2
n

−
∫
Zc
n

f (x, un)(vn − wn)

� −
(
b1

��
dn

− 1

)
‖vn‖2

� −
(

1− b2

��
dn+1

)
‖wn‖2

� + b1

∫
Zc
n

v2
n − b2

∫
Zc
n

w2
n

−
∫
Zc
n

f (x, un)(vn − wn).

Next, we claim

b1

∫
Zc
n

v2
n − b2

∫
Zc
n

w2
n��

∫
Zc
n

u2
n.

To see this we choose	 = (�− b1)/� = �/(�+ b2). Expandingu2
n = v2

n+w2
n+2vnwn

and using Hölder’s inequality, we get

b1v
2
n − b2w

2
n − �u2

n�(b1− �+ �	)v2
n + (−�+ �/	− b2)w

2
n = 0.

On the other hand,

∣∣∣∣∣
∫
Zc
n

f (x, un)(vn − wn)
∣∣∣∣∣ �

(∫
Zc
n

f (x, un)
2

)1/2(∫
Zc
n

(vn − wn)2
)1/2

� c0
(
C(R0)+√�0‖un‖�

)‖un‖�.
Combining these we get, withC(R0) a constant depending only onR0,

a‖un‖2
��o(1)‖un‖� + �(C(R0)+ �0‖un‖2

�)+ c0C(R0)‖un‖� + c0
√

�0‖un‖2
�,
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which gives the bound of the sequence. Assume that, without loss of any generality,
un ⇀ u in H� and un → u in L2

loc(R
N) for someu ∈ H�, which is a solution to the

problem

−�u+ V�(x)u = f (x, u) in RN.

Taking inner product ofI ′�(un) and un − u, noting thatI ′�(u) = 0, and using(f4), we
have for anyR�R0,

‖un − u‖2
� = o(1)+

∫
RN
(f (x, un)− f (x, u))(un − u) dx

� o(1)+ c0

∫
BcR

(|un| + |u|)|un − u| dx

+
∫
BR

|f (x, un)− f (x, u)||un − u| dx

� o(1)+ c0

∫
BcR

|un − u|2 dx + 2c0

∫
BcR

|u||un − u| dx

+
∫
BR

|f (x, un)− f (x, u)||un − u| dx

� o(1)+ 1

2
‖un − u‖2

� + 2c0‖un − u‖�
(∫

BcR

|u|2 dx
)1/2

+
∫
BR

|f (x, un)− f (x, u)||un − u| dx.

Thus

‖un − u‖2
� � o(1)+ 4c0‖un − u‖�

(∫
BcR

|u|2 dx
)1/2

+2
∫
BR

|f (x, un)− f (x, u)||un − u| dx.

Since

lim
R→∞

(∫
BcR

|u|2 dx
)1/2

= 0
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and

lim
n→∞

∫
BR

|f (x, un)− f (x, u)||un − u| dx = 0 for all R > 0,

we obtain limn→∞ ‖un − u‖� = 0, as required. �

The following lemma is a variant of[18, Lemma 3.2]. It can be proved in a similar
way as the proof of[18, Lemma 3.2](cf. [18, Lemma 2.5]).

Lemma 2.4. Let H be a Hilbert space, D1 and D2 be two closed convex subsets of
H, and I ∈ C1(H, R). SupposeI ′(u) = u−A(u) andA(Di) ⊂ Di for i = 1, 2. Then
there exists a pseudo gradient vector field V of I in the formV (u) = u−B(u) with B
satisfyingB(Di) ⊂ Di for i = 1, 2. Moreover, B(Di) ⊂ int(Di) if A(Di) ⊂ int(Di)
for i = 1, 2, and V is odd if I is even andD1 = −D2.

Here recall thatV is a pseudo gradient vector field ofI if V ∈ C(H, H), V |H\K is
locally Lipschitz continuous withK := {u ∈ H : I ′(u) = 0}, and (I ′(u), V (u))�
1
2||I ′(u)||2 and ||V (u)||�2||I ′(u)|| for all u ∈ H .

3. Minimal positive solution and maximal negative solution

In this section, we will construct a minimal positive solution and a maximal negative
solution to problem (1.1). This is essential for the construction of invariant sets con-
taining all the positive (and the negative) solutions in Section 4. In a bounded domain
case, this can be done by an iterative procedure (see[17], for instance). Unfortunately,
the argument used in bounded domain case does not work with our problem due to
the lack of compactness of the operator. We will use variational arguments to construct
these solutions.

With respect to the norm‖·‖�, we haveI ′�(u) = u−K�f (·, u) whereK� : H� → H�
denotes the inverse operator of−�+ V�:

K� :=
(−�+ V�

)−1
.

In view of (f5), we may assume thatf (x, s) is increasing ins. Otherwise, we just
replace the norm‖ · ‖� on H� with the equivalent one

‖u‖2
L,� :=

∫
RN
(|∇u|2+ (V�(x)+ L) u2) dx
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and replacef (x, u) with f (x, u)+Lu. What follows for the caseL = 0 work just as
well for the caseL > 0. Throughout this section we will assume

(f̃2) lim inf |s|→0 f (x, s)/s > �1 uniformly in x.

The main result of this section is as follows.

Theorem 3.1. Assume(V1)–(V3), (f0), (f̃2), (f4), (f5), and assume that there exists a
positive solutionw+ and a negative solutionw− to (1.1). Then there exists a minimal
positive solutionu+ and a maximal negative solutionu− to (1.1).

Proof. We only prove the existence ofu+. Define

f̂ (x, s) =


f (x,w+(x)) if s > w+(x),
f (x, s) if w−(x)�s�w+(x),
f (x,w−(x)) if s < w−(x).

We consider the following cut-off problem:

−�u+ V�(x)u = f̂ (x, u) in RN,
u ∈ H�.

}
(3.1)

We claim that for all solutionsu of (3.1), it holds w−(x)�u(x)�w+(x) for all x ∈
RN . Seeking a contradiction, supposeZ := {x ∈ RN : u(x) > w+(x)} �= ∅ for some
solution u of (3.1). Then Z is an open subset ofRN and onZ:

−�u+ V�u = f (x,w+) = −�w+ + V�w
+,

which implies that−�(u − w+) + V�(u − w+) = 0. Since u(x),w+(x) → 0 as
|x| → ∞, we conclude by the maximum principle thatu(x) = w+(x) for all x ∈ Z,
a contradiction. In a similar fashion, we see thatw−(x)�u(x) for all x ∈ RN .

