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Abstract

We consider the following nonlinear Schrödinger system in R
3

{−�u + P(|x |)u = μu3 + βv2u, x ∈ R
3,

−�v + Q(|x |)v = νv3 + βu2v, x ∈ R
3,

where P(r) and Q(r) are positive radial potentials, μ > 0, ν > 0 and β ∈ R is
a coupling constant. This type of system arises, in particular, in models in Bose–
Einstein condensates theory.

We examine the effect of nonlinear coupling on the solution structure. In the
repulsive case, we construct an unbounded sequence of non-radial positive vector
solutions of segregated type, and in the attractive case we construct an unbounded
sequence of non-radial positive vector solutions of synchronized type. Depending
upon the system being repulsive or attractive, our results exhibit distinct character-
istic features of vector solutions.

1. Introduction

We consider the following nonlinear Schrödinger system

{−�u + P(|x |)u = μu3 + βv2u, x ∈ R
3,

−�v + Q(|x |)v = νv3 + βu2v, x ∈ R
3,

(1.1)

where we assume that P(x) = P(|x |) and Q(x) = Q(|x |) are continuous positive
radial functions, μ > 0, ν > 0 and β ∈ R is a coupling constant.
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306 Shuangjie Peng & Zhi-qiang Wang

These types of systems arise when one considers standing wave solutions of
time-dependent N -coupled Schrödinger systems with N = 2 of the form

⎧⎨
⎩−i ∂

∂t� j =�� j −Vj (x)� j + μ j |� j |2� j +� j

N∑
l=1,k �= j

β jk |�l |2, in R
3

� j = � j (x, t) ∈ C, t > 0, j = 1, . . . , N ,

(1.2)

where μ j and β jl = βl j are constants. These systems of equations, also known
as Gross–Pitaevskii equations, have applications in many physical problems such
as in nonlinear optics and in Bose–Einstein condensates theory for multispecies
Bose–Einstein condensates. For example, (1.2) with N = 2 arises in the Hartree–
Fock theory for a double condensate, that is, a binary mixture of a Bose–Einstein
condensate in two different hyperfine states |1〉 and |2〉 (see [11,27]). Physically,
�1 and �2 are the wave functions of the corresponding condensates, μ and ν, and
β are the intraspecies and interspecies scattering lengths, respectively. The sign of
the scattering length β determines whether the interactions of states are repulsive or
attractive. In the attractive case the components of a vector solution tend to go along
with each other, leading to synchronization. In the repulsive case, the components
tend to segregate from each other, leading to phase separations. These phenom-
ena have been documented in experiments as well as in numeric simulations (for
example, [7,19,23] and references therein).

Systems of nonlinear Schrödinger equations have been the subject of extensive
mathematical studies in recent years, for example, [2–6,8–10,14,15,17,18,20,21,
24,25,29,30,34] and references therein. Phase separation has been proved in sev-
eral cases with constant potentials, such as in [4,8,9,21,25,29,30] as the coupling
constant β tends to negative infinity in the repulsive case. For the totally symmetric
case (μ j = μ > 0 for all j , and βk j = β for all k �= j), radial solutions with
domain separations are constructed in [25] using variational methods and perturba-
tion methods for N -systems. In [9,30] the minimax method is used to give infinitely
many radial positive solutions for 2-systems (see also [26] for generalizations to
the N -systems). These examples constitute segregated radial solutions. Segregated
radial solutions were obtained in repulsive cases in [4] by global bifurcation meth-
ods for the general systems (1.1), establishing the existence of infinite branches of
radial solutions with the property that

√
μ− βu − √

ν − βv has exactly k nodal
domains for solutions along the kth branch. However, non-radial solutions of the
segregated type with an arbitrarily large number of nodal domains are not well
known. The work of [16] gives solutions with one component peaking at the origin
and the other having a finite number of peaks on a k-polygon. In the symmetric case
(μ = ν and P = Q = 1), [30] gives infinitely many non-radial positive solutions
for β � −1, which are potentially of the segregated type. One of the goals of the
current paper is to demonstrate the existence of infinitely many segregated solu-
tions with a potentially large number of nodal domains. On the other hand, for the
attractive case (that is, β > 0) when P = Q = 1, it is known (for example, [5,6])
that there are special positive solutions with the two components being positive
constant multiples of the unique positive solution of the scalar cubic Schröding-
er equation −�w + w = w3. Thus, the two components are in synchronization.
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This observation prompts the question of whether there are non-radial synchro-
nized vector solutions. Another goal of our paper is to construct infinitely many
non-radial synchronized solutions. Under some assumptions for P(r) and Q(r)
near infinity we construct infinitely many non-radial positive solutions for (1.1),
for both segregated types and synchronized types.

We assume that P(r) > 0and Q(r) > 0 satisfy the following conditions:

(P): There are constants a ∈ R, m > 1, and θ > 0, such that as r → +∞

P(r) = 1 + a

rm
+ O

(
1

rm+θ

)
. (1.3)

(Q): There are constants b ∈ R, n > 1, and ε > 0, such that as r → +∞

Q(r) = 1 + b

rn
+ O

(
1

rn+ε

)
. (1.4)

Our main results in this paper can be stated as follows:

Theorem 1.1. Suppose that P(r) satisfies (P) and Q(r) satisfies (Q). Then there
exists a decreasing sequence {βk} ⊂ (−√

μν, 0) with βk → −√
μν as k → ∞

such that for β ∈ (−√
μν, 0) ∪ (0,min{μ, ν}) ∪ (max{μ, ν},∞) and β �= βk for

any k, problem (1.1) has infinitely many non-radial positive synchronized solutions
(u	, v	), whose energy can be arbitrarily large, provided one of the following two
conditions holds:

(i) m < n, a > 0 and b ∈ R; or m > n, a ∈ R and b > 0;
(ii) m = n, aB + bC > 0, where B and C are defined in Proposition A.2.

Furthermore, lim	→∞ max u	 > 0, lim	→∞ max v	 > 0, and as 	 → ∞
||√|μ− β|u	 − √|ν − β|v	||H1 + ||√|μ− β|u	 − √|ν − β|v	||L∞ → 0.

Theorem 1.2. Suppose that P(r) satisfies (P), Q(r) satisfies (Q) and m = n, a >
0, b > 0. Then there exists β̄∗ > 0 such that, for β < β̄∗, problem (1.1) has
infinitely many non-radial positive segregated solutions (u	, v	), whose energy can
be arbitrarily large. Furthermore, lim	→∞ max u	 > 0, lim	→∞ max v	 > 0, and
as 	 → ∞

||√νu	(·)− √
μv	(T	·)||H1 + ||√νu	(·)− √

μv	(T	·)||L∞ → 0.

Here T	 ∈ SO(3) is the rotation on the (x1, x2) plane of π
	

.

Remark 1.3. The segregated or synchronized natures of these solutions are dem-
onstrated from the L∞ estimates in the theorems; this distinction will be clearer
in Theorems 1.7 and 1.8, stated later, after we fix the notation. Roughly speaking,
synchronized solutions are small perturbations of (Ur , Vr ), where Ur and Vr are
sums of positive constant multiples of translated W to the vertices of a large sized
l-polygon, where W is the unique positive radial solution of −�W + W = W 3.
Segregated solutions are small perturbations of (Ūr , V̄ρ), where Ūr (V̄ρ , resp.) are
sums of translated Wμ (Wν , resp.) to the vertices of a large sized l-polygon, with
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308 Shuangjie Peng & Zhi-qiang Wang

one polygon being a π/ l rotation shift of the other, and where Wμ (Wν , resp.) is
the unique positive radial solution of −�W + W = μW 3 (−�W + W = νW 3,
respectively). In other words, synchronized solutions and segregated solutions both
have a large number of bumps near infinity, while the locations of the bumps for
u and v are roughly the same for synchronized solutions and the locations of the
bumps for u and v have an angular shift for segregated solutions.

Remark 1.4. 1). In Theorem 1.1 the requirement of β /∈ (min{μ, ν},max{μ, ν}) is
necessary as there is a non-existence result on positive solutions (for example, [5]),
and in particular there are no positive solutions when P = Q for such β. 2). Note
that for the small coupling constant we can obtain simultaneously infinitely many
synchronized and segregated solutions. With the constant potentials, segregation
was discussed for the repulsive case with β negatively large (for example, [4,7–
9,15,21,25,29,30]), while the uniqueness of positive radial solutions was proved
for a large positive constant β [34].

Remark 1.5. Our methods are inspired by the work of [31,33] for scalar nonlinear
elliptic equations. For the scalar case, the potential has to be decreasing at infinity
since the scalar equations may not have non-radial positive solutions for increasing
potential functions. However, we want to point out that for the systems of equations
we just need the combined effect from the two potential functions P and Q in the
sense that if one dominates the other, the faster decaying function can be increasing
or decreasing at infinity and, if the two have the same decay rates at infinity, we
just need the combined effect aB + bC > 0.

Remark 1.6. There is a gray region of |β| �= 0 small in which, for β, synchronized
and segregated type solutions exist simultaneously. This, in some cases, may be
seen as a continuation from solutions for β = 0. On the other hand, we want to
point out that for some parameters these solutions only exist due to the coupling and
do not exist for β = 0. For example, as we discussed above, a or b can be negative.
When β = 0, an equation with increasing potential cannot have non-radial positive
solutions.

Next, we introduce some notations to be used in the proofs of the main theorems
and formulate a version of the main results which gives more precise descriptions
about the segregated and synchronized character of the solutions. In doing so, we
also outline the main idea and approach in the proof of Theorems 1.1 and 1.2.

Hereafter, for any function K (x) > 0, the Sobolev space H1
K (R

3) is endowed
with the standard norm

‖u‖K =
(∫

R3
(|∇u|2 + K (x)u2)

) 1
2

,

which is induced by the inner product

〈u, v〉K =
∫

R3
(∇u∇v + K (x)uv).
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Define H to be the product space H1
P (R

3)× H1
Q(R

3) with the norm

‖(u, v)‖ = ‖u‖P + ‖v‖Q .

Denote the unique solution of the following problem by W⎧⎨
⎩

−�w + w = w3, w > 0, in R
3,

w(0) = max
x∈R3

w(x), w(x) ∈ H1(R3).
(1.5)

Note that the limit system for (1.1) is{−�u + u = μu3 + βv2u, x ∈ R
3,

−�v + v = νv3 + βu2v, x ∈ R
3,

(1.6)

and that

(U, V ) = (αW, γW )

solves (1.6), provided −√
μν < β < min{μ, ν} or β > max{μ, ν, }, where

α =
√

ν − β

μν − β2 , γ =
√

μ− β

μν − β2 .