Now consider the energy functional associated with (3.1):

Î�(u) := 1

2
‖u‖2

� −
∫
RN
F̂ (x, u) dx,

where F̂ (x, u) = ∫ u0 f̂ (x, s) ds. The above discussion shows that any critical point of

Î� is a (weak) solution of the original problem (1.1). From the definition ofÎ� and f̂ ,
it follows that

Î�(u)�
1

2
‖u‖2

�−C1

∫
RN

(|w+|+|w−|) |u| dx� 1

2
‖u‖2

�−C1
(‖w+‖L2+‖w−‖L2

) ‖u‖�.
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Here and in the sequel,Ci are constants. ThuŝI� is coercive. Next we verify the
(PS)-condition forÎ�. Suppose(un) ∈ H� satisfy Î�(un)→ c for some numberc, and
Î ′�(un)→ 0. Then(un) is bounded inH�. Thus, up to a subsequence,un ⇀ u in H�

and un→ u in L2
loc(R

N) with u a solution of (1.1). To obtain the strong convergence
in H�, we observe that

Î ′�(un)un =
(
‖un‖2

� − ‖u‖2
�

)
−
∫
RN

(
f̂ (x, un)un − f̂ (x, u)u

)
dx

and for anyR > 0,

∣∣∣∣∣
∫
BcR

(
f̂ (x, un)un − f̂ (x, u)u

)
dx

∣∣∣∣∣ � C2

∫
BcR

(|w+| + |w−|) (|un| + |u|) dx
� C3

(
‖w+‖L2(BcR)

+ ‖w−‖L2(BcR)

)
.

Thus ‖un‖� → ‖u‖� which implies the strong convergence.
Recall that e1 is the first eigenfunction of (1.2). We may assumee1 > 0. By

(f̃2), there exists∗ > 0 and 
 > 0 such thatf (x, s)/s > �1 + 
 for 0 < |s|�s∗.
ChooseR1 > 0 and s0 > 0 such thatw+(x) < s∗ for |x|�R1 and s0e1(x) <

w+(x) for |x|�R1. We claim that s0e1(x) < w+(x) for all x ∈ RN . Indeed, if
X := {x ∈ RN : s0e1(x) > w

+(x)
} �= ∅, then X ⊂ BcR1

∩ � and we have

−�(s0e1)+ V�s0e1 = �1s0e1 in X , (3.2)

−�w+ + V�w
+ = f (x,w+) in X , (3.3)

s0e1 = w+ on �X , (3.4)

s0
�e1

��
� �w+

��
on �X , (3.5)

where � denotes the outer unit normal to�X . Multiplying (3.3) with (s0e1) and sub-
tracting it from (3.2) multiplied with w+ yields

∫
X
(
(s0e1)�w+ − w+�(s0e1)

)
dx =

∫
X
s0e1

(
�1w

+ − f (x,w+)) dx.
Since forx ∈ X , f (x,w+) > (�1+ 
)w+, we see that

∫
X
s0e1

(
�1w

+ − f (x,w+)) dx < ∫
X
(s0e1)(−
w+) dx < 0.
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However, (3.4), (3.5) and the divergence theorem imply

∫
X
(
(s0e1)�w+ − w+�(s0e1)

)
dx =

∫
�X
s0e1

(
�w+

��
− s0

�e1

��

)
d��0,

a contradiction. Thus, for 0< s�s0,

Î�(se1) = I�(se1) = �1s
2

2

∫
�
e2

1 dx −
∫
�
F(x, se1) dx.

Decreasings0 if necessary, we may assumeF(x, se1(x)) > (�1 + 
)s2e2
1(x)/2 for all

0< s�s0 and x ∈ RN . Then,

Î�(se1) <
�1s

2

2

∫
�
e2

1 dx −
(�1+ 
)s2

2

∫
�
e2

1 dx < 0,

for all 0< s�s0.
The fact that 0 andw+ are solutions of (1.1) and f is increasing ins imply that

0�K�f (x, u)�w+ if 0 �u�w+. For 0 < s�s0 and t�0, consider the following
initial value problem:

d
dt �

t
s = −V (�ts ),

�0
s = se1,

}
(3.6)

whereV is a pseudo gradient vector field ofÎ� in the formV = I−B with B satisfying
B([0, w+]) ⊂ [0, w+] and [0, w+] = {u ∈ H� : 0�u�w+}; the existence ofV is
guaranteed by Lemma2.4 in which D1 = [0, w+] and D2 = ∅. Let [0, Ts) denote
the existence interval of (3.6). Since Î� is coercive and satisfy the (PS)-condition, a

standard argument shows that there exists a sequencet sn → Ts such that�
t sn
s → us for

someus ∈ H� satisfying I�(u
s) < 0 and I ′�(u

s) = 0. SinceB([0, w+]) ⊂ [0, w+]
and 0�se1�w+, a theorem of Brezis–Martin[7, Chapter 1, Theorem 6.3]implies that
0��ts (x)�w+(x) for all x ∈ RN , 0� t < Ts and 0< s�s0. Thus 0< us0(x)�w+(x)
for all x ∈ RN . Chooses1 ∈ (0, s0/2) such that 0�s1e1(x)�us0(x) for all x ∈ RN .
Then the above discussion implies 0��ts1(x)�us0(x) for all t ∈ [0, Ts1) and there exists
a positive solutionus1 of (1.1) in the -limit set of �ts1 satisfying 0< us1(x)�us0(x)
for all x ∈ RN . Here a different pseudo gradient vector fieldV = I − B may be used
in order thatB([0, us0]) ⊂ [0, us0]. Repeating the above process infinitely many times,
we obtain a decreasing sequence of positive numbers(sn) and positive solutions(usn)
of (1.1) such thatsn→ 0, Î�(u

sn) < 0,

0< . . . �usn(x)�usn−1 � · · · �us0(x)�w+(x) for all x ∈ RN
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and usn lies in the -limit set of �tsn . Obviously, (usn) is a (PS)-sequence. The (PS)-
condition, together with the monotonicity of(usn) imply that usn → u+ in H� and
usn(x)→ u+(x) for all x ∈ RN and for some nonnegative solutionu+ of Eq. (1.1).

Now we prove thatu+ is a positive solution of (1.1). Arguing indirectly, we assume
u+ = 0. Then

usn → 0 in H�. (3.7)

Choose a natural numberk such that 0< N − 2 − 3k < 4. Set �i = 1 + i/k for
i = 0,1, . . . , k. For anyR > 0, from the ellipticLploc estimates[10, Theorem 9.11],
we have

‖usn‖W2,2N/(N−2)(B�k−1R)

�C4

(
‖f (x, usn)‖L2N/(N−2)(B�kR)

+ ‖usn‖L2N/(N−2)(B�kR)

)
�C5‖usn‖L2N/(N−2)(B�kR)

�C6‖usn‖�,

which implies

‖usn‖L2N/(N−5)(B�k−1R)
�C7‖usn‖�,

whereC7 depends only onN, R and f, but is independent ofn. Repeating the above
k times, we obtain,

‖usn‖W2,2N/(N−2−3k)(BR)
�C8‖usn‖�.

Since 2N/(N − 2− 3k) > N/2, the embeddingW2,2N/(N−2−3k)(BR) ↪→ C(BR) is
continuous. Thus

‖usn‖L∞(BR)�C9‖usn‖�. (3.8)

Since us0 solves (1.1), for the numbers∗ given above there exists aR2 > 0 such
that us0 < s∗ for all |x|�R2. From (3.7) and (3.8) there exists anN∗ > 0 such that
usn(x) < s∗ for all |x|�R2 and n�N∗. So,

usn(x) < s∗ for all x ∈ RN and n�N∗.

Let e�1 > 0 denote the first eigenfunction of the operator−�+ V�, i.e.

−�e�1 + V�e
�
1 = ��

1e
�
1 on RN .
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Recall that��
1��1 for all ��0. Finally, multiplying

−�usn + V�u
sn = f (x, usn)

with e�1 and integrating, we obtain (forn�N∗),

��
1

∫
RN
usne�1 dx =

∫
RN
f (x, usn)e�1 dx�(��

1 + 
)
∫
RN
usne�1 dx,

a contradiction.
To complete the proof, it remains to show thatu+ constructed above is indeed a

minimal positive solution. Sinceu+(x) > 0 on RN , from the above discussion we
can choose anN1 > 0 such thatsne1(x)�u+(x) for all n�N1 and x ∈ RN . Thus
�tsn (x)�u+(x) for all n�N1, t�0 andx ∈ RN , which implies

usn(x)�u+(x) for all n�N1 and x ∈ RN .

Since (usn(x)) is decreasing inn and usn(x)→ u+(x) for all x ∈ RN ,

usn(x) = u+(x) for all n�N1 and x ∈ RN .

Now, letu1 be another positive solution of (1.1). Fixing ann1�N1 such thatsn1e1(x)�
u1(x), we have�tsn1

(x)�u1(x) for all t�0 and therefore

u+(x) = usn1 (x)�u1(x) for all x ∈ RN.

This shows thatu+ is the minimal positive solution of problem (1.1). �

Remark 3.2. We note that the above proof is independent of�. Thus the conclusion
of Theorem3.1 holds true for a large class of potentials. For instance, we can obtain
the following more general result: AssumeV ∈ C(RN, R), V is bounded below, andf
satisfies(f0), (f4), and (f5). Assume in addition that uniformly inx

lim inf
s→0

f (x, s)

s
> �1,

where

�1 := inf
u∈H1(RN)\{0}

∫
RN (|∇u|2+ V u2) dx∫

RN u
2 dx

.
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Then the problem

−�u+ V (x)u = f (x, u), u ∈ H 1
0 (R

N)

has a minimal positive (maximal negative) solution provided that it has a positive
(negative) solution.

We close this section with a sufficient condition for the existence of a positive (and
negative) solution to (1.1). From Theorem3.1 this would imply the existence of a
minimal positive (maximal negative) solution.

Theorem 3.3. Assume(V1)–(V3), (f0), (f̃2), (f4) and uniformly inx ∈ RN

lim sup
|s|→∞

f (x, s)

s
< �1.

Then, for � sufficiently large, problem (1.1) has a positive and a negative solution.

Proof. We only prove the existence of a positive solution. We first show that, for�
sufficiently large,I� is coercive. By assumption, there exist a
 > 0 andC1 > 0 such
that

F(x, s)� 1

2
(�1− 
)s2+ C1 for all s ∈ R.

For anyR > 0,

I�(u) = 1

2
‖u‖2

� −
∫
BR

F (x, u) dx −
∫
BcR

F (x, u) dx

� 1

2
‖u‖2

� −
�1− 


2

∫
BR

u2 dx − C1 |BR| − C2

∫
BcR

u2 dx

� 1

2
‖u‖2

� −
�1− 


2��
1

‖u‖2
� − C1 |BR| − C2

∫
BcR

u2 dx

� 

4�1
‖u‖2

� − C1 |BR| − C2

∫
BcR

u2 dx,

for � sufficiently large, say���0 (Here we used Lemma2.2). From Lemma2.1, there
exist R1 > 0 and�1��0 such that

∫
BcR1

u2 dx� 

8C2�1

‖u‖2
�,
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for all ���1. It follows that

I�(u)�



8�1
‖u‖2

� − C1
∣∣BR1

∣∣ ,
for all ���1, i.e. I� is coercive.

Fix an s such thatI�(se1) < 0, the existence of such ans was showed in the proof
of Theorem3.1. Consider the initial value problem

d
dt

�t = −V (�t ),
�0 = se1.

}

HereV is a pseudo gradient vector field ofI� in the formV = I −B with B satisfying
B(P+� ) ⊂ P+� , whereP+� := {u ∈ H� : u�0} is the positive cone inH�. The existence
of such aV is guaranteed by(f4) and by Lemma2.4 (by (f4), we may assume that
f (x, s)�0 for all s�0, otherwise we need just to replaceV� andf (x, s) with V�+c0
and f (x, s)+ c0s, respectively). SinceI� is coercive, a standard argument shows that
there exists a positive sequencetn→∞ such that

I�(�
tn ) � I�(se1) < 0 for all n, (3.9)

I ′�(�
tn ) → 0. (3.10)

According to Lemma2.3, passing to a subsequence if necessary we may assume�tn →
u in H�, whereu is a solution of (1.1). SinceB(P+� ) ⊂ P+� and se1 ∈ P+� , �tn ∈ P+� .
Thereforeu ∈ P+� . The fact thatI�(u)�I�(�tn )�I�(se1) < 0 implies u �= 0. Then by
the maximum principle,u(x) > 0, for all x ∈ RN .

Remark 3.4. Under stronger assumptions, the existence of a positive and a negative
solution was obtained in[24].