We will use (U, V ) to build up the solutions for (1.1).
Let

x j =
(

r cos
2( j − 1)π

	
, r sin

2( j − 1)π

	
, 0

)
:= (

x ′ j
, 0

)
, j = 1, . . . , 	, (1.7)

where r ∈ [r0	 ln 	, r1	 ln 	] for some r1 > r0 > 0.
Define

HV,s =
{

u : u ∈ H1
V (R

3), u is even in xh, h = 2, 3,

u(r cos θ, r sin θ, x3) = u

(
r cos

(
θ + 2π j

	

)
, r sin

(
θ + 2π j

	

)
, x3

)}
.

We define HQ,s similarly.
Let

Ur (x) =
	∑

j=1

Ux j (x), Vr (x) =
	∑

j=1

Vx j (x), (1.8)

where Uξ (x) = U (x − ξ) for ξ ∈ R
3, Vξ (x) = V (x − ξ) for ξ ∈ R

3. It is easy to
check that (Ur , Vr ) is in HP,s × HQ,s .

We will verify Theorem 1.1 by proving the following result:
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Theorem 1.7. Under the assumptions of Theorem 1.1, there is an integer 	0 > 0,
such that for any integer 	 � 	0, (1.1) has a solution u	 of the form

(u	, v	) = (Ur	 (x)+ ϕ	, Vr	 (x)+ ψ	),

where (ϕ	, ψ	) ∈ HP,s × HQ,s , r	 ∈ [r0	 ln 	, r1	 ln 	] and as 	 → +∞,

‖(ϕ	, ψ	)‖ → 0.

In Theorem 1.7, we construct infinitely many non-radial positive solutions
(u	, v	) for system (1.1). These are synchronized type solutions as evidenced
by the constructions, since the essential supports of the two components u	 and v	
are both placed in the same locations. One can easily see that the larger the value of
	, the more synchronized these components are. The next result implies Theorem
1.2 and gives segregated solutions for system (1.1) with the essential support of
the two components being separated.

Let Uμ be the unique solution of the following problem⎧⎨
⎩

−�u + u = μu3, u > 0, in R
3,

u(0) = max
x∈R3

u(x), u(x) ∈ H1(R3).
(1.9)

It is well-known that Uμ is non-degenerate and Uμ(x) = Uμ(|x |), U ′
μ < 0.

We will use (Uμ,Uν) to build up the approximate solutions for (1.1).
Let x j be defined in (1.7) and denote

y j =
(
ρ cos

(2 j − 1)π

	
, ρ sin

(2 j − 1)π

	
, 0

)
:= (

y′ j
, 0

)
, j = 1, . . . , 	,

(1.10)

where ρ ∈ [r̄0	 ln 	, r̄1	 ln 	] for some r̄1 > r̄0 > 0.
Let

Ūr (x) =
	∑

j=1

Uμ,x j (x), V̄ρ(x) =
	∑

j=1

Uν,y j (x), (1.11)

where Uγ,ξ (x) = Uγ (x −ξ) for γ > 0 and ξ ∈ R
3. It is easy to check that (Ūr , V̄ρ)

is in HP,s × HQ,s .
To prove Theorem 1.2, we need to prove the following result

Theorem 1.8. Under the assumptions of Theorem 1.2, there exists an integer 	̄0 >

0, such that for any integer 	 � 	̄0, (1.1) has a solution (u	, v	) of the form

(u	, v	) = (Ūr	 (x)+ ϕ̄	, V̄ρ	(x)+ ψ̄	),

where (ϕ̄	, ψ̄	) ∈ HP,s × HQ,s , r	 ∈ [r̄0	 ln 	, r̄1	 ln 	] and as 	 → +∞,

‖(ϕ̄	, ψ̄	)‖ → 0.
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Remark 1.9. By Theorem 1.7 and Theorem 1.8 , (1.1) has solutions with a large
number of bumps near infinity. Thus, the energy of these solutions can be very
large.

We apply the techniques in the singularly perturbed elliptic problems to prove
our main results. In particular, we adopt the idea introduced by Wei and Yan [33]
by using 	, the number of the bumps of the solutions, as a parameter in the construc-
tion of spike solutions for (1.1). We encounter some new difficulties in estimates
due to the nonlinear coupling.

This paper is organized as follows. In Section 2, we will carry out the reduction
to a finite dimensional setting and prove Theorem 1.7. The study of the existence
of segregated solutions for system (1.1) and the proof of Theorem 1.8 will appear
in Section 3. In Section 4 we discuss some further extensions of our main results
by using our framework of methods. We conclude with the energy expansion in the
appendix.

2. Synchronized Vector Solutions and the proof of Theorem 1.1

In this section we consider synchronized vector solutions and prove Theorem
1.1 by proving Theorem 1.7. Let

Y j = ∂Ux j

∂r
, Z j = ∂Vx j

∂r
, j = 1, . . . , 	,

where x j is defined in (1.7).
In this section, we always assume

r ∈ D	 =:
[(

min{m, n}
2π

− δ

)
	 ln 	,

(
min{m, n}

2π
+ δ

)
	 ln 	

]
, (2.1)

where δ > 0 is a small constant.
Let

I (u, v) = 1

2

∫
R3

(|∇u|2 + P(|x |)u2 + |∇v|2 + Q(|x |)v2)
−1

4

∫
R3

(
μ|u|4 + ν|v|4)−β

2

∫
R3

u2v2, (u, v) ∈ H.

Then I ∈ C2 and its critical points are solutions of (1.1).
Define

E =
⎧⎨
⎩(u, v) ∈ HP,s × HQ,s,

	∑
j=1

∫
R3

W 2
x j (Y j u + Z jv) = 0

⎫⎬
⎭ .

Let

J (ϕ, ψ) = I (Ur + ϕ, Vr + ψ), (ϕ,ψ) ∈ E .
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312 Shuangjie Peng & Zhi-qiang Wang

Expand J (ϕ, ψ) as follows:

J (ϕ, ψ) = J (0, 0)+ l(ϕ, ψ)+ 1

2
L(ϕ, ψ)+ R(ϕ, ψ), (ϕ,ψ) ∈ E, (2.2)

where

l(ϕ, ψ) =
	∑

j=1

∫
R3
(P(|x |)− 1)Ux jϕ + μ

∫
R3

⎛
⎝U 3

r −
	∑

j=1

U 3
x j

⎞
⎠ϕ

+
	∑

j=1

∫
R3
(Q(|x |)− 1) Vx jψ + ν

∫
R3

⎛
⎝V 3

r −
	∑

j=1

V 3
x j

⎞
⎠ψ

−β
∫

R3

⎛
⎝V 2

r Ur −
	∑

j=1

V 2
x j Ux j

⎞
⎠ϕ − β

∫
R3

⎛
⎝Vr U 2

r −
	∑

j=1

Vx j U 2
x j

⎞
⎠ψ,

L(ϕ, ψ) =
∫

R3

(
|∇ϕ|2 + P(|x |)ϕ2 − 3μU 2

r ϕ
2
)

+
∫

R3

(
|∇ψ |2 + Q(|x |)ψ2 − 3νV 2

r ψ
2
)

−β
∫

R3

(
U 2

r ψ
2 + 4Ur Vrϕψ + V 2

r ϕ
2
)
,

and

R(ϕ, ψ) =
∫

R3

(
μUrϕ

3 + νVrψ
3 + μ

4
ϕ4 + ν

4
ψ4

)

−β
2

∫
R3

(
(Ur + ϕ)2(Vr + ψ)2 − U 2

r V 2
r − 2(Ur V 2

r ϕ + U 2
r Vrψ)

−2(U 2
r ψ

2 + V 2
r ψ

2 + 4Ur Vrϕψ)
)
.

In order to find a critical point (ϕ, ψ) ∈ E for J (ϕ, ψ), we need to discuss each
term in the expansion (2.2).

It is easy to check that∫
R3

(∇u∇ϕ + P(|x |)uϕ − 3μU 2
r uϕ

) +
∫

R3

(∇v∇ψ + Q(|x |)vψ − 3νV 2
r vψ

)
− β

∫
R3

(
U 2

r vψ + V 2
r uϕ + 2Ur Vr uψ + 2Ur Vrvϕ

)
is a bounded bi-linear functional in E . Thus, there is a bounded linear operator L
from E to E , such that

〈
L(u, v), (ϕ, ψ)

〉= ∫
R3

(∇u∇ϕ + P(|x |)uϕ − 3μU2
r uϕ

)
+
∫
R3

(∇v∇ψ + Q(|x |)vψ − 3νV 2
r vψ

)
−β

∫
R3

(
U2

r vψ+V 2
r uϕ+2Ur Vr uψ+2Ur Vrvϕ

)
, (u, v), (ϕ, ψ)∈ E .
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From the above analysis, we have the following two lemmas.

Lemma 2.1. There is a constant C > 0, independent of 	, such that for any r ∈ D	,

‖L(u, v)‖ � C‖(u, v)‖, (u, v) ∈ E .

Next, we discuss the invertibility of L .

Lemma 2.2. There is a constant � > 0, independent of 	, such that for any r ∈ D	,

‖L(u, v)‖ � �‖(u, v)‖, (u, v) ∈ E .

Before we prove Lemma 2.2, we need a non-degeneracy result.

Proposition 2.3. There exists a decreasing sequence {βk} ⊂ (−√
μν, 0) with

βk → −√
μν as k → ∞ such that for β ∈ (−√

μν, 0) ∪ (0,min{μ, ν}) ∪
(max{μ, ν},∞)andβ �= βk for any k, (U, V ) is non-degenerate for the system (1.6)
in H1(R3)× H1(R3) in the sense that the kernel is given by span{(θ(β) ∂W

∂x j
, ∂W
∂x j
) |

j = 1, 2, 3}, where θ(β) �= 0.

Proof of Proposition 2.3. We follow the arguments in [4]. Consider the weighted
eigenvalue problem in λ: −��+� = λW 2�which has a sequence of eigenvalues
1 = λ1 < λ2 = λ3 = λ4 < λ5 � . . . with associated eigenfunctions �k satisfying∫
R3 W 2�k�mdx = 0 for k �= m. For �k with k = 2, 3, 4 we may take them as
∂W
∂x1
, ∂W
∂x2
, ∂W
∂x3

. Now for −√
μν < β < 0 or 0 < β < min{μ, ν}, linearization of

equations (1.6) at (U, V ) gives us{−�φ + φ = W 2(aφ + bψ), x ∈ R
3,

−�ψ + ψ = W 2(bφ + cψ), x ∈ R
3,

(2.3)

where

a(β) = 3μν − 2μβ − β2

μν − β2

and

b(β) = 2β

√
(μ− β)(ν − β)

μν − β2

and

c(β) = 3μν − 2νβ − β2

μν − β2 .