4. Invariant sets of the gradient flow

In order to construct nodal solutions we need to isolate the signed solutions (positive
and negative solutions) into certain invariant sets. This section is devoted to this purpose.
Here we discover that it is the behavior ofI� near the trivial critical point 0 that plays an
important role for the structure of these invariant sets. This will be done by distinguish-
ing the two opposite cases: lim sup|s|→0 f (x, s)/s < �1 and lim inf|s|→0 f (x, s)/s > �1.
DefineA(u) := K�f (·, u) = (−�+ V�)

−1f (·, u), u ∈ H� and

d
dt

�t (u) = −�t (u)+ B(�t (u))
�0(u) = u,

}



374 Z. Liu et al. / J. Differential Equations 214 (2005 358–390

where B is related toA via Lemma 2.4 in which D1 and D2 will be constructed
in Theorem4.1 and Theorem4.2. This section is concerned with the construction of
these sets which are invariant under the flow�t (u) such that all positive (and negative)
solutions are contained in these invariant sets. Recall that a subsetW ⊂ H� is an
invariant set with respect to� if, for any u ∈ W , �t (u) ∈ W for all t > 0.

Denote

P±� = {u ∈ H� : ±u�0}.

For anyM ⊂ H� and � > 0, M� denotes the closed�-neighborhood ofM, i.e.

M� := {u ∈ H� : dist�(u,M)��}.

The following result shows that a neighborhood ofP±� is an invariant set if 0 is
a local minimum critical point of the functional. This result was proved in[2] for a
superlinear problem, but the proof covers our case as well. We quote the proof from[2]
for the readers convenience. We also note that this result is essentially�-independent
as long asf ′s (x,0) < ��

1.

Theorem 4.1 (Bartsch et al.[2] ). Assume (V1)–(V3), (f0), (f4), and (f5). If
lim sup|s|→0 f (x, s)/s < �1 then there exist�0 > 0 and � > 0 such that

A((P±� )�) ⊂ int((P±� )�) f or all 0< ���0, ���,

and

�t ((P±� )�) ⊂ int((P±� )�) f or all t > 0, 0< ���0, and ���.

Proof. For u ∈ H�, we denotev = Au and u+ = max{0, u}, u− = min{0, u}. Note
that for anyu ∈ H� and 2�p�2∗ := 2N/(N − 2),

‖u−‖Lp = inf
w∈P+�

‖u− w‖Lp . (4.1)

Since,

‖v−‖2
� = (v, v−)� =

∫
RN
(∇v · ∇v− + V�vv

−) dx =
∫
RN
f (x, u)v− dx,



Z. Liu et al. / J. Differential Equations 214 (2005 358–390 375

the fact thatv+ ∈ P+� and v − v+ = v−, implies

dist�(v, P
+
� ) · ‖v−‖��‖v−‖2

��
∫
RN
f (x, u−)v− dx. (4.2)

Under the assumption lim sup|s|→0 f (x, s)/s < �1 there exist a
 > 0 andC1 > 0 such
that

f (x, s)�(�1− 
)s + C1|s|2∗−2s for s�0.

Thus

∫
RN
f (x, u−)v− dx �

∫
RN

[
(�1− 
)u− + C1|u−|2∗−2u−

]
v− dx

� (�1− 
)‖u−‖L2‖v−‖L2 + C1‖u−‖2∗−1
L2∗−1‖v−‖L2∗−1. (4.3)

From the Sobolev imbedding and (4.1)–(4.3),

dist�(v, P
+
� ) · ‖v−‖�� �1− 
√

��
1

inf
w∈P+�

‖u− w‖L2‖v−‖� + C2 inf
w∈P+�

‖u− w‖2∗−1
L2∗−1‖v−‖�,

which implies (if ‖v−‖� �= 0),

dist�(v, P
+
� ) � �1− 
√

��
1

inf
w∈P+�

‖u− w‖L2 + C2 inf
w∈P+�

‖u− w‖2∗−1
L2∗−1

� �1− 


��
1

inf
w∈P+�

‖u− w‖� + C3 inf
w∈P+�

‖u− w‖2∗−1
�

= �1− 


��
1

dist�(u, P
+
� )+ C3

(
dist�(u, P

+
� )
)2∗−1

.

Therefore, there exist�0 > 0 and� > 0 such that if dist�(u, P
+
� )��0 and ��� then

dist�(v, P
+
� ) < dist�(u, P

+
� ).

The first conclusion in Theorem4.1 is proved. The second conclusion is a consequence
of the first as shown in[18] via Lemma2.4. �

Next, we consider the case lim inf|s|→0 f (x, s)/s > �1. We first note that any neigh-
borhoods of the positive (and negative) cones are no longer invariant sets of the gradient
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flow. We give a new construction here. Choose
 > 0 and s0 > 0 such that

f (x, s)

s
> �1+ 
���

1 + 
, (4.4)

for 0< s�s0 andx ∈ RN . Let e�1 ∈ H� be the eigenfunction associated with the eigen-
value ��

1 (we assume� to be sufficiently large) such thate�1 > 0 and maxx∈RN e�1 �s0.
According to Theorem3.1 and its proof, we may also assume that

w−(x)� − e�1(x) and e�1(x)�w+(x),

for all x ∈ RN , all negative solutionsw− and positive solutionsw+ of (1.1). Define

D±� := {u ∈ H� : ±u�e�1}.

From the above discussion, all positive solutions and negative solutions to (1.1) are
contained inD+� andD−� , respectively. We show in the following that under the condi-
tion lim inf |s|→0 f (x, s)/s > �1, suitable neighborhoods of these sets are invariant sets.
This result is�-dependent and holds only for� large.

Theorem 4.2. Assume(V1)− (V3), (f0), (f4), and (f5). If lim inf |s|→0 f (x, s)/s > �1,
then there exist�0 > 0 and � > 0 such that

A((D±� )�) ⊂ int((D±� )�) f or all 0< ���0, ���,

and

�t ((D±� )�) ⊂ int((D±� )�) f or all t > 0, 0< ���0, and ���.

Proof. We only prove the result for the positive sign, the other case follows analogously.
For u ∈ H� we denote

v = Au and v1 = max{e�1, v}.

Then dist�(v,D
+
� )�‖v − v1‖� which implies

dist�(v,D
+
� ) · ‖v − v1‖��‖v − v1‖2

�.
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Note thatv1 = e�1 if v1 �= v. Since

‖v − v1‖2
� = (v − e�1, v − v1)�

=
∫
RN
∇(v − e�1)∇(v − v1)+ V�(v − e�1)(v − v1) dx

=
∫
RN

(
−�(v − e�1)+ V�(v − e�1)

)
(v − v1) dx

=
∫
RN

(
f (x, u)− ��

1e
�
1

)
(v − v1) dx,

we have

dist�(v,D
+
� ) · ‖v − v1‖��

∫
RN

(
��

1e
�
1 − f (x, u)

)
(v1− v) dx.

For the numbers0 given in (4.4), if u > s0, then

f (x, u)�f (x, s0) > (��
1 + 
)s0�(��

1 + 
)e�1.

Therefore, sincev�v1, we conclude that

dist�(v,D
+
� ) · ‖v − v1‖��

∫
u(x)� s0

(
��

1e
�
1 − f (x, u)

)
(v1− v) dx.

Sincef (x, u)�(��
1 + 
)u for 0�u�s0 and f (x, u)�c0u for u�0,

dist�(v,D
+
� ) · ‖v − v1‖�

�
∫

0�u(x)� s0

(
��

1e
�
1 − (��

1 + 
)u
)
(v1− v) dx +

∫
u(x)<0

(
��

1e
�
1 − c0u

)
(v1− v) dx

�= I1+ I2.

Note that

I1 �
∫

0�u(x)���
1e

�
1(x)/(�

�
1+
)

(
��

1e
�
1 − (��

1 + 
)u
)
(v1− v) dx

� (��
1 + 
)

∫
0�u(x)���

1e
�
1(x)/(�

�
1+
)

(e�1 − u)(v1− v) dx
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and

I2�(��
1 + c0)

∫
u(x)<0

(e�1 − u)(v1− v) dx.

DenotingC = max{��
1 + 
, ��

1 + c0}, we have

dist�(v,D
+
� ) · ‖v − v1‖��C

∫
��
(e�1 − u)(v1− v) dx := CE�, (4.5)

where

�� :=
{
x ∈ RN : u(x)� ��

1

��
1 + 


e�1(x)

}
.

For anyR > 0, we write

E� =
∫
��∩BR

(e�1 − u) · (v1− v) dx +
∫
��∩BcR

(e�1 − u) · (v1− v) dx := E�
1 + E�

2.

Since, on�� ∩ BR,

e�1 − u� 


��
1 + 


e�1 �
R

for some
R > 0, there exists aC1 = C1(R) > 0 such that

E�
1 � C1(R)

∫
��∩BR

|e�1 − u|2
∗−1|v1− v| dx

� C1(R)‖e�1 − u‖2∗−1
L2∗ (��∩BR)‖v1− v‖L2∗

� C1(R)‖e�1 − u‖2∗−1
L2∗ (��∩BR)‖v − v1‖�. (4.6)

The factu(x)�e�1(x) on �� implies

‖e�1 − u‖Lp(��)
= inf
w∈D+�

‖w − u‖
Lp(��)

,

for all u ∈ H� and 2�p�2∗. Then, by the Sobolev imbedding and (4.6),

E�
1 �C2(R)

(
dist�(u,D

+
� )
)2∗−1 · ‖v1− v‖�. (4.7)
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From Lemma2.1, there existR0 > 0 and�0 > 0 such that

E�
2 � ‖e�1 − u‖L2(��∩BcR0

)
‖v1− v‖L2

� inf
w∈D+�

‖u− w‖
L2(��∩BcR0

)
‖v1− v‖�

� 1

2C
dist�(u,D

+
� ) · ‖v1− v‖�, (4.8)

for all ���0, whereC is the number from (4.5). Combining (4.5)–(4.8) we conclude
that

dist�(v,D
+
� )�C

(
1

2C
dist�(u,D

+
� )+ C2(R0)

(
dist�(u,D

+
� )
)2∗−1

)
,

for all v /∈ D+� and���0. Therefore there exists an�0 > 0 such that if dist�(u,D
+
� )�

�0, it holds

dist�(Au,D
+
� ) = dist�(v,D

+
� ) < dist�(u,D

+
� ).

Once again, the second conclusion follows directly from[18], via Lemma2.4. �

5. Proof of Theorem 1.1

In order to prove our main result Theorem1.1, we need to use Ljusternik–Schnirelman
type minimax results. In general, results of this type do not give the nodal information
of the solutions. We need to have the order structure and the invariant sets of the
gradient flow from the previous section built into the minimax arguments. We need
to distinguish two cases:dm > dn and dn > dm. Though the results are similar for
the two cases, the minimax arguments used are quite different and the structure of the
invariant sets are also quite different. These two cases will be dealt with in Sections
5.2 and 5.3, with some technical preparations in Section 5.1.

5.1. A deformation lemma in the presence of invariant sets

Let us start with a more abstract setting. ConsiderI ∈ C1(X,R) whereX is a Banach
space. LetV be a pseudo gradient vector field ofI such thatV is odd if I is even, and
consider

d
dt

�(t, u) = −V (�),
�(0, u) = u ∈ X.

}
(5.1)
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A subsetW ⊂ X is an invariant set with respect to� if, for any u ∈ W , �(t, u) ∈ W
for all t�0. The following lemma is a variant of[14, Lemma 2.4].

Lemma 5.1. Assume I satisfies the(PS)-condition, and c ∈ R is fixed. AssumeW =
�W ∪ int(W) is an invariant subset w.r.t.� such that�(t, �W) ⊂ int(W) for t > 0.
DefineK1

c := Kc∩W , K2
c := Kc∩(X\W), whereKc := {u ∈ X : I ′(u) = 0, I (u) = c}.

Let 
 > 0 be such that(K1
c )
 ⊂ W where

(
K1
c

)

 = {u ∈ X : dist(u,K1

c ) < 
}. Then
there exists an�0 > 0 such that for any0 < � < �0, there exists� ∈ C([0,1] ×X,X)
satisfying:

(i) �(t, u) = u for t = 0 or u /∈ I−1 ([c − �0, c + �0]) \
(
K2
c

)

.

(ii) �
(
1, I c+� ∪W\ (K2

c

)
3


) ⊂ I c−� ∪W and �(1, I c+� ∪W) ⊂ I c−� ∪W if K2
c = ∅.

(iii) �(t, ·) is a homeomorphism of X fort ∈ [0,1].
(iv) ‖�(t, u)− u‖�
, for any (t, u) ∈ [0,1] ×X.
(v) I (�(t, ·)) is non-increasing.

(vi) �(t,W) ⊂ W for any t ∈ [0,1].
(vii) �(t, ·) is odd if I is even and if W is symmetric with respect to0.

Proof. Due to the (PS) condition, we may choose�0 > 0 such that

‖I ′(u)‖2

1+ ‖I ′(u)‖� 8�0



,

for any u ∈ I−1([c − �0, c + �0]) \ (Kc)
. SetX1 := I−1([c − �0, c + �0]) \ (K2
c )
. For

any fixed 0< � < �0, defineX2 = I−1([c − �, c + �]) \ (K2
c )2
 and

�(u) = dist(u,X \X1)

dist(u,X \X1)+ dist(u,X2)
.