Set γ± = a−c
2b ± 1

2b

√
(a − c)2 + 4b2. For β < 0 a direct computation shows that

−�(φ − γ+ψ)+ (φ − γ+ψ) = 3W 2(φ − γ+ψ).
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314 Shuangjie Peng & Zhi-qiang Wang

Thus φ − γ+ψ = ∑4
j=2 α j� j . Returning to the equation for ψ we get

−�ψ + ψ = (bγ+ + c)W 2ψ + bW 2
4∑

j=2

α j� j .

Set ψ = ∑∞
j=1 γ j� j and f (β) = bγ+ + c. Assume f (β) �= λk for any k. Using

orthogonality we see easily that γ j = 0 for j �= 2, 3, 4, and γ j = bα j
3− f (β) for j =, 2,

3, 4. Thus, the kernel at (U, V ) is given by span{((γ+ b
3− f (β) + 1)�k,

b
3− f (β)�k)|

k = 2, 3, 4}, a three dimensional space. We may take θ(β) = γ+ + 3− f (β)
b(β) . Since

b �= 0 and 3 − c �= 0, we have θ(β) �= 0. If f (β) = λ j for some j , then similarly
γk = 0 for k �= j, k �= 2, 3, 4. It is easy to check that�k is in the kernel when λk =
λ j . Thus the kernel is generated by span{((γ+ b

3− f (β) + 1)�k,
b

3− f (β)�k) | k =
2, 3, 4} and span{�k | λk = λ j }. For min{μ, ν} > β > 0 we use γ− instead of γ+
to get the same result. From [4], f (β) = 3 if and only if β = 0 and f (β) is mono-
tone decreasing. Also, from [4] there exists a decreasing sequence βk in (−√

μν, 0)
such that f (β) = λk if and only if β = βk . Thus, for β /∈ {βk}, f (β) �= λ j for any
j . The same arguments can be used to treat the case β > max{μ, ν}, so we omit it.

��
Proof of Lemma 2.2. Suppose to the contrary of Lemma 2.2 assertion, that there
are 	 → +∞, r	 ∈ D	, and (u	, v	) ∈ E , with〈

L(u	, v	), (ϕ, ψ)
〉 = o(1)‖(u	, v	)‖‖(ϕ, ψ)‖, ∀ (ϕ, ψ) ∈ E . (2.4)

We may assume that ‖(u	, v	)‖2 = 	. For convenience, we use r to denote r	.
For j = 1, . . . , 	, let

� j =
{

z = (z′, z3) ∈ R
2 × R :

〈
z′

|z′| ,
x ′ j

x ′ j |

〉
� cos

π

	

}
.

By symmetry, we see from (2.4),∫
�1

(∇u	∇ϕ+P(|x |)u	ϕ−3μU 2
r u	ϕ

)+∫
�1

(∇v	∇ψ+Q(|x |)v	ψ−3νV 2
r v	ψ

)
−β

∫
�1

(
U 2

r v	ψ + V 2
r u	ϕ + 2Ur Vr u	ψ + 2Ur Vrv	ϕ

)
= 1

	
〈L(u	, v	), (ϕ, ψ)〉 = o(1)

( 1√
	

)
‖(ϕ, ψ)‖, ∀(ϕ, ψ) ∈ E .

(2.5)

In particular,∫
�1

(|∇u	|2 + P(|x |)u2
	 − 3μU 2

r u2
	

) +
∫
�1

(|∇v	|2 + Q(|x |)v2
	 − 3νV 2

r v
2
	

)

−β
∫
�1

(
V 2

r u2
	 + 4Ur Vr u	v	 + U 2

r v
2
	

) = o(1),

(2.6)

Author's personal copy



Segregated and Synchronized Vector Solutions 315

and ∫
�1

(|∇u	|2 + P(|x |)u2
	 + |∇v	|2 + Q(|x |)v2

	

) = 1. (2.7)

Let

ū	(x) = u	(x − x1), v̄	(x) = v	(x − x1).

For any R > 0, BR(x1) ⊂ �1 since |x j − x1| � r sin π
	

� c ln 	 for j =
2, . . . , 	. Thus, (2.7) implies∫

BR(0)

(|∇ū	|2 + ū2
	 + |∇v̄	|2 + v̄2

	

)
� c.

So, we may assume the existence of u, v ∈ H1(R3), such that as 	 → +∞,

ū	 → u, weakly in H1
loc(R

3), ū	 → u, strongly in L2
loc(R

3).

v̄	 → v, weakly in H1
loc(R

3), v̄	 → v, strongly in L2
loc(R

3).

Moreover, u and v are even in xh (h = 2, 3) and satisfy∫
R3

W 2
(
∂U

∂x1
u + ∂V

∂x1
v

)
= 0. (2.8)

Now, we claim that (u, v) satisfies{−�u + u − 3μU 2u − βV 2u − 2βU V v = 0, x ∈ R
3,

−�v + v − 3νV 2v − βU 2v − 2βU V u = 0, x ∈ R
3.

(2.9)

Define

Ẽ =
{
(ϕ, ψ) ∈ H1(R3)× H1(R3) :

∫
R3

W 2
(
∂U

∂x1
ϕ + ∂V

∂x1
ψ

)
= 0

}
.

For any R > 0, let (ϕ, ψ) ∈ C∞
0 (BR(0)) × C∞

0 (BR(0)) ∩ Ẽ and be even in
xh , h = 2, 3. Then (ϕ	(x), ψ	(x)) =: (ϕ(x − x1), ψ(x − x1)) ∈ C∞

0 (BR(x1))×
C∞

0 (BR(x1)) ⊂ �1 for 	, if large enough. We may identify (ϕ	(x), ψ	(x)) as
elements in E by redefining the values outside �1 with the symmetry. With the
argument in [33], we find∫

�1

(∇u	∇ϕ	 + P(|x |)u	ϕ	 − 3μU 2
r u	ϕ	

) →
∫

R3

(∇u∇ϕ + uϕ − 3μU 2uϕ
)
,

(2.10)∫
�1

(∇v	∇ψ	 + Q(|x |)v	ψ	 − 3V 2
r v	ψ	

) →
∫

R3

(∇v∇ψ + vψ − 3μU 2vψ
)
,

(2.11)
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and ∫
�1

(
U 2

r v	ψ	 + V 2
r u	ϕ	 + 2Ur Vr u	ψ	 + 2Ur Vrv	ϕ	

)

→
∫

R3

(
U 2vψ + V 2uϕ + 2U V uψ + 2U V vϕ

)
.

(2.12)

Inserting (2.10), (2.11) and (2.12) into (2.5), we see∫
R3

(∇u∇ϕ + uϕ − 3μU 2uϕ
) +

∫
R3

(∇v∇ψ + vψ − 3μU 2vψ
)

−β
∫

R3

(
U 2vψ + V 2uϕ + 2U V uψ + 2U V vϕ

) = 0.
(2.13)

However, since u and v are even in xh , h = 2, 3, (2.13) holds for any function
(ϕ, ψ) ∈ C∞

0 (BR(0)) × C∞
0 (BR(0)), which is odd in xh , h = 2, 3. Therefore,

(2.13) holds for any (ϕ, ψ) ∈ C∞
0 (BR(0)) × C∞

0 (BR(0)) ∩ Ẽ . By the density of
C∞

0 (BR(0))× C∞
0 (BR(0)) in H1(R3)× H1(R3), we see∫

R3

(∇u∇ϕ + uϕ − 3μU 2uϕ
) +

∫
R3

(∇v∇ψ + vψ − 3μU 2vψ
)

−β
∫

R3

(
U 2vψ + V 2uϕ + 2U V uψ + 2U V vϕ

) = 0, ∀(ϕ, ψ) ∈ Ẽ .

(2.14)

Noting that (U, V ) = (αW, γW ) and W solves (1.9), we can verify that (2.14) holds
for (ϕ, ψ) = ( ∂U

∂x1
, ∂V
∂x1
). Thus, (2.14) is true for any (ϕ, ψ) ∈ H1(R3)× H1(R3).

So, we have proved (2.9).
From Proposition 2.3, (U, V ) is nondegenerate. Since we work in the space of

functions which are even in x2 and x3, the kernel of (U, V ) is given by the one
dimensional (θ(β) ∂W

∂x1
, ∂W
∂x1
). Thus, we see (u, v) = c( ∂U

∂x1
, ∂V
∂x1
) for some c, which

implies that (u, v) = (0, 0) since (u, v) satisfies (2.8).
As a result, ∫

BR(x1)

u2
	 + v2

	 = o(1), ∀ R > 0.

On the other hand, using Lemma A.1, we obtain

Ur	 (x) � Ce− |x−x1|
2 , Vr	 (x) � Ce− |x−x1|

2 x ∈ �1.

Thus,∫
�1

(|∇u	|2 + P(|x |)u2
	 − 3μU 2

r u2
	

) +
∫
�1

(|∇v	|2 + Q(|x |)v2
	 − 3νV 2

r v
2
	

)

=
∫
�1

(|∇u	|2 + P(|x |)u2
	

) + o(1)+ O(e− R
2 )

∫
�1

u2
	

+
∫
�1

(|∇v	|2 + Q(|x |)v2
	

) + o(1)+ O(e− R
2 )

∫
�1

v2
	

(2.15)

∫
�1

(
V 2

r u2
	 + 4Ur Vr u	v	 + U 2

r v
2
	

) = o(1)+ O(e− R
2 )

∫
�1

(
u2
	 + v2

	

)
. (2.16)
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Inserting (2.15), (2.16) and (2.7) into (2.6), we find

o(1) =
∫
�1

(|∇u	|2 + P(|x |)u2
	 − 3μU 2

r u2
	

)+∫
�1

(|∇v	|2 + Q(|x |)v2
	−3νV 2

r v
2
	

)
−β

∫
�1

(
V 2

r u2
	 + 4Ur Vr u	v	 + U 2

r v
2
	

)
= 1 + O(e− R

2 ),

which is impossible for large 	 and large R.
As a result, we complete the proof. ��

Lemma 2.4. There exist constants C > 0, independent of 	, such that

‖R(i)(ϕ, ψ)‖ � C‖(ϕ, ψ)‖3−i , i = 0, 1, 2.