Consider

d

dt
�(t, u) = −�(�(t, u))V (�(t, u))

1+ ‖V (�(t, u))‖ , �(0, u) = u.

Then �(t, u) is well-defined and continuous onR × X and we claim that�(t, u) :=
�(
t, u) has all the properties in the lemma. (i), (iii), (v), (vi) and (vii) are easily
checked. For (iv) we note that

‖�(t, u)− u‖ =
∥∥∥∥
∫ 1

0
�′(�, u)d�

∥∥∥∥ =
∥∥∥∥∥
∫ 


0
�′(�, u)d�

∥∥∥∥∥ �
.

To show (ii), we suppose by contradiction that�(1, u) �∈ I c−� ∪ W for some u ∈
I c+� ∪ W\ (K2

c

)
3
. Then �(t, u) �∈ I c−� ∪ W for all 0� t�1. We see that�(t, u) �∈
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(K1
c )
 for 0� t�1 since (K1

c )
 ⊂ W , and �(t, u) �∈ (K2
c )2
 for 0� t�1 due to (iv)

and u �∈ (K2
c )3
. Thus, for 0� t�1, �(t, u) ∈ I−1([c − �, c + �]) \ ((K2

c )2
 ∪ (Kc)

)
,

which implies, for 0� t�1,

�(�(t, u)) = 1 and
‖I ′(�(�, u))‖2

1+ ‖I ′(�(�, u))‖� 8�0



.

Then

I (�(1, u)) = I (u)+
∫ 1

0

d

d�
I (�(�, u))d��c + �−

∫ 1

0


‖I ′(�(�, u))‖2

4(1+ ‖I ′(�(�, u))‖) d� < c − �,

a contradiction. �

We shall also need the notion of genus (c.f.[19,21]). Set

�� := {A ⊂ H�\{0} : A is closed andA = −A}

and let �(A) denote the genus ofA, which is defined as the least integern such that
there exists an odd continuous map� : A→ Sn−1. We refer to[21] for the following
properties of genus.

Proposition 5.2. Let A,B ∈ ��, and h ∈ C(H�, H�) be an odd map. Then

(i) A ⊂ B ⇒ �(A)��(B).
(ii) �(A ∪ B)��(A)+ �(B).

(iii) �(A)��(h(A)).
(iv) If A is compact, there exists anN ∈ �� such thatA ⊂ int(N) ⊂ N and �(A) =

�(N).
(v) If F is a linear subspace ofH� with dimF = n, A ⊂ F is bounded, open and

symmetric, and 0 ∈ A, then �(�FA) = n.

Recall in Section 4,D±� = {u ∈ H� | ± u�e�1} with e�1 > 0 the first eigenfunction

satisfying maxe�1 < s0 and s0 given in (4.4). All positive (negative, resp.) solutions of
problem (1.1) are contained inD+� (D−� , resp.) and(D±� )� are invariant sets if���0.
We need the following result.

Lemma 5.3. For any � > 0, let B� := {u ∈ H� : ‖u‖���}. Then

dist�
(
�B� ∩ (E1(�))⊥,D+� ∪D−�

)
> 0.

Proof. Assume for the contrary, there exists(un) ∈ D+� , (vn) ∈ �B� ∩ (E1(�))⊥, such

that dist�(un, vn) → 0. Then (un, e�1)� = (un − vn, e�1)� + (vn, e�1)� → 0 as n → ∞.
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But sinceun�e�1, we have

(un, e
�
1)� = ��

1(un, e
�
1)L2 ���

1

∫
RN
(e�1)

2 dx �= 0,

a contradiction. �

Remark 5.4. We note that the above result is not true whenD±� is replaced byP±� .
That is, for any� > 0, it can be proved that dist�

(
�B� ∩ (E1(�))⊥, P+� ∪ P−�

) = 0.

5.2. The proof of Theorem 1.1—the casedm > dn

We consider the casedm > dn first. In this case we havem�1 since

�n+1��m < lim inf|s|→0

f (x, s)

s
� lim sup
|s|→0

f (x, s)

s
< �m+1.

We state the result more precisely here.

Theorem 5.5. Assume(V1)–(V3) and (f0)–(f5). Then there exists a� > 0 such that
for all ���, Eq. (1.1) has at leastdm−dn (dm−dn−1, resp.) pairs of nodal solutions
having negative critical values providedn�1 (n = 0, resp.).

The following two lemmas are standard and their special cases were proved in
[24,25].

Lemma 5.6. Assume(V1)–(V2), (f0), (f2), and (f4) with m �= 0. Then there exist a
� > 0 such that for all��0,

sup
Em∩�B�

I� < 0.

Proof. By (f2) and (f4), there exist
 > 0, C1 > 0, andp ∈ (2,2∗) such that for
all x and u, F(x, u)�(�m + 
)u2/2− C1|u|p. Here 2∗ = 2N/(N − 2) for N > 2 and
2∗ = +∞ for N = 2. For u ∈ Em, the inequality‖u‖2

���m‖u‖2
L2 and the Sobolev

inequality imply

I�(u) � 1

2
‖u‖2

� − (�m + 
)
∫
RN
u2 dx − C1

∫
RN
|u|p dx

� − 

2�m
‖u‖2

� + C2‖u‖p� ,

which gives the result. �
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Lemma 5.7. Assume(V1)–(V3), (f0), (f3), and (f4). Then there exists a� > 0 such
that for all ���, dim En(�) = dn and

inf
(En(�))⊥

I� > −∞.

Proof. By (f3), there exist
 > 0 andT > 0 such that for|u|�T , F(x, u)�(�n+1 −
2
)u2/2. Choose� > 0 such that for all���, �dn+1��n+1 − 
 by Lemma 2.2.
Let u ∈ (En(�))⊥ with ��� and denoteZ := {x : |u(x)|�T }. For anyR > 0, the
inequality ‖u‖2

����
dn+1‖u‖2

L2 implies

I�(u) � 1

2
‖u‖2

� −
∫
BR∩Zc

F (x, u) dx − 1

2
c0

∫
BcR∩Zc

u2 dx − ��
dn+1− 


2

∫
Z
u2 dx

� 


2��
dn+1

‖u‖2
� − C1(R)− 1

2
c0‖u‖2

L2(BcR)
.