Proof. Calculating directly, we have that for any (u, v), (w, ω) ∈ E ,

|R(ϕ, ψ)| �
∣∣∣∫

R3

(
μUrϕ

3 + νVrψ
3 + μ

4
ϕ4 + ν

4
ψ4)∣∣∣

+|β|
2

∣∣∣∫
R3

(
(Ur +ϕ)2(Vr +ψ)2−U 2

r V 2
r −2(Ur V 2

r ϕ+U 2
r Vrψ)

−2(U 2
r ψ

2 + V 2
r ψ

2 + 4Ur Vrϕψ)
)∣∣∣

� C
∫

R3

(|ϕ|3 + |ψ |3 + |ϕ|4 + |ψ |4 + ϕ2|ψ | + ψ2|ϕ|)
� C

(‖(ϕ, ψ)‖3 + ‖(ϕ, ψ)‖4),
|〈R′(ϕ, ψ), (u, v)〉| =

∣∣∣∫
R3

(
3μUrϕ

2u + μϕ3u−βUrψ
3u−2βVrϕ

2ψu−βϕψ2u

+3νVrψ
2v + νψ3v − 2βUrϕψv − βVrϕ

2v − βϕ2ψv
)∣∣∣

� C
(‖ϕ‖2

P +‖ϕ‖3
P +‖ψ‖2

P +‖ψ‖3
P +‖ϕ‖2

P‖ψ‖Q +‖ϕ‖P‖ψ‖2
Q

)
×(‖u‖P + ‖v‖Q)

� C
(‖(ϕ, ψ)‖2 + ‖(ϕ, ψ)‖3)‖(u, v)‖,

and, similarly,

|〈R′′(ϕ, ψ)(u, v), (w, ω)〉| � C
(‖(ϕ, ψ)‖ + ‖(ϕ, ψ)‖2)‖(u, v)‖‖(w, ω)‖.

Hence, the result follows. ��
Proposition 2.5. There is an integer 	0 > 0 such that, for each 	 � 	0, there is
a C1 map from D	 to HP,s × HQ,s : (ϕ, ψ) = (ϕ(r), ψ(r)), r = |x1|, satisfying
(ϕ, ψ) ∈ E, and 〈

∂ J (ϕ, ψ)

∂(ϕ,ψ)
, (g, h)

〉
= 0, ∀ (g, h) ∈ E .

Moreover, there is a constant C, such that

‖(ϕ, ψ)‖ � C

(
	

rm
+ 	

rn
+ 	

1
2 e− 2π

	
r 	

r

)
. (2.17)
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Proof. It follows from Lemma 2.6 below, that l(ϕ, ψ) is a bounded linear functional
in E . Thus, there is an l	 ∈ E , such that

l(ϕ, ψ) = 〈
l	, (ϕ, ψ)

〉
.

Thus, finding a critical point for J (ϕ, ψ) is equivalent to solving

l	 + L(ϕ, ψ)+ R′(ϕ, ψ) = 0. (2.18)

By Lemma 2.2, L is invertible. Thus, (2.18) can be rewritten as

(ϕ, ψ) = A(ϕ, ψ) =: −L−1l	 − L−1 R′(ϕ, ψ). (2.19)

Set

D =
{
(ϕ, ψ) : (ϕ, ψ) ∈ E, ‖(ϕ, ψ)‖ � 	1+σ

rm
+ 	1+σ

rn
+ 	

1+σ
2 e− 2π

	
r 	

r

}
,

where σ > 0 is small.
From Lemma 2.4 and Lemma 2.6, below, for 	 large,

‖A(ϕ, ψ)‖ � C‖l	‖ + C‖ϕ,ψ‖2

� C

(
	

rm
+ 	

rn
+ 	

1
2 e− 2π

	
r 	

r

)
+C

(
	1+σ

rm
+ 	1+σ

rn
+ 	

1+σ
2 e− 2π

	
r 	

r

)2

� 	1+σ

rm
+ 	1+σ

rn
+ 	

1+σ
2 e− 2π

	
r 	

r
, (2.20)

and

‖A(ϕ1, ψ1)− A(ϕ2, ψ2)‖ = ‖L−1 R′(ϕ1, ψ1)− L−1 R′(ϕ2, ψ2)‖
� C

(‖(ϕ1, ψ1)‖ + ‖(ϕ1, ψ1)‖2)‖(ϕ1, ψ1)− (ϕ2, ψ2)‖
� 1

2
‖(ϕ1, ψ1)− (ϕ2, ψ2)‖.

Therefore, A maps D into D and is a contraction map. So, by the contraction map-
ping theorem, there exists (ϕ, ψ) ∈ E , such that (ϕ, ψ) = A(ϕ, ψ). Finally, by
(2.19), we have

‖(ϕ, ψ)‖ � C

(
	

rm
+ 	

rn
+ 	

1
2 e− 2π

	
r 	

r

)
.

��
Lemma 2.6. There is a constant C > 0 independent of 	, such that

‖l	‖ � C

(
	

rm
+ 	

rn
+ 	

1
2 e− 2π

	
r 	

r

)
.
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Proof. First, we see∣∣∣∣∣∣
	∑

j=1

∫
R3

(
P(|x |)− 1

)
Ux jϕ +

	∑
j=1

∫
R3

(
Q(|x |)− 1

)
Vx jψ

∣∣∣∣∣∣
= 	

∣∣∣∣
∫

R3

(
P(|x |)− 1

)
Ux1ϕ +

∫
R3

(
Q(|x |)− 1

)
Vx1ψ

∣∣∣∣
= 	

∣∣∣∣
∫

R3

(
P(x − x1)− 1

)
Uμϕ(x − x1)+

∫
R3

(
Q(x − x1)− 1

)
Uνψ(x − x1)

∣∣∣∣
� C	

(
1

rm
+ 1

rn

)
‖(ϕ, ψ)‖.

(2.21)

Next, we estimate

μ

∫
R3

⎛
⎝U 3

r −
	∑

j=1

U 3
x j

⎞
⎠ϕ + ν

∫
R3

⎛
⎝V 3

r −
	∑

j=1

V 3
x j

⎞
⎠ψ.

By symmetry, we have∣∣∣∣∣∣
∫

R3

(
U 3

r −
	∑

j=1

U 3
x j

)
ϕ

∣∣∣∣∣∣ = 	

∣∣∣∣∣∣
∫
�1

(
U 3

r −
	∑

j=1

U 3
x j

)
ϕ

∣∣∣∣∣∣
= C	

∫
�1

⎛
⎝U 2

x1

	∑
j=2

Ux j + O

⎛
⎝Ux1

	∑
j=2

U 2
x j

⎞
⎠
⎞
⎠ |ϕ|

� C	
	∑

j=1

e−|x1−x j |

|x1 − x j |
(∫

�1

|ϕ|2
) 1

2

� C	
1
2

	∑
j=1

e−|x1−x j |

|x1 − x j | ‖ϕ‖P

� C	
1
2 e− 2π

	
r 	

r
‖(ϕ, ψ)‖.

(2.22)

Similarly, ∣∣∣∣∣∣
∫

R3

⎛
⎝V 3

r −
	∑

j=1

V 3
x j

⎞
⎠ψ

∣∣∣∣∣∣ � C	
1
2 e− 2π

	
r 	

r ‖(ϕ, ψ)‖. (2.23)

Finally, since U = α
γ

V , we have∣∣∣∣∣∣
∫

R3

⎛
⎝V 2

r Ur −
	∑

j=1

V 2
x j Ux j

⎞
⎠ϕ +

∫
R3

⎛
⎝Vr U 2

r −
	∑

j=1

Vx j U 2
x j

⎞
⎠ψ

∣∣∣∣∣∣
=
∣∣∣∣∣∣
(γ
α

)2
∫

R3

⎛
⎝U 3

r −
	∑

j=1

U 3
x j

⎞
⎠ϕ +

(
α

γ

)2 ∫
R3

⎛
⎝V 3

r −
	∑

j=1

V 3
x j

⎞
⎠ψ

∣∣∣∣∣∣
� C	

1
2 e− 2π

	
r 	

r
‖(ϕ, ψ)‖.

(2.24)

The result follows from (2.21), (2.22), (2.23) and (2.24). ��
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Now we are ready to prove Theorem 1.1. Let (ϕr , ψr ) = (ϕ(r), ψ(r)) be the
map obtained in Proposition 2.5. Define

F(r) = I (Ur + ϕr , Vr + ψr ), ∀ r ∈ D	.

With the same argument used in [13,22], we can easily check that for 	 sufficiently
large, if r is a critical point of F(r), then (Ur +ϕr , Vr +ψr ) is a critical point of I .

Proof of Theorem 1.7. It follows from Lemmas 2.1 and 2.4 that

‖L(ϕr , ψr )‖ � C‖(ϕr , ψr )‖, |R(ϕr , ψr )| � C‖(ϕr , ψr )‖3.

So, Proposition 2.5 and A.2 give

F(r) =I (Ur , Vr )+ l(ϕr , ψr )+ 1

2

〈
L(ϕr , ψr ), (ϕr , ψr )

〉 + R(ϕr , ψr )

=I (Ur , Vr )+ O
(‖l	‖‖(ϕr , ψr )‖ + ‖(ϕr , ψr )‖2)

=I (Ur , Vr )+ O
( 1

	m−1+σ + 1

	n−1+σ
)

=	
(

A +
(

aB

rm
+ bC

rn
− (D + βH)e− 2πr

	
	

r

)
+ O

(
1

	m+σ + 1

	n+σ

))
.

We prove the theorem only for the case m = n, since the other case is similar.
If m = n, then

F(r) = 	

(
A +

(
aB + bC

rm
− (D + βH)e− 2πr

	
	

r

)
+ O

(
1

	m+σ

))
.

Note that β �= βk with {βk} is given in Proposition 2.3 and (D +βH) > 0. Let
D	 be defined in (2.1). Consider the following maximization problem

max
r∈D	

F(r). (2.25)

Assume that (2.25) is achieved by some r	 in D	. We will prove that r	 is an interior
point of D	.

Define

g(t) = aB + bC

tm	m
− (D + βH)e−2π t

t
.

Then,

g′(t) = −m(aB + bC)

tm+1	m
+ 2π(D + βH)e−2π t

t
+ (D + βH)e−2π t

t2 .

It is easy to check that g(t) has a maximum point t	, satisfying

m(aB + bC)

tm+1	m
= 2π(D + βH)e−2π t

t
+ (D + βH)e−2π t

t2 . (2.26)
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Thus,

t	 =
( m

2π
+ o(1)

)
ln 	.

So, the function

ḡ(r) := aB + bC

rm
− (D + βH)	e− 2πr

	

r

has a maximum point

r̄	 = 	t	 =
( m

2π
+ o(1)

)
	 ln 	.

Hence, it follows from the expression of F(r) that the maximizer r	 is an interior
point of D	, if we choose δ > 0 small.

Now we prove that ur	 = Ur	 + ϕr	 and vr	 = Vr	 + ψr	 are positive.
First, by regularity theory, we have that (ϕr	 , ψr	 ) tends to zero in L∞-norm as

	 → ∞. Set (ur	 )− = max{−ur	 , 0}, (vr	 )− = max{−vr	 , 0}. Then we have that
(ur	 )− and (vr	 )− tends to zero as 	 → ∞. Due to the form of the solution, we see
that when ur	 (x) < 0 we have Vr	 (x) � −ψr	 (x) = o(1) as 	 → ∞. We see from
〈I ′(ur	 , vr	 ), ((ur	 )−, 0)〉 = 0 that

‖(ur	 )−‖2
P = μ

∫
R3

|(ur	 )−|4 + β

∫
R3
v2

r	 |(ur	 )−|2 � o(1)‖(ur	 )−‖2
P .

Hence, ur	 > 0.
Similarly, we can prove vr	 > 0. As a result, (Ur	 +ϕr	 , Vr	 +ψr	 ) is a positive

solution of (1.1). ��

3. Segregated Vector Solutions and The proof of Theorem 1.2

In this section we consider synchronized vector solutions and prove Theorem
1.2 by proving Theorem 1.8. Let

Ȳ j = ∂Uμ,x j

∂r
, Z̄ j = ∂Uν,y j

∂ρ
, j = 1, . . . , 	,

where x j is defined in (1.7) and y j is defined in (1.10).
For simplicity of notation, in the sequel we use Ūx j and V̄y j to replace Uμ,x j

and Uν,y j , respectively. In this section, we assume

(r, ρ)∈D	 × D	=:
[( m

2π
−δ̄

)
	 ln 	, M	 ln 	

]
×
[( m

2π
− δ̄

)
	 ln 	, M	 ln 	

]
,

(3.1)

where δ̄ > 0 is a small but M > 0 is a large constant depending only on
m, a, b, B̄andḠ (from the Appendix).
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Define

E =
⎧⎨
⎩(u, v) ∈ HP,s × HQ,s,

	∑
j=1

∫
R3

Ū 2
x j Ȳ j u = 0,

	∑
j=1

∫
R3

V̄ 2
y j Z̄ jv = 0

⎫⎬
⎭ .

Let

J̄ (ϕ̄, ψ̄) = I (Ūr + ϕ̄, V̄ρ + ψ̄), (ϕ̄, ψ̄) ∈ E.

Then, similar to (2.2), J̄ (ϕ̄, ψ̄) has the following expansion

J̄ (ϕ̄, ψ̄) = J̄ (0, 0)+ l̄(ϕ̄, ψ̄)+ 1

2
L̄(ϕ̄, ψ̄)+ R̄(ϕ̄, ψ̄), (ϕ̄, ψ̄) ∈ E, (3.2)

where L̄(ϕ̄, ψ̄) and R̄(ϕ̄, ψ̄) are exactly defined exactly as L(ϕ, ψ) and R(ϕ, ψ)
in Section 2, but with Ur , Vr , ϕ and ψ being replaced by Ūr , V̄ρ, ϕ̄ and ψ̄ , respec-
tively. Moreover, we can find a bounded linear operator L̄ : E → E corresponding
to the quadratic part L̄(ϕ̄, ψ̄). However, l̄(ϕ̄, ψ̄) has the following form

l̄(ϕ̄, ψ̄) =
	∑

j=1

∫
R3

(
P(|x |)− 1

)
Ūx j ϕ̄ + μ

∫
R3

(
Ū 3

r −
	∑

j=1

Ū 3
x j

)
ϕ̄

+
	∑

j=1

∫
R3

(
Q(|x |)− 1

)
V̄y j ψ̄ + ν

∫
R3

(
V̄ 3
ρ −

	∑
j=1

V̄ 3
y j

)
ψ̄

−β ∫
R3

(
Ūr V̄ 2

ρ ϕ̄ + Ū 2
r V̄ρψ̄

)
.

The above analysis gives the following lemma.

Lemma 3.1. There is a constant C > 0, independent of 	, such that for any (r, ρ) ∈
D	 × D	,

‖L̄(u, v)‖ � C‖(u, v)‖, (u, v) ∈ E.

Lemma 3.2. There exist β̄∗ > 0, �̄ > 0 independent of 	, such that for any
(r, ρ) ∈ D	 × D	, if β < β̄∗, then

‖L̄(u, v)‖ � �̄‖(u, v)‖, (u, v) ∈ E.

Proof. The argument is similar to the proof of Lemma 2.2. Arguing by contradic-
tion, we suppose that there are 	 → +∞, r	, ρ	 ∈ D	, and (u	, v	) ∈ E, with
‖(u	, v	)‖2 = 	, and〈

L(u	, v	), (ϕ̄, ψ̄)
〉 = o(1)‖(u	, v	)‖‖(ϕ̄, ψ̄)‖, ∀ (ϕ̄, ψ̄) ∈ E. (3.3)

For j = 1, . . . , 	, let

� j =
{

z = (z′, z3) ∈ R
2 × R :

〈
z′

|z′| ,
x ′ j

x ′ j |

〉
� cos

π

	

}
,

�̃ j =
{

z = (z′, z3) ∈ R
2 × R :

〈
z′

|z′| ,
y′ j

y′ j |

〉
� cos

π

	

}
.
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We will use r, ρ to replace r	, ρ	, respectively, in the sequel. By symmetry, we see
from (3.3),∫
�1

(∇u	∇ϕ̄+P(|x |)u	ϕ̄−3μŪ 2
r u	ϕ̄

)+∫
�1

(∇v	∇ψ̄+Q(|x |)v	ψ̄−3νV̄ 2
ρ v	ψ̄

)
−β

∫
�1

(
Ū 2

r v	ψ̄ + V̄ 2
ρ u	ϕ̄ + 2Ūr V̄ρu	ψ̄ + 2Ūr V̄ρv	ϕ̄

)
= 1

	
〈L(u	, v	), (ϕ̄, ψ̄)〉 = o(1)

( 1√
	

)
‖(ϕ̄, ψ̄)‖, ∀(ϕ̄, ψ̄) ∈ E.

(3.4)

In particular,∫
�1

(|∇u	|2 + P(|x |)u2
	 − 3μŪ 2

r u2
	

) +
∫
�1

(|∇v	|2 + Q(|x |)v2
	 − 3νV̄ 2

ρ v
2
	

)

−β
∫
�1

(
V̄ 2
ρ u2

	 + 4Ūr V̄ρu	v	 + Ū 2
r v

2
	

) = o(1),

(3.5)

and ∫
�1

(|∇u	|2 + P(|x |)u2
	 + |∇v	|2 + Q(|x |)v2

	

) = 1. (3.6)

Obviously, estimates (3.4), (3.5) and (3.6) are also true on �̃1.
Let

ū	(x) = u	(x − x1), v̄	(x) = v	(x − y1).

Now we consider ū	(x) in detail. The analysis on v̄	(x) is similar for v	 and u	
are also even with respect to the axis y1.

We may assume the existence of ū ∈ H1(R3), such that as 	 → +∞,

ū	 → ū, weakly in H1
loc(R

3), ū	 → ū, strongly in L2
loc(R

3).

Let ϕ̄ ∈ C∞
0 (BR(0)) and be even in xh , h = 2, 3. Define ϕ̄	(x) =: ϕ̄(x − x1) ∈

C∞
0 (BR(x1)). Then choosing (ϕ̄, ψ̄) = (ϕ̄	, 0) in (3.4) and proceeding as we did

in Lemma 2.2, we can see that ū satisfies

−�ū + ū − 3μU 2
1,μū = 0, in R

3. (3.7)

Also, by the nondegeneracy of U1,μ, we find ū = 0.
Using the same argument on �̃1, we can prove that as 	 → +∞,

v̄	 → 0, weakly in H1
loc(R

3), v̄	 → 0, strongly in L2
loc(R

3).

As a result,∫
BR(x1)

u2
	 = o(1),

∫
BR(y1)

v2
	 = o(1), ∀ R > 0.

On the other hand, using Lemma A.1, we obtain

Ur	 (x) � Ce− |x−x1|
2 , x ∈ �1; Vρ	(x) � Ce− |x−y1|

2 , x ∈ �̃1.
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Thus, from (3.3), we see

o(1)	 =
∫

R3

(|∇u	|2+P(|x |)u2
	−3μŪ 2

r u2
	

)+∫
R3

(|∇v	|2+Q(|x |)v2
	−3νV̄ 2

ρ v
2
	

)
−β

∫
R3

(
V̄ 2
ρ u2

	 + 4Ūr V̄ρu	v	 + Ū 2
r v

2
	

)
=
∫

R3

(|∇u	|2 + P(|x |)u2
	 + |∇v	|2 + Q(|x |)v2

	

) − β

∫
R3

(
V̄ 2
ρ u2

	 + Ū 2
r v

2
	

)
−4β	

∫
�1

Ūr V̄ρu	v	 − 	

∫
�1

3μŪ 2
r u2

	 − 	

∫
�̃1

3νV̄ 2
ρ v

2
	

=
∫

R3

(|∇u	|2 + P(|x |)u2
	 + |∇v	|2 + Q(|x |)v2

	

) − β

∫
R3

(
V̄ 2
ρ u2

	 + Ū 2
r v

2
	

)
+O(e−|x1−y1|)‖u	‖P‖v	‖Q +

(
o(1)+ O(e−R)

)∫
R3

(
u2 + v2

	

)

= 	− β

∫
R3

(
V̄ 2
ρ u2

	 + Ū 2
r v

2
	

) + O(e− π
	

r	 )	+
(

o(1)+ O(e−R)
)
	

� 	− Cβ	+ O(e− π
	

r	 )	+
(

o(1)+ O(e−R)
)
	,

(3.8)

since

0 �
∫

R3

(
V̄ 2
ρ u2

	 + Ū 2
r v

2
	

)
� C

∫
R3

(
u2
	 + v2

	

)
� C	,

where C is independent of 	.
If we choose β < β̄∗ =: 1

C , then (3.8) is impossible for large R and 	.
Consequently, we complete the proof. ��
Now we apply the above reduction process to the functional J̄ (ϕ̄, ψ̄).

Proposition 3.3. There is an integer 	̄0 > 0, such that for each 	 � 	̄0, there is a C1

map from D	×D	 to HP,s ×HQ,s : (ϕ̄, ψ̄) = (ϕ̄(r, ρ), ψ̄(r, ρ)), r = |x1|, ρ = |y1|,
satisfying (ϕ̄, ψ̄) ∈ E, and

〈
∂ J̄ (ϕ̄, ψ̄)

∂(ϕ̄, ψ̄)
, (h, g)

〉
= 0, ∀ (h, g) ∈ E.