Then using Lemma2.1 gives the result. �

Proof of Theorem 5.5. Throughout the proof, we fix a� sufficiently large such that
I� satisfies the (PS)-condition (Lemma2.3) and all other relevant results hold. By
Theorem 4.2 we may choose an� > 0 small such that(D+� )� ∩ (D−� )� = ∅ and
W := (D+� )�∪ (D−� )� is an invariant set of the pseudo gradient flow. Recall that int(W)

contains all positive and negative solutions. Forj = 2, . . . , dm, define�j := {A ∈ �� :
�(A)�j} and

cj := inf
A∈�j

sup
A∩S

I�(u),

where S := H�\W . For anyA ∈ �� with �(A)�2, we haveA ∩ S �= ∅ (since, if
A∩ S = ∅, A ⊂ W , but �(W) = 1, a contradiction). Thuscj for j = 2, . . . , dm can be
defined.

First we assumedn = 0 and we considercj for j = 2, . . . , dm. As a consequence
of Lemmas5.6 and 5.7, −∞ < c2�c3� · · · �cdm < 0. We claim that ifc := cj =
cj+1 = · · · = cj+k for some 2�j�j + k�dm with k�0 then �(Kc ∩ S)�k + 1.
Since K2

c = Kc ∩ S is compact, there exists a closed neighborhoodN in H� with
K2
c ⊂ int(N) ⊂ N such that�(N) = �(K2

c ). Without loss of generality, we may assume

N = (K2
c

)
3
 with 
 > 0 satisfying

(
K1
c

)

 ⊂ W . Then there exists an�0 > 0 such that

for 0 < � < �0, there exists an� ∈ C([0,1] × H�, H�) satisfying (i)–(vii) of Lemma
5.1. ChooseA ∈ �j+k such that

sup
A∩S

I��c + �,
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Then �
(
1, A \ (K2

c

)
3


) ⊂ I c−�
� ∪W and we claim

�
(
�
(

1, A\
(
K2
c

)
3


))
�j − 1.

Otherwise,�
(
�
(
1, A\ (K2

c

)
3


))
�j and

c = cj � sup
�(1,A\(K2

c )3
)∩S
I�� sup(

I c−�
� ∪W )∩S I�� sup

I c−�
�

I��c − �,

a contradiction. Now,

j + k��(A) � �(A\int(N))+ �(N)

� �(�(1, A\(K2
c )3
))+ �(K2

c )

� j − 1+ �(K2
c ),

which implies �(K2
c )�k + 1. Since all the solutions inK2

c are nodal solutions, the
result is true in the casedn = 0.

If dn�1, we may consider allcj for j = dn + 1, . . . , dm. By Lemmas5.6 and 5.7,
−∞ < cdn+1� · · · �cdm < 0. The same argument as above works in this case.�

5.3. The proof of Theorem 1.1—the casedn > dm

In this case we haven�1 and we prove the following result here which gives the
other part of Theorem1.1.

Theorem 5.8. Assume(V1)–(V3) and (f0)–(f5). Then there exists a� > 0 such that
for all ���, Eq. (1.1) has at leastdn−dm (dn−dm−1, resp.) pairs of nodal solutions
having positive critical values providedm�1 (m = 0, resp.).

We need the following two lemmas which are generalizations of similar results in
[24].

Lemma 5.9. Assume(V1)–(V2), (f0), (f3), and (f4) with n �= 0. Then there exists a
R > 0 such that for all��0 and BcR := H�\BR,

sup
En∩BcR

I� < 0.
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Proof. By (f3), there exist
 > 0 and T > 0 such that for|u|�T , F(x, u)�(�n +

)u2/2. Let u ∈ En and denoteZ := {x : |u(x)|�T }. For anyR > 0,

I�(u) � 1

2
‖u‖2

� +
1

2
(c0 + �n + 
)

∫
Zc

u2 dx − �n + 

2

∫
RN
u2 dx

� − 

2�n
‖u‖2

� + C1(R)+ 1

2
(c0 + �n + 
)‖u‖2

L2(BcR)
,

this together with Lemma2.1 leads to the result. �

Lemma 5.10. Assume(V1)–(V2), (f0), (f2), and (f4). Then there exist a� > 0 and
� > 0 such that for all���, dim Em(�) = dm and

inf
(Em(�))⊥∩�B�

I� > 0.

Proof. There exist
 > 0 andC1 > 0 such thatF(x, u)�(�m+1 − 2
)u2/2+ C1|u|p
for somep ∈ (2,2∗). Choose� > 0 such that for� > �, ��

dm+1 > �m+1− 
. Then for

��� and u ∈ (Em(�))⊥,

I�(u) � 1

2
‖u‖2

� −
��
dm+1− 


2

∫
RN
u2− C1‖u‖pLp

� 


2��
dm+1

‖u‖2
� − C2‖u‖p� ,

which gives the result. �

Proof of Theorem 5.8. We need to distinguish two subcases here: (i)dm�1 and (ii)
dm = 0.

Let us consider (i) first. Again, by Theorem4.2 we may choose an� small enough
such thatW := (D+� )� ∪ (D−� )� is an invariant set of the gradient flow and all positive
and negative solutions are contained in int(W). Set S = H� \ W . We have to use a
different family of sets for the minimax procedure here. We essentially follow[19].
Define,

G := {h ∈ C(BR ∩ En,H�) : h is odd andh = id on �BR ∩ En},

whereR > 0 is given by Lemma5.9. Note thatG �= ∅, since id ∈ G. Set

�̃j :=
{
h
(BR ∩ En\Y ) : h ∈ G,Y ∈ �� and �(Y )�dn − j

}
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for j ∈ {2, . . . , dn}. From [19], �̃j possess the following properties:

(1◦) �̃j �= ∅ for all j ∈ {2, . . . , dn}.
(2◦) �̃j+1 ⊂ �̃j for j ∈ {2, . . . , dn − 1}.
(3◦) If � ∈ C(H�, H�) is odd and� = id on �BR ∩ En, then � : �̃j → �̃j for all
j ∈ {2, . . . , dn} (i.e. �(A) ∈ �̃j if A ∈ �̃j ).

(4◦) If A ∈ �̃j , Z ∈ ��, �(Z)�s < j and j − s�2, thenA\Z ∈ �̃j−s .

Now, for j = dm + 1, . . . , dn, we define

c̃j := inf
A∈�̃j

sup
A∩S

I�.

From [19, Proposition 9.23]for A ∈ �̃j with j�dm + 1,

A ∩ �B� ∩ (Em(�))⊥ �= ∅.

Sincedm�1, by Lemma5.3, �B� ∩ (Em(�))⊥ ⊂ S. Thus, forj�dm + 1 andA ∈ �̃j ,
A ∩ S �= ∅, and from Lemma5.10 we conclude that

c̃j � inf
�B�∩(Em(�))⊥

I��� > 0.