Moreover,

‖(ϕ̄, ψ̄)‖ � C	

(
1

rm
+ 1

rn

)
+ C |β|	 1

2
	

r
e−√

(ρ−r cos π
	
)2+r2( π

	
)2 . (3.9)

Proof. We see that l̄(ϕ̄, ψ̄) is a bounded linear functional in E. Thus, there is l̄	 ∈ E,
such that

l̄(ϕ̄, ψ̄) = 〈
l̄	, (ϕ̄, ψ̄)

〉
.
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Hence, to verify the proposition, we only need to use the argument in the proof
of Proposition 2.5 and the following estimate on ‖l̄	‖:

‖l̄	‖ � C	

(
1

rm
+ 1

rn

)
+ C |β|	 1

2
	

r
e−√

(ρ−r cos π
	
)2+r2( π

	
)2 , (3.10)

where C is independent of 	 and β.
Now we prove (3.10). Indeed, since in Lemma 2.6, we have a similar estimate

on the first four terms of l̄(ϕ̄, ψ̄) , we need to estimate only

∫
R3

(
Ūr V̄ 2

ρ ϕ̄ + Ū 2
r V̄ρψ̄

)
.

By symmetry, we see

∣∣∣∣
∫

R3
Ūr V̄ 2

ρ ϕ̄

∣∣∣∣ = 	

∣∣∣∣
∫
�1

Ūr V̄ 2
ρ ϕ̄

∣∣∣∣
= C	

∫
�1

⎛
⎝Ūx1 V̄ 2

y1 + Ūx1 V̄ 2
y	 + Ūx1

	−1∑
j=2

V̄ 2
y j + V̄ 2

y1

	∑
j=2

Ūx j +
	∑

j=2

Ūx j

	∑
j=2

V̄ 2
y j

⎞
⎠ |ϕ̄|

� C	
∫
�1

⎛
⎝V̄y1

e−|y1−x1|

|y1 − x1| + V̄y	
e−|y	−x1|

|y	 − x1| + Ūx1

	∑
j=2

e− 1
2 |x j −y1| + V̄ 2

y1

	∑
j=2

e− 1
2 |x j −x1|

⎞
⎠ |ϕ̄|

� C	
e−|y1−x1|

|y1 − x1|
(∫

�1

|ϕ̄|2
) 1

2

� C	
1
2
	

r
e−√

(ρ−r cos π
	
)2+r2( π

	
)2‖(ϕ̄, ψ̄)‖, (3.11)

since |x − y j | � 1
2 |y j − y1|, |x − x j | � 1

2 |x j − x1| if x ∈ �1 and j = 2, . . . , 	,

and for 	 large e−|y1−x1| � 2e−√
(ρ−r cos π

	
)2+r2( π

	
)2 .

Similarly,

∣∣∣∣
∫

R3
Ū 2

r V̄ρϕ̄

∣∣∣∣ � C	
1
2 	

r e−√
(ρ−r cos π

	
)2+r2( π

	
)2‖(ϕ̄, ψ̄)‖. (3.12)

Hence, we complete the proof. ��

Proof of Theorem 1.8. Let (ϕ̄r,ρ, ψ̄r,ρ) = (ϕ̄(r, ρ), ψ̄(r, ρ)) be the map obtained
in Proposition 3.3. Define

F̄(r, ρ) = I (Ūr + ϕ̄r,ρ, V̄ρ + ψ̄r,ρ), ∀ r, ρ ∈ D	.

We can easily check that for 	 sufficiently large, if (r, ρ) is a critical point of
F̄(r, ρ), then (Ūr + ϕ̄r,ρ, V̄ρ + ψ̄r,ρ) is a critical point of I .
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It follows from Propositions 3.3 and Proposition A.3 that

F̄(r, ρ) = I (Ūr , V̄ρ)+ l̄(ϕ̄r,ρ , ψ̄r,ρ)+ 1

2

〈
L̄(ϕ̄r,ρ , ψ̄r,ρ), (ϕ̄r,ρ , ψ̄r,ρ)

〉 + R̄(ϕ̄r,ρ , ψ̄r,ρ)

= I (Ūr , V̄ρ)+ O
(
‖l̄	‖‖(ϕ̄r,ρ , ψ̄r,ρ)‖ + ‖(ϕ̄r,ρ , ψ̄r,ρ)‖2

)

= I (Ūr , V̄ρ)+ O

(
β2 	

3

r2 e
−2

√
(ρ−r cos π

	
)2+r2( π

	
)2
)

+O

(
1

rm−1+σ + 1

ρm−1+σ
)

= 	

(
Ā + a B̄

rm − D̄
	

r
e− 2πr

	 −
(

o(1)β + O

(
β2

ln 	

))
	

r
e
−2

√
(ρ−r cos π

	
)2+r2( π

	
)2

+ bC̄

ρm − Ḡ
	

ρ
e− 2πρ

	 + O

(
1

rm+σ + 1

ρm+σ
))

.

For any β < β̄∗, where β̄∗ is defined in Lemma 3.2, we can choose 	∗ > 0 such

that D̄ + o(1)β + O( β
2

ln 	 ) > 0 for 	 � 	∗. Consider the maximization problem

max
(r,ρ)∈D	×D	

F̄(r, ρ). (3.13)

Assume that (3.13) is achieved by some (r	, ρ	) in D	 × D	. We will prove that
(r	, ρ	) is an interior point of D	 × D	.

When o(1)β + O( β
2

ln 	 ) > 0, we define

ḡ(t) = a B̄

tm	m
−
(

D̄ + o(1)β + O

(
β2

ln 	

))
e−2π t

t
, h̄(s) = bC̄

sm	m
− Ḡe−2πs

s
.

Then,

ḡ′(t) = − maB̄

tm+1	m
+

2π
(

D̄ + o(1)β + O
(
β2

ln 	

))
e−2π t

t

+
(

D̄ + o(1)β + O

(
β2

ln 	

))
e−2π t

t2 ,

and

h̄′(s) = − mbC̄

sm+1	m
+ 2π Ḡe−2πs

s
+ Ḡe−2πs

s2 .

It is easy to check that ḡ(t) has a maximum point, t	, satisfying

maB̄

tm+1	m
=

(
D̄ + o(1)β + O

(
β2

ln 	

))
e−2π t

t

(
2π + 1

t

)
. (3.14)

Thus,

t	 =
( m

2π
+ o(1)

)
ln 	,

Author's personal copy



Segregated and Synchronized Vector Solutions 327

and by (3.14),

ḡ(t	) = a B̄

tm
	 	

m

(
1 + O

(
1

t	

))
.

So, the function

g̃(r) := a B̄

rm
−
(

D̄ + o(1)β + O

(
β2

ln 	

))
	e− 2πr

	

r

has a maximum point

r̄	 = 	t	 =
( m

2π
+ o(1)

)
	 ln 	,

with

g̃(r̄	) = ḡ(t	) = c1 + o(1)

| ln 	|m	m

for some constant c1 > 0 depending only on a, B̄,m.

If o(1)β + O( β
2

ln 	 ) � 0, we define g̃1(t) = a B̄
rm − D̄e

−2πr
	

r . Then we still get that

the maximum of g̃1 is c1+o(1)
| ln 	|m	m .

Similarly, the function

h̃(ρ) := bC̄

ρm
− Ḡ	e− 2πρ

	

ρ

has a maximum point

ρ̄	 =
( m

2π
+ o(1)

)
	 ln 	,

with

h̃(ρ̄	) = c2 + o(1)

| ln 	|m	m

for some constant c2 > 0 depending on b, C̄,m.

Hence, if o(1)β + O( β
2

ln 	 ) > 0 we see

F̄(r	, ρ	) � 	

(
Ā + g̃(r̄	)+ h̃(ρ̄	)+ o(1)

| ln 	|m	m

)

= 	

(
Ā + c1 + c2 + o(1)

| ln 	|m	m

)
.

(3.15)

If o(1)β + O( β
2

ln 	 ) � 0, we have

F̄(r	, ρ	) � 	

(
Ā + g̃1(r̄	)+ h̃(ρ̄	)+ o(1)

| ln 	|m	m

)

= 	

(
Ā + c1 + c2 + o(1)

| ln 	|m	m

)
.

(3.16)
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Now we show that the maximum cannot be on the boundary of D	×D	. Suppose

that r	 = ( m
2π − δ̄

)
	 ln 	. Then if o(1)β + O( β

2

ln 	 ) > 0, for any ρ ∈ D	,

F̄(r	, ρ) �	
(

Ā + C

| ln 	|m	m
− D̄

e−2π( m
2π −δ̄) ln 	

( m
2π − δ̄) ln 	

+ h̃(ρ̄	)

)

�	
(

Ā + C

| ln 	|m	m
− D̄

1

	2π( m
2π −δ̄)( m

2π − δ̄) ln 	
,+ c2 + o(1)

| ln 	|m	m

)

<	

(
Ā + c2 + o(1)

| ln 	|m	m

)
.

This is a contradiction to (3.15). If o(1)β + O( β
2

ln 	 ) � 0 for any ρ ∈ D	

F̄(r	, ρ) � 	

(
Ā + C

| ln 	|m	m
−
(

D̄ + o(1)β + O

(
β2

ln 	

))

×e−2π( m
2π −δ̄) ln 	

( m
2π − δ̄) ln 	

+ h̃(ρ̄	)

)

� 	

(
Ā + C

| ln 	|m	m
−
(

D̄ + o(1)β + O

(
β2

ln 	

))

× 1

	2π( m
2π −δ̄)( m

2π − δ̄) ln 	
+ c2 + o(1)

| ln 	|m	m

)

< 	

(
Ā + c2 + o(1)

| ln 	|m	m

)
.

This is a contradiction to (3.16). Suppose that r	 = M	 ln 	. Then for any ρ ∈ D	,
we see

F̄(r	, ρ) � 	

(
Ā + a B̄

(M	 ln 	)m
+ h̃(ρ̄	)

)
+ o(1)	

| ln 	|m	m

� 	

(
Ā + a B̄

(M	 ln 	)m
+ c2 + o(1)

| ln 	|m	m

)
< 	

(
Ā + c1 + c2 + o(1)

| ln 	|m	m

)
,

which is also a contradiction to (3.15), if M > 0 is large.
Similarly, we can also verify that ρ	 �= ( m

2π − γ
)
	 ln 	 and ρ	 �= M	 ln 	 for

suitable γ > 0 and M > 0.
So we have proved that (r	, ρ	) is an interior point of D	 × D	 for large 	, thus

(r	, ρ	) is a critical point of F̄(r, ρ).
Proceeding as in the proof of Theorem 1.7, for β < 0 we can check that

ur	,ρ	 = Ūr	 + ϕ̄r	,ρ	 and vr	,ρ	 = V̄ρ	 + ψ̄r	,ρ	 are positive, and hence a solution
of (1.1). When β > 0, we note that the estimates on ϕ̄r	,ρ	 and ψ̄r	,ρ	 can be done
independently of β � β∗ so that ur	,ρ	 and vr	,ρ	 are uniformly bounded inde-
pendently of β. Again we can then use the same argument as before to show the
solutions are positive when β > 0 is small enough.

As a result, we complete the proof. ��
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4. Extensions

Remark 4.1. First of all, we remark that our main result on synchronized solutions
can be stated and proved for the case of R

2 with little change to the proof. However,
we do not know whether our result on segregated solutions is valid for R

2. It would
be to examine this case.

Remark 4.2. Radial symmetry can be replaced by the following weaker symmetry
assumption: after suitably rotating the coordinate system,

(P1) P(x) = P(x ′, x3) = P(|x ′|, |x3|), where x = (x ′, x3) ∈ R
2 × R,

(P2) P(x) = p2 + a
|x |m + O

( 1
|x |m+θ

)
as |x | → +∞, where p > 0, a ∈ R, m > 1

and θ > 0 are some constants.
(Q1) Q(x) = Q(x ′, x3) = Q(|x ′|, |x3|), where x = (x ′, x3) ∈ R

2 × R,
(Q2) Q(x) = q2 + b

|x |n + O
( 1

|x |n+ε
)

as |x | → +∞, where b ∈ R, n > 1, ε > 0,
and q > 0 are some constants.

Remark 4.3. Our methods allow us to treat sign-changing solutions, also. The
solutions (u, v) are constructed in the form with u and v components both having
alternating sign-changing bumps at infinity.

For sign-changing solutions to problem 1.1, we have the following result.

Theorem 4.4. Suppose that P(r) satisfies (P) and Q(r) satisfies (Q), then there
exists a decreasing sequence {βk} ⊂ (−√

μν, 0) with βk → −√
μν as k → ∞

such that for β ∈ (−√
μν, 0) ∪ (0,min{μ, ν}) ∪ (max{μ, ν},∞) and β �= βk

for any k, problem (1.1) has infinitely many non-radial sign-changing synchro-
nized solutions (u	, v	), whose energy can be arbitrarily large, provided one of the
following two conditions holds:

(i) m < n, a < 0 and b ∈ R; or m > n, a ∈ R and b < 0;
(ii) m = n, aB + bC < 0, where B and C are defined in Proposition A.2.

Furthermore, as 	 → ∞
||√|μ− β|u	 − √|ν − β|v	||H1 + ||√|μ− β|u	 − √|ν − β|v	||L∞ → 0.

The sketch of proof for Theorem 4.4. For any positive even number 	, set

Ur (x) =
	∑

j=1

(−1) jUx j , Vr (x) =
	∑

j=1

(−1) j Vx j .

We will find a solution for system (1.1) of the form (Ur +ϕ, Vr +ψ)with (ϕ, ψ) ∈
E . To this end, we should also perform the same procedure as the proof of Theorem
1.7.

Expanding J (Ur + ϕ, Vr + ψ), analyzing each term of the expansion and
performing the reduction process, we conclude that finding a critical point with the
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form (Ur +ϕ, Vr +ψ) can be reduced to finding a minimum point of the following
function in the interior of D	:

F∗(r) = 	

(
A +

(
aB

rm
+ bC

rn
+ (D̃ + β Ẽ)e− 2πr

	
	

r

)
+ O

(
1

	m+σ + 1

	n+σ

))
,

where A, B and C are defined in Proposition A.2 and D̃ and Ẽ are two positive
constants.

The rest of the proof can be finished as in the proof of Theorem 1.7. ��
Theorem 1.8 can be generalized to the following general system⎧⎪⎪⎨

⎪⎪⎩
−�u + P(|x |)u = μu3 + βp

p + q
|v|q |u|p−2u, x ∈ R

3,

−�v + Q(|x |)v = νv3 + βq

p + q
|u|p|v|q−2v, x ∈ R

3,

(4.1)

where 2 � p � 5, 2 � q � 5 and p + q � 6.

Theorem 4.5. Suppose that P(r) satisfies (P), Q(r) satisfies (Q) and m = n, a >
0, b > 0. Then there exists β̃ > 0 such that, for β < β̃, problem (4.1) has infinitely
many nonradial positive segregated solutions, whose energy can be arbitrarily
large.

The proof for the case p = 2 or q = 2 is the same as that of Theorem 1.8. To
prove the case p > 2 and q > 2, we notice that for any τ > 0 small,∫

R3
U p

r V q
ρ = C̃	

(
	

r

)min(p,q)

e− min(p−τ,q−τ)
√
(ρ−r cos π

	
)2+r2( π	 )

2

.

Hence, the energy expansion has the form

F̃(r, ρ) = 	

(
Ā + a B̄

rm
− D̄

	

r
e− 2πr

	 − C̃β

(
	

r

)min(p,q)

× e− min(p−τ,q−τ)√(ρ−r cos π
	
)2+r2( π

	
)2

+bC̄

ρm
− Ḡ

	

ρ
e− 2πρ

	 + O

(
1

rm+σ + 1

ρm+σ

))
.

The rest part of the proof is similar to that of Theorem 1.8. We point out here
that the condition β < β̃ can guarantee that the reduction programm works (see
Lemma 3.2).

Finally, arguing as we prove Theorem 4.4, we can obtain infinitely many sign-
changing solutions to problem (4.1).

Theorem 4.6. Suppose that P(r) satisfies (P), Q(r) satisfies (Q) and m = n, a <
0, b < 0. Then there exists β̃∗ > 0 such that, for β < β̃∗, problem (4.1) has infi-
nitely many nonradial sign-changing segregated solutions, whose energy can be
arbitrarily large.
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Appendix A. Energy Expansions

In this section, we will expand the energies I (Ur , Vr ) and I (Ūr , V̄ρ), where

I (u, v) = 1

2

∫
R3

(|∇u|2 + P(|x |)u2 + |∇v|2 + Q(|x |)v2)
−1

4

∫
R3

(
μ|u|4 + ν|v|4)−β

2

∫
R3

u2v2, (u, v) ∈ H.

First, we estimate Ur , Vr , Ūr and V̄ρ .

Lemma A.1. For any θ � 1, there is a σ > 0, such that

U θ
r (x) = U θ

x j (x)+ O

(
1

rσ
e− 1

2 |x−x j |
)
, ∀x ∈ � j ,

V θ
r (x) = V θ

x j (x)+ O

(
1

rσ
e− 1

2 |x−x j |
)
, ∀ x ∈ � j , (A.1)

Ū θ
r (x) = Ū θ

x j (x)+ O

(
1

rσ
e− 1

2 |x−x j |
)
, ∀x ∈ � j ,

V̄ θ
ρ (x) = V̄ θ

y j (x)+ O

(
1

ρσ
e− 1

2 |x−y j |
)
, ∀ x ∈ �̃ j , (A.2)

where

� j =
{

z = (z′, z3) ∈ R
3 :

〈
z′

|z′| ,
x ′ j

|x ′ j |

〉
� cos

π

	

}
, j = 1, . . . , 	,

�̃ j =
{

z = (z′, z3) ∈ R
3 :

〈
z′

|z′| ,
y′ j

|y′ j |

〉
� cos

π

	

}
, j = 1, . . . , 	.

Proof. Without loss of generality, and in view of the symmetry, we need to estimate
only U θ

r in �1.
For any x ∈ �1, we have

|x − x j | � |x − x1|, ∀ x ∈ �1,

which gives |x − x j | � 1
2 |x j − x1| if |x − x1| � 1

2 |x j − x1|. On the other hand,
if |x − x1| � 1

2 |x j − x1|, then

|x − x j | � |x j − x1| − |x − x1| � 1

2
|x j − x1|.

So, we find

|x − x j | � 1

2
|x j − x1|, ∀ x ∈ �1. (A.3)
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Now,

U θ
r (x) = U θ

x1(x)+ O

⎛
⎜⎝U θ−1

x1 (x)
	∑

j=2

Ux j (x)+
⎛
⎝ 	∑

j=2

Ux j (x)

⎞
⎠
θ
⎞
⎟⎠ .

But for any κ > 0, using (A.3), we find

	∑
j=2

U κ
x j (x) � C

	∑
j=2

e−κ|x−x j |

� C
	∑

j=2

e− 1
2 κ|x1−x j | � Ce− κπr

	 � C

	σ
, ∀ x ∈ �1.

As a result,

U θ−1
x1 (x)

	∑
j=1

Ux j (x) � U
θ− 1

2
x1 (x)

	∑
j=2

U
1
2

x j (x) � C

	σ
e− 1

2 |x−x1|, ∀ x ∈ �1,

and

⎛
⎝ 	∑

j=2

Ux j (x)

⎞
⎠
θ

� U
θ
2

x1(x)

⎛
⎝ 	∑

j=2

U
1
2

x j (x)

⎞
⎠
θ

� C

	σ
e− 1

2 |x−x1|, ∀ x ∈ �1.

So, (A.2) follows. ��

Proposition A.2. There is a small constant σ > 0, such that

I (Ur , Vr ) = A + 	

(
aB

rm
+ bC

rn
− (D + βH)e− 2πr

	
	

r

)

+ O

(
	

rm	σ
+ 	

rn	σ
+ 	e− 3πr

	

)
,

where

A = μ+ ν − 2β

4(μν − β2)

∫
R3

W 4, B = α2

2

∫
R3

W 2, C = γ 2

2

∫
R3

W 2,

D, H are positive constants independent of 	 and for β > −√
μν it holds that

D + βH > 0.
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Proof. Write

I (Ur + Vr )

= 1

2

∫
R3

(|∇Ur |2 + P(|x |)U 2
r + |∇Vr |2 + Q(|x |)V 2

r

)
−1

4

∫
R3

(
μU 4

r + νV 4
r

) − β

2

∫
R3

U 2
r V 2

r

= 	

{
1

2

∫
R3

(|∇U |2 + U 2 + |∇V |2 + V 2)
−1

4

∫
R3

(
μU 4 + νV 4) − β

2

∫
R3

U 2V 2
}

+1

2

∫
R3

⎛
⎝(P(|x |)− 1)

	∑
i, j=1

Uxi Ux j + (Q(|x |)− 1)
	∑

i, j=1

Vxi Vx j

⎞
⎠

−μ
4

∫
R3

⎛
⎝( 	∑

i=1

Uxi

)4

−
	∑

i=1

U 4
xi − 2

	∑
i �= j

U 3
xi Ux j

⎞
⎠

−ν
4

∫
R3

⎛
⎝( 	∑

i=1

Vxi

)4

−
	∑

i=1

V 4
xi − 2

	∑
i �= j

V 3
xi Vx j

⎞
⎠

−β
2

∫
R3

⎛
⎝
(

	∑
i=1

Uxi

)2 ( 	∑
i=1

Vxi

)2

−
	∑

i=1

U 2
xi V 2

xi −
	∑

i �= j

V 2
xi Uxi Ux j

−
	∑

i �= j
U 2

xi Vxi Vx j

)
.