Then from the definition of̃cj and (2◦) we have 0< �� c̃dm+1� · · · � c̃dn < ∞. We
claim that if c̃ := c̃j = · · · = c̃j+k for somedm + 1�j�j + k�dn with k�0 then
�(Kc̃ ∩ S)�k + 1. This also shows that each̃cj is a critical value. Since 0/∈ Kc̃,
and K2

c̃
= Kc̃ ∩ S is compact, we may chooseN such thatK2

c̃
⊂ int(N) ⊂ N and

�(K2
c̃
) = �(N). If �(K2

c̃
)�k, we have�(N)�k. By Lemma5.1 there exist� > 0 and

� ∈ C([0,1] ×H�, H�) such that�(1, ·) is odd, �(1, u) = u for u ∈ I c̃−2�, and

�
(

1, I c̃+�
� ∪W\N

)
⊂ I c̃−�

� ∪W.

We may assumẽc − 2� > 0. ChooseA ∈ �̃j+k such that

sup
A∩S

I�� c̃ + �.

Then by (4◦) aboveA\N ∈ �̃j . As a consequence of Lemma5.9, �(1, u) = u for
u ∈ �BR ∩ En, and we have�(1, A\N) ∈ �̃j by (3◦). Then

c̃� sup
�(1,A\N)∩S

I�� sup(
I c̃−�
� ∪W

)
∩S
I�� c̃ − �,
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a contradiction. Therefore�(Kc̃ ∩ S)�k+ 1 andI� has at leastdn− dm pairs of nodal
critical points.

Next we consider case (ii):dm = 0. We have to use a different invariant set since
0 is a local minimum. From Theorem4.1, we may choose an� > 0 sufficiently small
such that(P±� )� are invariant sets. SetW := (P+� )� ∪ (P−� )� and S∗ := H�\W . We
define

c∗j := inf
A∈�̃j

sup
A∩S∗

I�,

for j = 2, . . . , dn. We need to show that for anyA ∈ �̃j andj = 2, . . . , dn, A∩S∗ �= ∅
so thatc∗j are well defined, andc∗2 �� > 0.

Consider the attracting domain of 0 inH�:

Q := {u ∈ H� : �(t, u)→ 0, as t →∞}.

Note that �Q is an invariant set. We claim that forA ∈ �̃j with j = 2, . . . , dn, it
holds

A ∩ S∗ ∩ �Q �= ∅. (5.2)

This proves bothA∩ S∗ �= ∅ and c∗2 �� > 0, since�B� ⊂ Q and inf�Q I�� inf �B�
I�

�� > 0 by Lemma5.10. To prove (5.2), let A = h(BR ∩ En\Y ) with �(Y )�dn − j
and j�2. Define

O := {u ∈ BR ∩ En : h(u) ∈ Q}.

Then O is a bounded open set with 0∈ O and O ⊂ BR ∩En. Thus, from the Borsuk–
Ulam theorem�(�O) = dn and by the continuity ofh, h(�O) ⊂ �Q. It follows that

�(�O\Y )�j , h(�O\Y ) ⊂ A∩ �Q and therefore�(A∩ �Q)�j . Since�(W ∩ �Q) = 1,
which follows from (P+� )� ∩ (P−� )� ∩ �Q = ∅, we conclude that

�(A ∩ S∗ ∩ �Q)��(A ∩ �Q)− �(W ∩ �Q)�1,

which proves (5.2). Thusc∗j are well defined forj = 2, . . . , dn and 0< ��c∗2 �c∗3 � · · ·
�c∗dn < ∞. Proceeding as for the casedm > 0 we have: ifc∗j = c∗j+1 = · · · = c∗j+k
for 2�j�j + k�dn with k�0 then �(Kc∗j ∩ S∗)�k + 1. Therefore,I� has at least
dn − dm − 1 pairs of nodal critical points. The proof is similar and we omit it. Then
the proof for the case (ii) is finished, and therefore the proof of the main Theorem1.1
is complete. �
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6. Related results

Our method allows us to work on several other problems in the entire spaceRN

and we mention some results here with sketch of the proofs.
First we observe that additional information on the signed solutions will produce

stronger existence results. In casedn > dm�1, we havedn−dm pairs of nodal solutions.
The following result gives additional nodal solutions to those in Theorem1.1 in the
presence of a pair of signed solutions.

Theorem 6.1. Assume(V1)–(V3) and (f0)–(f5). Assume that there exists a positive
solutionw (so−w is a negative solution). If dn > dm�2, Eq. (1.1) has at leastdn−1
pairs of nodal solutions withdn − dm pairs having positive critical values anddm − 1
pairs having negative critical values.

Sketch of the proof. Using Theorem1.1 we get dn − dm pairs of nodal solutions
having positive critical values. Due to the presence of a pair of signed solutions we
can also getdm − 1 pairs of nodal solutions having negative critical values. This is
done by modifyingf (x, u) to a new functionf̂ (x, u) as in Section 3 and consider Eq.
(3.1) in Section 3. It is easy to check the conditions of Theorem1.1 are satisfied with
dn = 0 in this case, so applying Theorem1.1 we getdm − 1 pairs of nodal solutions
with negative critical values. �

Next, we consider the following problem.

−�u+ V (x)u = f (x, u), in RN, (6.1)

which satisfyu(x)→ 0 as |x| → ∞. The potential functionV satisfies

(V1′) V ∈ C(RN,R) satisfies infV �V0 > 0.
(V2′) lim |x|→∞ V (x) = +∞.

Under these conditions the linear operator is compact and has discrete spectrum only,
i.e., �(−�+ V ) is given by 0< �1 < �2 < · · · with the dimension of each eigenvalue
dim(�k) < ∞. Thus this is somewhat simpler case than the one we have considered.
We state the conditions and a similar result and leave the details to the readers.

We may assume the more general condition than(V2′)

(V2′′) There existsr0 > 0 such that for anyM > 0

lim|y|→∞ m
(
{x ∈ RN : |x − y|�r0} ∩ {x ∈ RN : V (x)�M}

)
= 0.

Again, set

dk :=
k∑
i=1

dim(�i ) and d0 := 0.
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Theorem 6.2. Assume(V1′), (V2′′), and (f0)–(f5). Then Eq.(6.1) has at least|dm−dn|
pairs of nodal solutions providedmin{m, n}�1, and at least|dm − dn| − 1 pairs of
nodal solutions ifmin{m, n} = 0.

There is a version of Theorem6.1 for Eq. (6.1) too.
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