(A.4)

Now we estimate each term in (A.4).
By symmetry and Lemma A.1, we see

∫
R3

(
P(|x |)− 1

) 	∑
i, j=1

Uxi Ux j

= 	

∫
�1

(
P(|x |)− 1

)⎛⎝U 2
x1 + 2Ux1

	∑
i=2

Uxi +
(

	∑
i=2

Uxi

)2⎞⎠

= 	

∫
�1

(
P(|x |)− 1

)
U 2

x1 + 	O

(
1

	σ

)∫
�1

∣∣P(|x |)− 1
∣∣Ux1 e−|x−x1|

= 	

(
aα2

rm

∫
R3

W 2 + O

(
1

rm	σ

))
,

(A.5)

where σ > 0 is a small constant.
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Similarly,

∫
R3

(
Q(|x |)− 1

) 	∑
i, j=1

Vxi Vx j = 	

(
bγ 2

rn

∫
R3

W 2 + O

(
1

rn	σ

))
. (A.6)

Employing Lemma A.1 and (A.3), we see

∫
R3

⎛
⎝( 	∑

i=1

Uxi

)4

−
	∑

i=1

U 4
xi − 2

	∑
i �= j

U 3
xi Ux j

⎞
⎠

= 	

∫
�1

⎛
⎝(Ux1 +

	∑
i=2

Uxi

)4

−
(

U 4
x1 +

	∑
i=2

U 4
xi

)

−2

⎛
⎝U 3

x1

	∑
i=2

Uxi + Ux1

	∑
i=2

U 3
xi +

∑
i, j�2,i �= j

U 3
xi Ux j

⎞
⎠
⎞
⎠

= 2	
∫
�1

U 3
x1

	∑
i=2

Uxi + O
(
	e− 3πr

	
)
,

(A.7)

and similarly

∫
R3

⎛
⎝
(

	∑
i=1

Vxi

)4

−
	∑

i=1

V 4
xi −2

	∑
i �= j

V 3
xi Vx j

⎞
⎠=2	

∫
�1

V 3
x1

	∑
i=2

Vxi +O
(
	e− 3πr

	

)
,

(A.8)∫
R3

⎛
⎝
(

	∑
i=1

Uxi

)2 ( 	∑
i=1

Vxi

)2

−
	∑

i=1

U 2
xi V 2

xi −
	∑

i �= j

V 2
xi Uxi Ux j −

	∑
i �= j

U 2
xi Vxi Vx j

⎞
⎠

= 	

∫
�1

(
V 2

x1Ux1

	∑
i=2

Ux j + U 2
x1 Vx1

	∑
i=2

Vxi

)
+ O

(
	e− 3πr

	

)
. (A.9)

Noting that

1

2

∫
R3

(|∇U |2 + U 2 + |∇V |2 + V 2) − 1

4

∫
R3

(
μU 4 + νV 4) − β

2

∫
R3

U 2V 2

= μ+ ν − 2β

4(μν − β2)

∫
R3

W 4,

we insert (A.5)-(A.9) into (A.4) and find

I (Ur , Vr )

= μ+ ν − 2β

4(μν − β2)

∫
R3

W 4 + 	

(
aα2

2rm

∫
R3

W 2 + bγ 2

2rn

∫
R3

W 2
)
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−	
{
μ

2

∫
�1

U 3
x1

	∑
i=2

Uxi + ν

2

∫
�1

V 3
x1

	∑
i=2

Vxi

+ β

2

∫
�1

(
V 2

x1Ux1

	∑
i=2

Uxi + U 2
x1 Vx1

	∑
i=2

Vxi

)}

+O

(
	

rm	σ
+ 	

rn	σ
+ 	e− 3πr

	

)

= μ+ ν − 2β

4(μν − β2)

∫
R3

W 4 + 	

(
aα2

2rm

∫
R3

W 2 + bγ 2

2rn

∫
R3

W 2
)

(A.10)

−
{∫

�1

(μα
2

U 3
x1 + νγ

2
V 3

x1

) 	∑
i=2

e−|x1−xi |

|x1 − xi |

}

−β
2

{∫
�1

(
αV 2

x1Ux1 + γU 2
x1 Vx1

) 	∑
i=2

e−|x1−xi |

|x1 − xi |

}

+O

(
	

rm	σ
+ 	

rn	σ
+ 	e− 3πr

	

)

= μ+ ν − 2β

4(μν − β2)

∫
R3

W 4 + 	

(
aα2

2rm

∫
R3

W 2 + bγ 2

2rn

∫
R3

W 2
)

−	(D + βH)e− 2πr
	
	

r
+ O

(
	

rm	σ
+ 	

rn	σ
+ 	e− 3πr

	

)
,

sinceUxi = α
γ

Vxi , where D, H > 0 are constants independent of	. Forβ > −√
μν

using the expression of Ux1 and Vx1 by the Hölder inequality it is easy to see
D + βH > 0. As a result, we can complete the proof. ��
Proposition A.3. There is a small constant σ > 0, such that

I (Ūr , V̄ρ) = 	

(
Ā + a B̄

rm
− D̄e− 2πr

	
	

r
− o(1)βe−2

√
(ρ−r cos π

	
)2+r2( π

	
)2 	

r

+bC̄

ρn
− Ḡe− 2πρ

	
	

ρ
+ O

(
1

rm+σ + 1

ρm+σ

))
,

where

Ā = 1

4

∫
R3

(
μU 4

1,μ + νU 4
1,ν

)
, B̄ = 1

2

∫
R3

U 2
1,μ, C̄ = 1

2

∫
R3

U 2
1,ν ,

D̄, Ḡ are positive constants independent of 	.

Proof. Since

I (Ūr + V̄ρ)

= 1

2

∫
R3

(|∇Ūr |2 + P(|x |)Ū 2
r + |∇ V̄ρ |2 + Q(|x |)V̄ 2

ρ

)
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−1

4

∫
R3

(
μŪ 4

r + νV̄ 4
ρ

) − β

2

∫
R3

Ū 2
r V̄ 2

ρ

= 	

4

∫
R3

(
μŪ 4

1,μ + νŪ 4
1,ν

) − β

2

∫
R3

(
	∑

i=1

Ūxi

)2 ( 	∑
i=1

V̄yi

)2

+1

2

∫
R3

⎛
⎝(P(|x |)− 1)

	∑
i, j=1

Ūxi Ūx j + (
Q(|x |)− 1

) 	∑
i, j=1

V̄yi V̄y j

⎞
⎠

−μ
4

∫
R3

⎛
⎝
(

	∑
i=1

Ūxi

)4

−
	∑

i=1

Ū 4
xi − 2

	∑
i �= j

Ū 3
xi Ūx j

⎞
⎠

−ν
4

∫
R3

⎛
⎝
(

	∑
i=1

V̄yi

)4

−
	∑

i=1

V̄ 4
yi − 2

	∑
i �= j

V̄ 3
yi V̄y j

⎞
⎠ ,

the last three terms can be estimated exactly as done in the proof of Proposition A.2.
We need to estimate the term

∫
�1

(∑	
i=1 Ūxi

)2(∑	
i=1 V̄yi

)2, which is done in the
next lemma, claiming

∫
�1

U 2
x1 V 2

y1 = o(1)e−2
√
(ρ−r cos π

	
)2+r2( π

	
)2 	

r
.

Now, to complete the proof, we have the estimate

∫
�1

(
	∑

i=1

Ūxi

)2 ( 	∑
i=1

V̄yi

)2

=
∫
�1

(
Ux1 + Ux2 + Ux	 +

	−1∑
i=3

Ūxi

)2 (
Vy1 + Vy	 +

	−1∑
i=2

V̄yi

)2

=
∫
�1

(
U 2

x1 V 2
y1 + U 2

x1 V 2
y	 + U 2

x2 Vy1 + U 2
x	V

2
y	
) + O

(
e− 3π

	
r )

= o(1)
	

r
e−2

√
(ρ−r cos π

	
)2+r2( π

	
)2 + O

(
e− 3π

	
r ).

��

Lemma A.4. As 	 → ∞,

∫
�1

U 2
x1 V 2

y1 = o(1)e−2
√
(ρ−r cos π

	
)2+r2( π

	
)2 	

r
.

Proof. Let �′
1 = {

z = (z′, z3) ∈ R
3 : 〈 z′

|z′| ,
x ′1
|x ′1| 〉 � cos π

2	

}
. Then

∫
�1

U 2
x1 V 2

y1 =
2
∫
�′

1
U 2

x1 V 2
y1 . We divide �′

1 into two parts: ω1 = {x ∈ �′
1 | |x − x1| � |x1 −
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y1|}, ω2 = {x ∈ �′
1 | |x − x1| � |x1 − y1|}. Noticing that |x − y1| � 1

2 |x1 − y1|
for x ∈ �′

1, we find for some C > 0

∫
ω1

U 2
x1 V 2

y1 � C
e−2|x1−y1|

|x1 − y1|2
∫
ω1

e−2|x−y1| = o(1)

(
e−2|x1−y1|

|x1 − y1|

)
,

and ∫
ω2

U 2
x1 V 2

y1 � C
e−2|x1−y1|

|x1 − y1|2
∫
ω2

e−2|x−x1|−2|x−y1|+2|x1−y1|

|x − x1|2

� C
e−2|x1−y1|

|x1 − y1|2
∫

|x |�|x1−y1|
e−2|x |−2|x−(x1−y1)|+2|x1−y1|

|x |2

= C
e−2|x1−y1|

|x1 − y1|
∫

|x |�1

e
−2|x1−y1|(|x |+|x− (x1−y1)

|x1−y1| |−1)

|x |2 .

Here we have used the fact that

U1,μ � C |x |−1e−|x |, U1,ν � C |x |−1e−|x |.

Without loss of generality we assume x1 − y1 = (x1 − y1, 0, 0), with x1 − y1 > 0,
and we write 1 = (1, 0, 0). Using convexity, we have c > 0 such that |x | + |x −
1| − 1 � c(x2

2 + x2
3 ) for |x | � 1. Then, using the dominated convergence theorem,

we have∫
|x |�1

e−2|x1−y1|(|x |+|x−1|−1)

|x |2 �
∫

|x |�1

e−2c|x1−y1|(x2
2+x2

3 )

|x |2 → 0 as 	 → +∞.

Hence, the lemma is proved. ��
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